
Supporting Multiple-Keyword Search in
A Hybrid Structured Peer-to-Peer Network

Xing Jin W.-P. Ken Yiu S.-H. Gary Chan
Department of Computer Science

The Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

Email: {csvenus, kenyiu, gchan}@cs.ust.hk

Abstract— Most existing techniques for keyword search in
structured peer-to-peer (P2P) networks only support single-
keyword exact-match lookups. In practice, however, users often
have fuzzy information for identifying these items and tend to
submit broad queries. The support of searching based on multiple
keywords is hence desirable. In multiple-keyword search, a
data item is associated with multiple keywords for storage. A
query may also contain multiple keywords. The search result
for a query should include all the data items whose storage
keywords contain all the query keywords. Traditional DHT-based
approaches achieve this by storing a data item (or its index)
multiple times, each time with one of its keywords. A query
is processed by searching each of the query keywords once.
Therefore, the storage cost and search cost are both linear with
the number of keywords. Clearly, it is not efficient in case of a
large number of keywords.

In this paper, we propose a hybrid structured network called
MKey to address this problem. Its backbone is a structured
network. Each node in the backbone is also the leader of a cluster
formed by non-backbone nodes. Within a cluster, nodes form an
unstructured network and cooperate to store data and answer
queries. When inserting a data item, multiple copies of its index
are stored in a few different clusters. A query is also mapped to
multiple clusters, and a flooding search within these clusters is
performed. The union of all the search results are returned to
users as the final result.

As compared to traditional approaches, MKey has upper
bounds for both the number of storage copies and the number
of searching clusters for a query. Simulation results show that
it can efficiently reduce storage cost and search cost, especially
for a large number of keywords. Meanwhile, it can achieve good
load balancing among nodes.

I. INTRODUCTION

In recent years there has been significant interest in P2P file
sharing. Due to the distributed nature of content and dynamic
membership of nodes, searching has become one of the core
operations in most P2P networks. Current popular P2P systems
can be generally classified as unstructured and structured,
depending on their network structures. The first category refers
to Gnutella-like systems that do not impose any structure on
the overlay network [1], [2]. The dominant search mechanism
is blind or informed flooding. The second category consists
of solutions that impose a particular structure on the overlay
network, which are commonly referred as Distributed Hash

This work was supported, in part, by Direct Allocation Grant
(DAG05/06.EG10) and Competitive Earmarked Research Grant
(HKUST6156/03E) of the Research Grant Council in Hong Kong.

Tables (DHTs) [3]–[6]. These systems are efficient because
data items can be located in a small number of hops. However,
a major limitation of DHT systems is that they only support
lookups with exact match, i.e., a search query can only contain
a single keyword and the system can locate data items with
exactly the same keyword. In practice, however, users often
have only partial information for identifying these items. And
it is hard to store an item with a universally accepted keyword.
For example, if a user wants to find a Minnie Riperton’s song
Loving you, he may submit a query like “Minnie Riperton
Loving you”, or “Minnie Loving you”, or “Loving you”.
However, only one of them can find the desired result in DHT
systems. Therefore, we would like to develop fuzzy search
functions in structured networks. For example, some websites
providing BitTorrent indices (e.g. http://bt.btchina.net) have
supported fuzzy search as follows. Each BitTorrent index
(usually called a .torrent file) has a small description file with
several hundred words. Users can submit a query with multiple
keywords, and the .torrent files whose description files contain
all the query keywords are returned. These websites use central
servers to store description files and can easily conduct search.
However, in structured peer-to-peer networks it becomes much
more difficult.

In fact, researchers have considered many ways to improve
search functions in DHTs. For example, [7] uses latent seman-
tic indexing technique to build up full-text search in structured
overlays; [8], [9] combine structured and unstructured overlays
to reduce search cost. Different from these works, we consider
multiple-keyword search in structured networks. We assume a
data item shared by some peer can be represented by one or
more keywords. These keywords are termed storage keywords
since they determine the storage locations of the item. A
query may also contain one or more keywords. The desired
results are all the items whose storage keywords contains the
keywords in the query.

