
A Distributed Approach to End-to-End
Network Topology Inference

Xing Jin Qiuyan Xia S.-H. Gary Chan
Department of Computer Science and Engineering

The Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

Email: {csvenus, xiaqy, gchan}@cse.ust.hk

Abstract— To construct an efficient overlay network, the in-
formation of underlay is important. However, the inference of
an underlay topology is not easy. We consider using end-to-
end measurement tools such as traceroute to infer the underlay
topology among a group of hosts. Since pair-wise traceroutes
among hosts take a long time and generate much network traffic,
Max-Delta has been proposed to infer a highly accurate topology
with a low number of traceroutes. However, Max-Delta relies
on a central server to collect traceroute results and to select
paths for hosts to measure. It is hence not scalable to large
groups. In this paper, we investigate a distributed version of
Max-Delta scheme in order to support scalable inference. In
our scheme, each host joins an overlay tree before conducting
traceroutes. A host then independently selects paths to traceroute
and exchanges traceroute results with others through the overlay
tree. As a result, each host can maintain a partially discovered
topology. We have studied two key issues in the scheme, i.e.,
how to construct a low-diameter overlay tree and how to reduce
bandwidth consumption in measurements.

As compared to Max-Delta, our scheme is fully distributed and
scalable. In the scheme, each host computes its own traceroute
targets, and the computational loads are distributed to all the
hosts instead of a single server. Furthermore, each host only
exchanges data with a few other hosts and does not need to set
up connections with all the other hosts. Simulation results show
that the constructed tree has a low diameter and can support
quick data exchange among hosts, and that the use of a lookup
table for routers can significantly reduce bandwidth consumption
in data exchange.

I. INTRODUCTION

In the recent years, overlay networks have been increasingly
used to deploy network services. Examples include overlay
path routing, application-layer multicast (ALM), peer-to-peer
file sharing, and so on [1]–[3]. In order to build an efficient
overlay network, the knowledge of underlay is important. In
fact, it has been shown that topology-aware ALM can achieve
substantially low end-to-end delay, low physical link stress and
high tree bandwidth [4]–[6].

We consider inferring the underlay network topology among
a group of hosts by means of end-to-end measurements, where
traceroute-like tools extracting the router-level path between
a pair of hosts are often used [7]. Given a group of N

This work was supported, in part, by the Innovation and Technology
Commission of the Hong Kong Special Administrative Region, China
(GHP/045/05).

hosts, conducting full O(N2) traceroutes among them can
certainly construct an accurate topology (we do not consider
measurement noise such as anonymous routers or router alias
here). However, since traceroute may take as long as minutes
to identify a router-level path and generate many network
packets, such pair-wise measurements are costly and not
scalable. We hence consider inferring an approximate topology
with much fewer traceroutes.

Max-Delta has been proposed to efficiently infer the under-
lay topology among a group of hosts [6], [8]. It divides the
inference process into multiple iterations. In each iteration,
a central server collects the traceroute results from hosts.
In order to reveal as much undiscovered information on the
underlay as possible, the server will select some representative
paths for hosts to traceroute in the next iteration. This process
is repeated until a certain measurement accuracy or measure-
ment cost is achieved. The simulation results on Transit-Stub
topologies have shown that in a group of 256 hosts, each host
only needs to traceroute around 10 − 14 other hosts to discover
95% underlay links together [8]. This reduces the number of
traceroutes at each host by 62% as compared to a random
measurement method, and by 89% as compared to the full
measurement method.

However, a limitation of Max-Delta is that the server may
not be able to support a large group. Firstly, in each itera-
tion, the server takes O(Vp log Vp + Ep + N) time to select
a traceroute target for a host, where N is the number of
hosts in the group, Vp and Ep are the numbers of nodes
(including hosts and routers) and links in the partially dis-
covered underlay topology, respectively. In total, the server
takes O(N(Vp log Vp + Ep + N)) time to select traceroute
targets for all the N hosts in one iteration. This complexity is
considerably high when the group size is large. Secondly, the
server needs to periodically accept traceroute results from all
the hosts and send traceroute targets to them. When the group
size is large, the server may not be able to simultaneously set
up so many connections.

In this paper, we propose a distributed inference scheme
to support large groups. In our scheme, each host joins an
overlay tree before topology inference. A host then conducts
traceroutes and distributes the results to all the other hosts
through the overlay tree. As a result, each host can receive

1-4244-0353-7/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

traceroute results from other hosts and maintain a partially
discovered topology. Based on that, a host can use Max-Delta
to select traceroute targets by itself and continue conducting
traceroutes.

We have studied two important issues in the scheme. The
first one is how to construct the overlay tree so that hosts
can quickly exchange traceroute results. Since each host
sends traceroute results to others, we need to build a source-
unspecific low-diameter overlay tree. Previous research has
shown that this problem is NP-hard and there are no efficient
distributed algorithms to address it [9], [10]. We propose a
distributed tree construction algorithm based on the out-degree
bounds of hosts. We first identify a host as the tree root and
then insert new incoming hosts around the root. A host with a
larger out-degree bound is put closer to the root in the tree. A
low-diameter tree is hence formed. The second issue is how
to compress traceroute results in order to reduce bandwidth
consumption. We note that routers are often repeatedly visited
in different traceroutes. We then set up a lookup table to map
each router (i.e., the router IP and the router name) to an
integer. Later on, we represent routers by integers in traceroute
results.

