
Fast Overlay Tree Based On
Efficient End-to-End Measurements

Xing Jin Yajun Wang S.-H. Gary Chan
Department of Computer Science

The Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong
{csvenus, yalding, gchan}@cs.ust.hk

Abstract— Most of the application-layer multicast protocols
use end-to-end delay as their primary metric. However, for
applications such as stored video delivery, meeting a certain
target bandwidth requirement is of primary importance. In this
paper, we present a centralized approach on how to build a fast
overlay tree based on efficient end-to-end measurements.

We first investigate how to infer underlay topology (in terms
of connectivity) with low measurement cost. Given N end-hosts,
traditionally full N(N−1)/2 traceroutes are needed to accurately
determine the underlay topology. We propose a much faster
heuristic (Max-Delta) where a server selects appropriate host-
pairs to probe in parallel so as to reveal the most information on
the underlay in each round. Given an inferred network topology,
we then present the algorithm of Fast Application-layer Tree
(FAT), which builds an overlay tree of a certain target bandwidth
by estimating possible load on each underlay link.

Simulation results show that almost full measurements are
needed to discover completely underlay topology. However,
substantial reduction in measurements (by almost an order of
magnitude) can be achieved if some accuracy, say 5%, can be
sacrificed. As compared to traditional ALM protocols such as
Narada and Overcast, FAT achieves high bandwidth, low link
stress, and low RDP.

I. INTRODUCTION

In order to overcome current limitations in IP multicast,
application-layer multicast (ALM) has been proposed. While
many ALM protocols have been proposed (such as Narada [1],
Nice [2], DT [3], etc.), most of them focus on reducing end-
to-end delay between the source and the end-hosts. The tree
bandwidth, defined as the minimum path-bandwidth of an
overlay tree, is often considered as secondary or not at all. As a
consequence, the bandwidth of the ALM tree constructed may
be too low for applications with a certain target bandwidth
requirement. We address in this paper how to construct an
ALM tree to support these applications using efficient end-to-
end measurements.

A major challenge in constructing ALM tree of a target
bandwidth is that two seemingly disjoint overlay paths may
share common underlay links, thereof reducing the tree band-
width. Therefore, underlay topology is essential in building

This work has been supported, in part, by the Areas of Excellence (AoE)
Scheme on Information Technology of the University Grant Council (AoE/E-
01/99), and by grants of the Research Grant Council (HKUST6199/02E &
HKUST6156/03E) in Hong Kong.

high-bandwidth overlay tree. We hence address the following
two important issues:

• Efficient inference of underlay information using end-to-
end overlay measurements
We consider that one overlay path measurement can
obtain the route sequence and link metrics of interest
(such as delay and/or bandwidth). We will use traceroute
as our measurement tool (though other tools may be also
used).
We address the following problem: given N hosts in an
overlay network, how to infer the router-level topology (in
terms of connectivity) with low number of path measure-
ments? Obviously, in the worst case, N(N − 1)/2 mea-
surements are needed to construct an accurate topology,
assuming overlay paths are symmetric. We are interested
in building a highly accurate topology (discovering, say,
95% of the link information) with substantially fewer
measurements.
We introduce a heuristic called Max-Delta, where hosts
utilize distance estimation tools like GNP or Vivaldi to
estimate their coordinates [4], [5]. A server then collects
host coordinates and chooses the best set of host-pairs
for measurements in each round. Our simulation results
show that even though almost full N(N−1)/2 traceroutes
are needed to discover completely underlay topology,
Max-Delta can construct the underlay topology with
high accuracy with substantially fewer measurements (by
almost an order of magnitude).

• Construction of high-bandwidth overlay tree given an
(inferred) underlay topology
Given the inferred underlay topology and link bandwidth,
we propose how to construct application-layer tree to
meet a certain target bandwidth requirement. If this
cannot be met due to limited link bandwidth, the tree
should achieve as high tree bandwidth as possible.
We propose Fast Application-layer Tree (FAT), where
the server constructs an overlay tree by choosing paths
with lighter “load”, thus avoiding those bottleneck links.
Our simulation results show that it achieves high tree
bandwidth, low link stress and low relative delay penalty
(RDP).

13190-7803-8938-7/05/$20.00 (C) 2005 IEEE

A B

C

D

2

3
1

1

1

2

1

1

1 2

3

4

Fig. 1. An example of underlay network. The dashed lines indicate overlay
paths among hosts. The labels along the links indicate normalized bandwidth.

The rest of the paper is organized as follows: In Section II,
we discuss how to efficiently infer underlay topology by means
of overlay measurements. In Section III, we describe FAT to
build high-bandwidth overlay tree. In Section IV, we present
illustrative simulation results. We conclude in Section V.