Most proposed approaches supporting multiple-keyword
search in DHTs use data replication method [10]–[13]. Gener-
ally, an item with multiple keywords is stored multiple times.
Each time one of the keywords is used as the key to insert
it into DHT nodes. When looking up some file, the query is
resolved into several keywords, and each keyword is searched
once. All the search results are sent back to the query initiator
and their intersection is returned to the user as the final

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

1-4244-0355-3/06/$20.00 (c) 2006 IEEE

Structured Overlay

Unstructured
Overlays

Backbone node
(cluster leader)

Non-backbone Nodes
(cluster members)

Fig. 1. The network structure of MKey

result. Observing that the search result of a single keyword
may be of large size, [13] proposes to incrementally compute
the intersection at different nodes and only return the final
result to the user. Edge bandwidth to users is hence greatly
saved. However, a problem in all the above approaches is that
the storage cost and search cost are linear with the number
of storage keywords and the number of query keywords,
respectively. They are hence not efficient when a large number
of keywords are used. On the other hand, to return a complete
and accurate set of results to users, items should be stored
with as many keywords as they can and a query also needs to
contain lots of keywords. Clearly, this introduces high storage
cost and search cost.

In this paper, we propose a hybrid structured network,
MKey, to address this problem. MKey builds a hybrid over-
lay as Fig. 1 shows. Its backbone is a structured network.
A backbone node further forms a cluster with some non-
backbone nodes and serves as the cluster leader. Nodes within
a cluster form an unstructured network and cooperate to share
the storage loads and answer search queries assigned to their
leader. Generally, the earlier joining nodes form the backbone;
After the backbone network is completely built, a new node
selects one cluster.

When storing a data item, its index is sent to the current
cluster leader, who routes it to one or several other backbone
nodes. A backbone node receiving the storage request either
stores the index itself or continues routing the storage request
to one of its cluster members. When looking up an item, the
search request is also routed to some backbone nodes through
the cluster leader. Each of these backbone nodes initiates a
flooded search within its cluster and returns search results to
the query initiator through its cluster leader. The union of all
the search results serves as the final search result. In more
details, we use a Bloom filter to summarize an item’s storage
keywords, which is a bit vector of certain length [14]. The
Bloom filter is split into several bit vectors of the same length,
each corresponding to a backbone node ID. Each of the nodes
needs to store one copy of the item index within its clusters.
In a lookup process, the multiple keywords in a query are
similarly hashed to a bit vector of the same length. From this
vector, a search range is determined and all the nodes within
the range are searched. We carefully design the splitting/search
mechanism to guarantee that the qualified items can be found.

As compared to previous approaches, MKey also stores
multiple copies for an item index and searches multiple nodes
to answer a query. However, it can provide upper bounds
for both the storage cost and search cost, regardless of the
number of keywords associated with items or in a query. Our
simulation results show that MKey can efficiently store data
items and answer user queries. The storage loads are well
balanced among nodes.

The rest of the paper is organized as follows. In Section II
we describe the design of MKey and its key components.
In Section III we present analytic and simulation results for
MKey. At last we conclude in Section IV.

II. SYSTEM DESIGN

A. System Architecture

As shown above, MKey consists of a structured network
as its backbone. Any existing DHT systems such as Chord,
Pastry and Tapestry can be modified to underlay MKey [3]–
[6]. Each backbone node is also the leader of a cluster. Cluster
members form an unstructured overlay and cooperate to share
the loads (storage and search) assigned to their leader. There
are two reasons to adopt this hybrid structure in MKey. First,
different from traditional DHT systems where node IDs are
computed by a hash function based on some node-specific
information such as IP address, MKey has rigid restrictions
for backbone node IDs (explained later). This has limited the
size of useable ID space and hence the size of the backbone.
With the hybrid overlay, the system can accommodate more
nodes. Second, the sizes of clusters are adjustable according
to the load distribution. A backbone node with large storage
loads tends to form a large cluster. The whole system can
hence achieve load balancing.