As compared to Max-Delta, this scheme eliminates the
central server from the system. It is fully distributed and
scalable. In the scheme, each host computes its own traceroute
targets, and the computational loads are distributed to all the
hosts instead of a single server. Furthermore, each host only
exchanges data with a few other hosts and does not need to
set up connections with all the other hosts. The consumption
of edge bandwidth at a host is hence reduced. We have
done simulations on Transit-Stub topologies to evaluate the
proposed scheme. The results show that the constructed tree
has a low diameter and that the lookup table for routers can
significantly reduce bandwidth consumption.

The Internet is not a symmetric network. The traceroute
path from host A to host B may not be the reverse of the
path from B to A. However, for ease of exposition and
illustrative purpose, we will in the following assume that the
traceroute path from A to B is the reverse of the path from
B to A. The rest of the paper is organized as follows. In
Section II we briefly review the related work. In Section III
we discuss the design of the distributed inference scheme. In
Section IV we present illustrative simulation results on Transit-
Stub topologies. We finally conclude in Section V.

II. RELATED WORK

There are many ways to infer a network topology. Net-
work tomography techniques periodically send probing traffic
and exploit the performance in correlation to infer network
topologies [11], [12]. However, because the network properties
measured (e.g., loss rate or delay) are often unstable and
inaccurate, it is difficult to infer an accurate topology. Border
Gateway Protocol (BGP) routing tables can provide AS-level
information, but they usually are not available to normal
hosts in the Internet [13], [14]. We hence adopt traceroute,
which can obtain explicit router-level information by end

hosts. Traceroute-like tools have been widely used in Internet
measurements such as Skitter, Mercator and Rocketfuel [15]–
[17]. Skitter sends traceroute packets from different locations
worldwide to actively measure the Internet topology. Mercator
utilizes a modified version of traceroute to reduce probing
time. Rocketfuel combines information from BGP tables,
traceroutes and Domain Name System (DNS) to infer ISP
topologies. All these works focus on Internet-level or ISP-level
topology inference and the major concern is how to discover a
complete network topology including all the routers and links.
However, in our study we are only interested in the topology
among a certain group of hosts that are arbitrarily distributed
in the Internet. Furthermore, we only need a highly accurate
topology, because most overlay applications are tolerant to
small distortion of the underlay topology. The key problem is
hence how to reduce measurement cost.

Donnet et al. note that in large-scale traceroute measure-
ments, a router is often repeatedly visited in different tracer-
outes [18], [19]. They hence propose a Doubletree algorithm to
reduce the redundancy. Given a monitor and a destination, the
traceroute starts at some intermediate point between them. The
probing then proceeds towards the destination and backwards
towards the source. In either case, the probing stops whenever
an already discovered router is met. Max-Delta and our work
reduce the measurement redundancy in another way. Given a
group of hosts, each host is a monitor and all the others are its
destinations. We note that a host cannot or need not traceroute
all its destinations because of the requirement on measurement
cost or accuracy. We then design an algorithm for destination
selection and select representative paths for hosts to traceroute.
On the other hand, it is possible to integrate the Doubletree
algorithm into our work. Namely, after destination selection, a
traceroute can start and stop under Doubletree’s supervision.
The measurement redundancy and cost can hence be further
reduced.

III. SYSTEM DESIGN

In this section, we present the distributed inference scheme.
We first briefly review Max-Delta and then give an overview of
the distributed inference scheme. We finally discuss in detail
the key issues in the scheme.

A. Review on Max-Delta

Max-Delta has been proposed to efficiently infer the un-
derlay topology among a group of hosts [6], [8]. In the
scheme, hosts utilize light-weight tools such as GNP [20] or
Vivaldi [21] to estimate their network coordinates and report
them to a central server. The server then divides the inference
process into multiple iterations. In each iteration, the server
selects a target for each host to traceroute. The target is
selected as follows. For a certain host A, suppose that the
path between A and another host B has not been measured.
The server computes the distance between A and B in the
currently discovered topology Dp(A,B) (using shortest path
routing) and that in the real network Euclidean(A,B) (using
the network coordinates). If the gap between the two values

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

∆(A,B) = Dp(A,B) − Euclidean(A,B) is large, it is with
high probability that some links between A and B (leading to
a shorter path in the discovered topology) are not discovered.
For all unmeasured paths between A and other hosts, the server
selects the path with the maximum ∆ value as A’s traceroute
target. A then traceroutes the target path and reports the result
to the server. The server then combines all the results obtained
in the iteration and based on that, starts the next iteration on
target assignment. Such process is repeated until a certain
measurement accuracy or measurement cost is achieved. As
discussed above, the scalability of Max-Delta is limited by
the edge bandwidth and computational power of the central
server. Therefore, we need to design a distributed inference
scheme to support large groups.