II. EFFICIENT TOPOLOGY DISCOVERY

Measurement tools such as traceroute, pathchar or Nettimer
are often used to obtain underlay network information. Be-
cause these tools consume much time and network resources,
hosts should probe the paths efficiently so that they reveal the
most information on the underlay.

We consider that we can obtain the router-level path (in
terms of link delay and router IDs) between any pair of hosts
through some measurement tool such as traceroute. There are
no anonymous routers or alias routers, and the path between a
pair of hosts is unique and stable. This is reasonable because
end-to-end Internet paths tend to be stable for significant
length of time, such as a day [6]. For simplicity, we consider
that the path is symmetric. Note that asymmetric paths do not
affect our heuristics.

The problem is how to infer the router-level topology among
a given group of N hosts with small number of measurements.
As the router-level network is a sparse graph [7], we expect
that exhaustive probing is not necessary. Figure 1 shows an
example, where A,B,C,D are end-hosts and 1, 2, 3, 4 are
routers. The labels along the links are normalized bandwidth
(explained later). The dashed lines indicate overlay paths
among the hosts. As the figure shows, paths A − B, B − C,
C − D and D − A have revealed all the underlay links, and
therefore we need to measure only four instead of all the
possible six paths.

If we do not need to know the underlay topology with
full accuracy (for example, discovering the links with 95%
accuracy), the number of measurements may be substantially
reduced. The issue is then how to choose the most represen-
tative paths to probe.

Suppose a central server serves the host group in which
a host can perform traceroute to any other hosts. Each path

measurement reveals the router IDs and link delays (and pos-
sibly link bandwidth) along the path. The server utilizes host
coordinates to select paths to probe in each round/iteration.
These coordinates can be estimated by low-cost tools such as
GNP or Vivaldi [4], [5]. In order to maximize the parallelism
of measurements among hosts in each iteration (and hence
reduce the time to infer the topology), the server assigns one
probing target to each host. Hosts then probe their own targets
and report their path measurements to the server. The server
combines all these results and starts the next iteration. We
study the following path selection heuristics at server:

• Random Probing (Random): In each iteration, a host
randomly traceroutes an unmeasured host.

• Longest Path Probing (Longest): Usually a longer path
in the Internet contains more hops (routers); therefore,
among all the unmeasured paths, a longer one may
contain more links/routers currently undiscovered. For
each host in an iteration, the server therefore chooses
the farthest (in coordinate space) unmeasured host as the
host’s target.
The coordinates in GNP can be computed in O(N) time.
The pair-wise distance in coordinate space can then be
computed in O(N2) time. For each host, we sort its adja-
cent paths in decreasing order, which takes O(N log N)
time. Thus the computation complexity before path mea-
surements is O(N +N2+N ∗N log N) = O(N2 log N).
In each of the following iterations, selection of one
probing target needs O(1) computations and hence one
iteration costs O(N) computation.
A concern of this scheme is that if a host is far from the
other hosts in the group, that host would be susceptible
to probe measurements from the other hosts. As a result,
these traceroutes would repeatedly reveal the information
towards the host instead of mutual information among
all the hosts. This will lead to inefficiency in traceroute
measurement.

• Max-Delta Probing (Max-Delta): For host a and b, denote
the distance between them using their coordinates as
Euclidean(a, b), and the length of the shortest path
between them on the partially constructed topology as
Dp(a, b). Let

∆(a, b) = Dp(a, b) − Euclidean(a, b).

In the first iteration, each host is assigned a probing
target so that the overlay graph constructed from the
measurements is connected. In the following iteration, for
each host, the server then computes ∆ for all unmeasured
pairs and chooses the one with the maximal ∆ as its
probing target in the next iteration.
The computation complexity is analyzed as follows. At
the beginning of some iteration, suppose the partially
underlay network contains Vp nodes (including hosts and
routers) and Ep links. The computation of single-source
shortest paths on a graph with V nodes and E edges
takes O(V log V + E) time [8]; therefore, computing all
Dp values is of complexity O(N(Vp log Vp + Ep)). For

1320

each host, it takes O(N) time to choose the maximal
∆ from at most N candidates. Therefore the total time
complexity in this iteration is O(N(Vp log Vp+Ep+N)).

Note that in an iteration, it is possible that a host is not
assigned any target to probe. This is the case when all the
paths from the host to others have been probed.

III. FAST APPLICATION-LAYER TREE (FAT)

Given the inferred network topology and link bandwidth, we
present in this section how to construct an ALM tree which
achieves a certain target bandwidth.