In MKey, a data item’s keywords are represented by a Bloom
filter, which is a m-bit vector [14]–[16]. This vector directs the
storage locations of the item index. A query is also mapped
to a m-bit vector according to its keywords, from which a
search range is determined. We carefully control the mapping
of these vectors and guarantee that the qualified items can
be returned to users. To achieve this, each backbone node is
assigned a m-bit ID. As mentioned, not all O(2m) IDs are
useable. We hence design an ID management mechanism to
scalably distribute and maintain legal MKey IDs.

In summary, MKey is most applicable to items/queries
with a large number of keywords. If most items and queries
only contain a few keywords, simple data replication methods
such as [10]–[13] are enough. With the increase of keywords,
however, MKey shows a significant improvement as compared
to these approaches, in both storage cost and search cost.
MKey can be extended to support full-text search as BitTorrent
indices websites. If each data item has a description file, all
the words in the description file can be hashed to a Bloom
filter. Clearly, the length of Bloom filters should be set large
enough.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

B. Bloom Filters

Bloom filters are compact data structures for probabilistic
representation of a set in order to test whether or not an
element is a member of a set. This compact representation
is the payoff for allowing a small rate of false positives (that
is, queries might incorrectly recognize an element as member
of the set). However, false negative rate is always zero.

More formally, consider a set A = {a1, a2, ..., an} of n
elements. To describe it, bloom filters use a bit vector V of
length m and k independent hash functions, h1, ..., hk, with
range {1, ...,m}.

The following procedure builds a Bloom filter for set A:
Procedure BloomFilter(set A, hash functions, integer m)

filter = allocate m bits initialized to 0

foreach ai in A

foreach hash function hj

filter[hj(ai)] == 1

end foreach
end foreach
returnfilter

Clearly, if an element ax is member of set A, in the resulting
Bloom filter V all the bits corresponding to the hashed values
of ax must be 1. Testing for membership of an element elm
is then equivalent to testing whether all its corresponding bits
of V are set 1. It works as follows:

Procedure MembershipTest(elm, filter, hash functions)

foreach hash function hj

if filter[hj(elm)] ! = 1 return NO

end foreach
return Y ES

Figure 2 shows an example of Bloom filter with m = 8 and
k = 3. The filter begins as a vector with all bits zero. The
target set A contains two keywords Star and Wars. Each
of them is hashed 3 times and the results correspond to 3 bit
locations in V . These bits are set to 1. To check if a word is
in set A, use the same method to hash it 3 times and check
the corresponding bits. If any of the bits is 0, the word cannot
be in the set; otherwise, either the word is in the set or the
filter has yielded a false positive result.

C. Storage and Query in the Structured Backbone

In this subsection we focus on the design in the structured
backbone network. In Section II-D we will discuss how to
extend it to a hybrid overlay.

Storage: For a shared data item, we hash its storage
keywords into a m-bit Bloom filter. We call this Bloom
filter an item descriptor. In almost all existing DHT systems,
node IDs are computed by a hash function based on node-
specific information such as IP address and private key [3]–
[6]. However, in our system, node IDs have strict formation
rules. First of all, all the node IDs are m-bit. We define two
classes of IDs: the first class consists of all the IDs that have
only one bit of 1, and the second class consists of all the IDs
that have two bits of 1. Clearly, the sizes of these two classes
are m and m(m − 1)/2, respectively.

0 0 0 0 0 0 0 0

hash("Star")={1,3,6}

hash("Wars")={2,3,8}

Test("Wars")

Star
Wars
World
Planet

{1,3,6}
{2,3,8}
{2,4,7}
{2,3,6}

hash values

Initialize Bloom filter V (m=8, k=3)

Customize V for set A={"Star", "Wars"}

1 1 1 0 0 1 0 1

1 1 1 0 0 1 0 1

81 2 3 4 5 6 7

Test for membership

Check bits {2,3,8}

Return YES Test("World")

1 1 1 0 0 1 0 1

Check bits {2,4,7}

Return NO

Test("Planet")

1 1 1 0 0 1 0 1

Check bits {2,3,6}

Return YES (false positive)

81 2 3 4 5 6 7 81 2 3 4 5 6 7

81 2 3 4 5 6 7

Fig. 2. An example of Bloom filter

Given an item descriptor, we split it into several class-2 or
class-1 IDs (only possible for the last one) in a sequential
order from left to right so that the bit-wise union of these
IDs is equal to the item descriptor. For example, a 8-bit item
descriptor 01010111 can be split into 01010000, 00000110
and 00000001. Each of these nodes needs to store one copy
of the item index, which includes the item descriptor, all the
keywords, a hash digest of the data content and a link to the
item owner.

Search: In a lookup process, a query may contain one
or more keywords. These keywords are hashed to a m-bit
vector by the same method of computing item descriptors.
We call this vector a query descriptor. Clearly, if all the
query keywords appear in some item’s storage keywords,
the query descriptor must be a bit-wise subset of the item
descriptor. In other words, the result of the bit-wise OR of
the item descriptor and the query descriptor is equal to the
item descriptor itself.

Given a query descriptor, the search method depends on
the number of bits of 1 in it. We first consider the case that
a query descriptor has at least three bits of 1. We select three
consecutive bits of 1 (neglecting bits of 0 interleaving them)
and denote their positions as Pl, Pc and Pr from left to right.
We then search the following class-2 nodes: the bit at position
Pc is 1 and a bit at some position between Pl and Pr (including
Pl and Pr but excluding Pc) is 1, and all other bits are 0. For
example, given a query descriptor 01010011, its second, fourth
and seventh bits are three consecutive bits of 1. The nodes
that we need to search then include 01010000, 00110000,
00011000, 00010100 and 00010010. Figure 3(a) shows the
search process and summarizes it as a search within range
[Pl, Pr] with position Pc always being 1. Note that within

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

... 1 ... 1 1......
Pl Pc Pr

0 0
A Query Descriptor

Search List

11

11
... ...

11

1 1
... ...

1 1.........

...
...

...

(1)
(2)

(Pr-Pl)

.

.

.

.

.

.

Search range [Pl, Pr] with
position Pc always being 1

... 1... 1......
Pl Pr

0

A Query Descriptor

Search range [Pl, m] with
position Pr always being 1
AND a class-1 ID with
position Pr being 1

Search range [1, Pr] with
position Pl always being 1

OR

0 0

a) A query descriptor with at least three
bits of 1.

b) A query descriptor with only two
bits of 1.

Fig. 3. Search mechanism in MKey.

the range only class-2 nodes are searched. The rationality is
explained as follows. In a qualified item’s descriptor, the bits
at positions Pl, Pc and Pr must be 1. Pc then must belong to
some class-2 ID when splitting the item descriptor for storage.
The remaining bit of 1 in that ID must be between position
Pl and Pr (including them) since we sequentially split item
descriptors from left to right.

If a query descriptor has only two bits of 1, suppose the two
bits are at position Pl and Pr. There are two ways to define
the search range as shown in Fig. 3(b). Clearly, the one with
smaller range is intelligently preferred. It is trivial to further
extend this to the case that a query descriptor only contains
one bit of 1.

The number of nodes that need to be searched Ns is
computed as follows: (i) if a query descriptor has no less than
tree bits of 1, Ns = Pr-Pl; (ii) if a query descriptor has only
two bits of 1, if Pl = 1 or Pr = m, Ns = Pr −Pl; otherwise,
Ns = min {Pr − 1,m − Pl + 1} ≤ (Pr−Pl +m)/2; (iii) if a
query descriptor only contains one bit of 1, Ns = m. Clearly,
with more query keywords, less nodes need to be searched.
Furthermore, in the usual case that a query descriptor contains
no less than three bits of 1, we can select the three consecutive
bits of 1 with the smallest left-to-right distance (i.e. Pr − Pl)
so as to reduce the search cost.

On each of the nodes searched, the query keywords are
straightforwardly compared with storage keywords in the
indices. Qualified indices are returned to the user as a subset
of the final results. With these returned indices, a user can
browse their descriptions and select to download the desired
items. In fact, the union of the search results from all the
searched nodes is the final complete result. However, a user
can also select to terminate a search if the partial results are
enough (details neglected here).