A. Tree Construction

Let M be the number of iterations the server performs in
inference. There are at most MN overlay paths. Let BWreq

(kbps) be the target bandwidth requirement of an application
and BWi (kbps) be the bandwidth of underlay link i. Further
let Wi be the normalized bandwidth of link i, defined as
Wi = BWi/BWreq . Note that if link bandwidth is not known
or available, we may set Wi = 1,∀i. Denote Ci the number
of overlay paths on link i. We define Li, the “carried load”
on the underlay link i, as

Li =
{

Ci

Wi
, if Ci > Wi;

0, otherwise.
(1)

To build a tree with high bandwidth, we should avoid
the links likely to be congested, i.e., those with high Li.
Accordingly, we evaluate the “path load” of an overlay path
p as

L(p) =
∑
j∈p

Lj . (2)

Thus, the server can compute L(p) for all the probed overlay
paths, and build a minimum spanning tree as the overlay tree.

We show a simple example in Fig. 2. Suppose the underlay
network is the same as Fig. 1 (N = 4). Let M = 1, and the
measurement paths are A → B, B → C, C → D and D → A.
These overlay paths are shown as dashed lines in Fig. 2(a),
where the label along the underlay link is its “load” Li defined
in Equation (1). The server then computes the loads of overlay
paths and constructs the overlay graph as shown in Fig. 2(b)
with the labels indicating the load L(p) according to Equation
(2). The minimum-spanning tree {A − B,A − D,D − C} is
then used as the overlay tree. In this example, the resultant
tree has normalized bandwidth 1 and thus is able to meet the
target bandwidth requirement.

B. Algorithm Analysis

We analyze the algorithm complexity here. Assume there
are xp different underlay links in overlay path p. To compute
parameter Ci for all underlay links, we need to go through all
these overlay paths. The complexity is

O

(
MN∑
p=1

xp

)
. (3)

A B

C

D

0

0
0

2/1

2/1

0

2/1

0

1 2

3

4

a) Step 1: The dashed lines are overlay paths among hosts. The
labels along the underlay links are Li.

A B

C

D

2

0

4

6

b) Step 2: Construct the overlay graph. The labels along the
overlay paths are L(p). A MST is thus constructed.

Fig. 2. An example of FAT tree construction.

To compute load metric Li as defined in (1), we need to
go through all the distinct underlay links in probed overlay
paths. This overhead is lower than (3), since we only need to
go through the distinct underlay links.

The complexity of computing load L(p) for all the overlay
paths is the same as Equation (3).

Furthermore, to compute MST in a graph with n nodes
and e edges, traditional Prim’s algorithm with Fibonacci
heaps can achieve O(e + n log n) complexity [8], i.e.,
O(MN + N log N) in FAT.

Therefore the total time complexity is

O

(
MN∑
p=1

xp

)
+ O(MN + N log N). (4)

Some research has shown that the average number of routers
in an overlay path in Internet is about 16. Thus we can regard
xp as a constant, and Equation (4) is then reduced to O(MN+
N log N). This is the overall time complexity of FAT. If M =
O(log N), it is reduced to O(N log N).

1321

IV. ILLUSTRATIVE SIMULATION RESULTS

In this section we evaluate our network inference methods
and FAT on Internet-like topologies. We generate a number of
(10) Transit Stub topologies with GT-ITM [9]. Each topology
contains 3200 routers and about 20000 links. End-hosts are
randomly put in the network. An end-host is connected to a
stub router with 1ms delay, while the delay of core links is
given by the topology generator.

A. Network Inference

We define the following metrics for network inference:

• Percentage of links (β), defined as the ratio of the number
of links in the inferred topology to the total number
of links in the actual underlay topology. Every link
appearing in the inferred topology is an actual link on
the underlay. Therefore, β is equal to 1.0 if and only if
the inferred topology is completely accurate.

• Measurement load (R), defined as the number of overlay
measurements performed by a host. The average measure-
ment load among all the hosts in a complete inference
procedure is bounded by (N − 1)/2.

We evaluate the three measurement heuristics in Section II,
denoted as “Random”, “Longest” and “Max-Delta” in the
following figures.

Figure 3 shows the average measurement load per host to
achieve β = 0.95. The line Y = (N − 1)/2 indicates the
theoretical upper bound to discover the network with full
accuracy. As the group size increases, R increases. Max-
Delta achieves substantially fewer measurements (by almost
an order of magnitude) as compared to the full measurements.
Its average measurement load does not sensitively increase
with the group size, which means that it is quite scalable to
large group. Longest Path Probing does not perform well. We
find that in Long Path Probing there are often a small subset of
hosts being probed by many other hosts. These hosts therefore
cannot help much to discover new links. These are also the
hosts which cannot find any target to probe in later iterations.
Therefore, all measurements are given to the remaining hosts,
leading to inefficient inference.