Underlay Routing Method: With the splitting of item
descriptors and query descriptors, the storage and search in
MKey return to that in traditional DHT systems. Any existing
DHT system such as Chord, Pastry and Tapestry may underlay
MKey to provide these basic functions. We take Chord in
our current implementations [3]. Chord has no restrictions on
node IDs since it only orderly organizes nodes in a ring, while
prefix routing in Pastry or postfix routing in Tapestry is more

applicable to a large number of diverse node IDs that evenly
distribute in ID space.

We neglect the details of Chord here. Interested readers can
refer to [3]. With Chord properties, each backbone node in
MKey needs to maintain information about O(log m) other
nodes, and a lookup also requires O(log m) messages.

ID Assignment: An important feature of MKey is that
backbone node IDs need to conform to strict regulations.
To guarantee every node ID is legal and unique, a node
cannot compute an ID only based on its local information.
A straightforward approach to this problem is to adopt an
authorized server to distribute IDs. However, this centralized
approach is not scalable and may lead to a single point of
failure. We hence propose to build a hierarchical tree for ID
management.

We use a public rendezvous point (RP) to bootstrap ID
assignment. Each new node is required to contact RP when
joining. However, RP does not directly assign IDs for all
joining nodes. Instead, it is only responsible for the assignment
of class-1 IDs. And each class-1 node is responsible for a
subset of class-2 IDs that have the same number of 0 at the
head. Figure 4 shows an example of 8-bit ID management
tree. In this two-level tree, each parent node distributes and
maintains IDs in its child nodes. We call the parent nodes ID
managers of their children.

Each class-2 node periodically sends Alive message to
its ID manager, a class-1 node. Correspondingly, a class-
1 node needs to maintain information about the number of
available IDs under its charge, including those that have not
been allocated and those that have been assigned but the
corresponding nodes have left the system. Moreover, class-1
nodes periodically report these information to RP.

Receiving a node’s joining request, RP first checks whether
all the class-1 IDs have been assigned. If not, this node will
be given a class-1 ID. Otherwise, RP routes the request to
the class-1 node with maximum available class-2 IDs. This
new node will be given a class-2 ID by this class-1 ID. In
Section II-D we will discuss how to handle new nodes when
all the the class-1 and class-2 IDs have been assigned.

Clearly, RP and some class-1 nodes need to maintain up to
O(m) IDs. If m is very large, these nodes may be overloaded
by ID management issues. In that case, the management tree
can be further extended to multiple levels so that a node
needn’t manage too many IDs. The extension method can be
diverse, and we do not discuss the details here.

D. Extending to a Hybrid Structure

Given the length of Bloom filters m (usually in the order of
hundred in MKey), the number of useable node IDs in MKey
is O(m2). This may not be enough for a large number of users.
Furthermore, backbone nodes are likely to have different loads,
and some of them may be quickly overloaded. To address
these two problems, we build a hybrid overlay based on the
structured backbone.

In general, each node in the backbone is extended to a
cluster. Initially, a cluster only contains one backbone node,

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

1000,0000

RP

0010,0000

0100,0000

0001,0000

0000,1000

0000,0010

0000,0100

0000,0001

1100,0000
1010,0000
1001,0000
1000,1000
1000,0100
1000,0010
1000,0001

0110,0000
0101,0000
0100,1000
0100,0100
0100,0010
0100,0001

0011,0000
0010,1000
0010,0100
0010,0010
0010,0001 0001,1000

0001,0100
0001,0010
0001,00010000,1100

0000,1010
0000,1001

0000,0110
0000,0101

0000,0011

Class-1 IDs

Class-2 IDs

Fig. 4. An example of ID management tree

which serves as the cluster leader. After a complete backbone
has been formed, new nodes are routed to join clusters. Nodes
in a cluster form an unstructured overlay and cooperate to
help their leader, by sharing the storage loads and answering
search requests assigned to the leader. The storage and search
requests from a cluster member are all sent to its cluster leader
and relayed by the leader.

Joining a Cluster: Clusters are kept at small scales, say,
consisting of at most several hundred members. The selection
of a cluster for a new node to join depends on the storage loads
(i.e. the total number of indices that have been stored in the
cluster) and capacities (i.e. the number of current members) of
clusters, as well as the distances from the new node to cluster
leaders.

To monitor cluster loads, we extend the functionalities of the
ID management tree. Each class-2 node needs to periodically
report the load burden and size of its cluster to the ID manager.
A class-1 node then reports a few clusters with the heaviest
per-node load as well as its own cluster information to RP.
RP can then roughly discover clusters with the heaviest per-
node load in the system. RP then routes new nodes to these
clusters, since storage loads are expected to be shared be all
cluster members.

More specifically, a joining node first contacts RP as de-
scribed above. If RP finds that no appropriate IDs can be
assigned to it, RP selects a few clusters with the heaviest per-
node loads. The new node can ping the leaders and select one
with small distance to join.

Intra-cluster Management: Within a cluster, all members
form an unstructured overlay. When joining a cluster, a new
node gets a member list from the leader and sets up connec-
tions with them as neighbors. A node periodically exchanges
Alive messages with its neighbors to prevent unexpected
node failure. More important, the leader’s Alive messages

are periodically flooded within the cluster to prevent overlay
partition.

Indices assigned to the leader for storage from the backbone
network are distributedly stored at some cluster members. If
the leader receives a search query from other backbone nodes,
flooded search based on query keywords instead of a query
descriptor is performed within the cluster. Note that multiple-
keyword search are inherently supported in unstructured net-
works.

To achieve load balancing among cluster members, a mem-
ber keeps monitoring loads on each of its neighbors. Receiving
a storage request, the member compares its own load burden
with that of its neighbors. If its own load burden is the minimal
of the nodes, it stores the index locally. Otherwise, it forwards
the storage request to the neighbor with the minimal load,
which continues this process. In this way, storage loads can
evenly distribute among all members.

III. PERFORMANCE EVALUATION

A. Performance Analysis

In the following analysis related to Bloom filters, we assume
that hash functions are perfectly random. That is, the hash
values of the elements in a set evenly distribute throughout
the range of the function. The question of what hash function
to use in practice remains an open problem; currently MD5 is
a popular choice [15].

Suppose the Bloom filters are of m-bit length and use k hash
functions. The target set A contains n elements. After all the
elements of A are hashed into the Bloom filter, the probability
that a specific bit is still 0 can be computed as [14]:

P0(n) =
(

1 − 1
m

)kn

≈ e−kn/m.

Similar to [16], we assume the bits in the Bloom filter are
independently set to 0 with probability P0(n) and set to 1
with probability (1 − P0(n)). Therefore, the average number
of bit-1 in the Bloom filter is m(1 − P0(n)). The number
of storage copies for a data item with n keywords is hence⌈

m(1−P0(n))
2

⌉
.

Similarly, given a search query with t keywords, the number
of bit-1 in the query descriptor is m(1−P0(t)). Consider the
general case that m(1 − P0(t)) ≥ 3. We will select three
consecutive bit-1 with the smallest left-to-right distance. In
the worse case, all the bits of 1 evenly distribute throughout
position 1 to position m. The backbone nodes searched is
hence no more than 2(m−1)

m(1−P0(t))−1 .

B. Simulation Results

We have conducted simulations to evaluate the performance
of MKey. We build MKey on top of a public Chord imple-
mentation [17]. We set m = 128 for Bloom filters and take
disjoint groups of bits from MD5 signature as independent
hash functions [15]. The total number of nodes is 100, 000.
We compare MKey with the simple data replication method
used in [10]–[13].

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

Fig. 5. Average number of copies in structured
networks.

Fig. 6. Average number of nodes in structured
networks that need to be searched.

Fig. 7. Accumulative distribution of per-node
storage load.

Figure 5 shows the average number of copies that needs
to be stored at different nodes. It doesn’t consider redundant
replications for node leaving. As it shows, with the increase
of storage keywords, MKey shows a much lower increase
speed in the number of copies than simple replication method.
In fact, for an item descriptor of length 128, the maximum
number of copies is 64 in MKey. However, we do not suggest
to fulfill an item descriptor, because many items would have
the same descriptor in this case. Therefore, the width of Bloom
filters should be properly enlarged if the average number of
storage keywords is large.