Figure 4 shows the average measurement load per host for
different β requirements, where the group size N is 256.
To discover the accurate underlay, i.e., β = 1.0, these three
heuristics have similar measurements requirements. However,
if only a highly accurate approximate graph is desired, say,
β around 0.95, Max-Delta achieves much lower measurement
load.

As these figures show, it is not easy to discover accurate
topology. None of the heuristics performs extremely better
than others in this case. This is in accord with our basic
knowledge of Internet, that it is quite difficult to decide which
link should be in a path given a source and a destination,
especially when they are in different AS. On the other hand,
although it is difficult to obtain accurate topology, the network
distance estimation can guide us to discover a highly accurate
topology efficiently.

Fig. 3. Average measurement load on each host (R) to achieve β = 0.95.

Fig. 4. Average measurement load per host for different β requirements
(N = 256).

B. FAT Performance

We use tree bandwidth (defined in Section I), link stress
and RDP (defined in [1]) to evaluate FAT. We also implement
Narada and Overcast for comparison. Narada is one of the
pioneering ALM protocols and its performance can serve as
benchmarks. Overcast targets creating high bandwidth chan-
nels from one source to all receivers.

For FAT, it uses Max-Delta method to infer underlay topol-
ogy. M is set to be �2 log2 N�. For Narada, each host’s fanout
range (the minimum and maximum number of neighbors each
member strives to maintain in the mesh) is 3 − 6. We use
normalized bandwidth in parameter settings and result discus-
sion. The target bandwidth is 1. We assume the normalized
bandwidth is uniformly distributed between 3 and 5. In each
simulation, all the schemes share the same underlay network

1322

Fig. 5. Tree bandwidth vs. different group sizes.

topology and bandwidth setting.
Fig. 5 compares tree bandwidth achieved by different

schemes. As the group size increases, tree bandwidth de-
creases. FAT can achieve the maximum tree bandwidth among
all these schemes. Even in large group size (> 100) case
it can achieve near required bandwidth. While Overcast’s
performance is not well in large group size. This is due to its
greedy tree construction method. Narada performs the worst
for it does not optimize bandwidth in tree construction.

Fig. 6- 7 shows physical links stress and RDP of different
schemes. FAT achieves much lower stress than Narada and
Overcast. This indicates that the transmission load has been
evenly distributed among underlay links. Its stress does not
vary sensitively with group size. This confirms the tree band-
width curve is Fig. 5.

The RDP of FAT is lower than Overcast. Because Overcast
always tries to insert a new host as far from the source as
possible. On the other hand, FAT strives to bypass heavy
“load” paths and is inherent to circumvent long or many-hop
paths.

V. CONCLUSION

In this paper we study how to build an ALM tree to meet
a certain target bandwidth requirement. Since overlay paths
may share bottleneck underlay links, it is difficult to solve
this problem solely at overlay. Therefore, we propose to use
network measurement tools to infer underlay network and
utilize these information to build an ALM tree. We study
how to efficiently infer underlay information. Furthermore, we
propose FAT (Fast Application-layer Tree) scheme to build
high-bandwidth overlay tree on top of the inferred underlay.
We do simulations to evaluate our network inference heuristics
and FAT. The results show that our inference method is
effective with very low network measurements to get an
accurate topology, and FAT can achieve higher bandwidth than
Narada and Overcast.

Fig. 6. Average link stress vs. different group sizes.

Fig. 7. Average RDP vs. different group sizes.

REFERENCES

[1] Y. H. Chu, S. Rao, S. Seshan, and H. Zhang, “A case for end system
multicast,” IEEE JSAC, vol. 20, pp. 1456–1471, Oct. 2002.

[2] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable application
layer multicast,” in Proc. ACM SIGCOMM’02, pp. 205–220, Aug. 2002.

[3] J. Liebeherr, M. Nahas, and W. Si, “Application-layer multicasting with
Delaunay triangulation overlays,” IEEE JSAC, vol. 20, pp. 1472–1488,
Oct. 2002.

[4] T. S. E. Ng and H. Zhang, “Predicting Internet network distance with
coordinates-based approaches,” in Proc. IEEE INFOCOM’02, pp. 170–
179, June 2002.

[5] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A decentralized
network coordinate system,” in Proc. ACM SIGCOMM’04, Aug. 2004.

[6] Y. Zhang, N. Duffield, V. Paxson, and S. Shenker, “On the constancy of
Internet path properties,” in Proc. ACM SIGCOMM IMW’01, Nov. 2001.

[7] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relationships
of the Internet topology,” in Proc. ACM SIGCOMM’99, pp. 251–262,
Sept. 1999.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. MIT Press, 2001.

[9] E. Zegura, K. Calvert, and S. Bhattacharjee, “How to model an internet-
work,” in Proc. IEEE INFOCOM’96, vol. 2, pp. 594–602, Mar. 1996.

1323