Figure 6 shows the average number of nodes that need to be
searched for a query in structured networks. It doesn’t consider
the forwarding nodes. With more keywords in a query, MKey
achieves lower search cost. This is because the more bits of
1 a query descriptor contains, the smaller search range we
can find. In Fig. 5 and Fig. 6, the simulation values and the
analytic results match very well.

Figure 7 shows the accumulative distribution of storage load
at a node. The average number of indices at a node is 41.2.
As the figure shows, the maximum load at a node is less than
three times of the average value. And more than 90% nodes
have loads lower than two times of the average value. It shows
that MKey achieves good load balancing among nodes through
its cluster formation mechanism.

IV. CONCLUSION

Current structured P2P networks only support single-
keyword exact-match lookups. In this paper, we propose MKey
system to support multiple-keyword search. MKey forms a
hybrid network with a structured backbone. Data items are
stored multiple times and a query is answered by searching
multiple nodes. Different from traditional approaches, MKey
has upper bounds for storage cost and search cost, regardless
of the number of keywords. Simulation results show that
MKey can significantly reduce storage cost and search cost
as compared to traditional data replication method. It can
also achieve good load balancing through its cluster formation
mechanism.

ACKNOWLEDGEMENT

The authors would like to thank Jing Zhao, Weifeng Su
and Gang Wang from the Database Group at the Hong
Kong University of Science and Technology for their helpful
discussions.

REFERENCES

[1] “Gnutella.” http://gnutella.wego.com.
[2] “Kazaa.” http://www.kazaa.com.
[3] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,

“Chord: A scalable peer-to-peer lookup service for Internet applications,”
in Proc. ACM SIGCOMM’01, Sept. 2001.

[4] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object lo-
cation, and routing for large-scale peer-to-peer systems,” LNCS, pp. 329–
350, Nov. 2001.

[5] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, “A
scalable content-addressable network,” in Proc. ACM SIGCOMM’01,
pp. 161–172, Aug. 2001.

[6] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. D. Kubiatowicz, “Tapestry: A resilient global-scale overlay for service
deployment,” IEEE JSAC, vol. 22, pp. 41–53, Jan. 2004.

[7] C. Tang, Z. Xu, and S. Dwarkadas, “Peer-to-peer information retrieval
using self-organizing semantic overlay networks,” in Proc. ACM SIG-
COMM’03, Aug. 2003.

[8] E. Cohen, A. Fiat, and H. Kaplan, “Associative search in peer to peer
networks: Harnessing latent semantics,” in Proc. IEEE INFOCOM’03,
April 2003.

[9] R. Zhang and Y. C. Hu, “Assisted peer-to-peer search with partial
indexing,” in Proc. IEEE INFOCOM’05, Mar. 2005.

[10] M. Balazinska, H. Balakrishnan, and D. Karger, “INS/Twine: A scalable
peer-to-peer architecture for intentional resource discovery,” in Proc.
Pervasive’02, Aug. 2002.

[11] M. Harren, J. Hellerstein, R. Huebsch, B. T. Loo, S. Shenker, and
I. Stoica, “Complex queries in DHT-based peer-to-peer networks,” in
Proc. IPTPS’02, March 2002.

[12] L. Garces-Erice, P. A. Felber, E. W. Biersack, G. Urvoy-Keller, and
K. W. Ross, “Data indexing in peer-to-peer DHT networks,” in Proc.
ICDCS’04, March 2004.

[13] P. Reynolds and A. Vahdat, “Efficient peer-to-peer keyword searching,”
in Proc. ACM/FIP/USENIX Middleware’03, June 2003.

[14] A. Broder and M. Mitzenmacher, “Network applications of Bloom
filters: A survey,” Internet Mathematics, vol. 1, no. 4, pp. 485–509, 2004.

[15] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A
scalable wide-area web cache sharing protocol,” IEEE/ACM TON, vol. 8,
pp. 281–293, June 2000.

[16] M. Mitzenmacher, “Compressed Bloom filters,” IEEE/ACM TON,
vol. 10, pp. 604–612, Oct. 2002.

[17] “p2psim: a simulator for peer-to-peer protocols.” http://pdos.csail.mit.
edu/p2psim/.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

	Select a link below
	Return to Main Menu
	Return to Previous View