B. Design of A Distributed Inference Scheme

We now describe a distributed scheme for topology infer-
ence. In the scheme, hosts exchange traceroute results through
an overlay tree. Each host then maintains a partially discovered
topology and uses the Max-Delta heuristic to select traceroute
targets by itself. Suppose that A is a new incoming host. We
describe the actions of A in a sequential order as follows.

1) Estimate the network coordinates.
A first uses some tool (e.g., GNP or Vivaldi) to estimate
its network coordinates. For example, if GNP is used,
A should ping a few public landmarks and use the
network distances to landmarks as well as the landmark
coordinates to compute its own coordinates.

2) Join the overlay tree.
A then identifies a host in the system as its parent
to join the overlay tree. The detailed tree joining and
maintenance mechanisms will be explained later.

3) Conduct first-round traceroute.
The first-round traceroutes from all the hosts must form
a connected graph among them. Otherwise, the distance
between two hosts in the discovered topology Dp may
be infinite. Therefore, we require A to traceroute the
path to its parent in the first round. Clearly, if each
host traceroutes the path to its parent in the tree, all
the measured paths form a tree spanning the hosts on
the overlay.

4) Distribute the coordinates and first-round traceroute
along the tree.
A sends its coordinates and first-round traceroute to its
neighbors.

5) A then performs the following steps in parallel:
5.1) Select paths to traceroute.
A maintains a discovered topology based on its own
traceroutes and traceroute results from other hosts.
Based on that, A can select its traceroute targets as
in Max-Delta. Clearly, it takes O(Vp log Vp + Ep + N)
time to select one traceroute target.
5.2) Accept data, if any, from its neighbors.
5.3) Periodically send data (including its own tracer-
oute results and other hosts’ traceroute results) to its
neighbors.

A aggregates its own traceroute results and data received
from its neighbors. It then periodically floods the data
along the tree. Clearly, data received from a neighbor
are forwarded to all its other neighbors in the tree, and
its own traceroute results are sent to all the neighbors.

C. Scheme Details

In this section, we discuss two key issues in the distributed
inference scheme, i.e., how to construct a low-diameter over-
lay tree and how to reduce bandwidth consumption in data
exchange.

1) Tree Construction: In the inference process, each host
needs to send traceroute results to others. We hence consider
building a source-unspecific tree among hosts. To achieve
rapid data exchange among hosts, we minimize the diameter
of the tree, which is the longest simple path (in terms of the
number of overlay hops) in the tree. In fact, previous research
has shown that building a minimum-diameter degree-bounded
spanning tree is NP-hard and there are no efficient distributed
algorithms to address this problem [9], [10]. In this paper, we
propose a distributed tree construction algorithm based on the
out-degree bounds of hosts. In our algorithm, we first identify
a host as the tree root and then insert new hosts around the
root. Before introducing the algorithm, we first describe some
settings for tree construction. In the tree construction process,
we assume that the root is the only source in the system and
is about to distribute data to all the other hosts. Each new host
needs to identify a host as its parent in order to join the tree.
Except for the parent, all the other neighbors of a host in the
tree are called its children. Clearly, during real measurement,
there is no such parent-child relationship between hosts since
every host is a source.

Each host has an out-degree bound according to its edge
bandwidth, which indicates how many children a host can have
in the tree. The position of a host in the tree depends on its
out-degree bound. The larger out-degree bound a host has, the
closer to the root it is put. In other words, a host has a larger
out-degree bound than all the hosts in its subtree. Denote Bi

as the out-degree bound of host i, and denote Di as the real
out-degree of i in the tree. Furthermore, denote Disti as the
minimum number of overlay hops from i to the root in the
tree. Clearly, Disti = Disti′s parent + 1. Finally, we denote
Newi as the the minimum number of overlay hops from a new
host to the root in the tree if the new host becomes i’s child or
descendant. Given a host i, if Bi > Di, Newi = Disti + 1.
Otherwise, Newi = min{Newy | ∀y ∈ i’s children set}. We
require hosts in the tree to periodically exchange their Dist
and New values with the neighbors. All the hosts in the tree
will finally know their Dist and New values.

When a new incoming host wants to join the tree, it first
contacts a public rendezvous point (RP) to obtain the IP
address of the root. It then joins the tree as Algorithm 1 shows.
We briefly explain the joining process of host i as follows.
If i is the first joining host, i becomes the root and claims
itself to the RP. If this is not the case, but i has a larger out-
degree bound than the current root, i becomes the new root:

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

It accepts the current root and the children of the current root
as its children, and then claims itself to the RP. If none of
the above cases occur, i starts a recursive joining procedure
from the root. That is, i identifies a host x to start JOIN(i, x),
which is the root at the beginning. Note that by following our
algorithm, we have Bi ≤ Bx in the JOIN(i, x) procedure (this
is a pre-condition when invoking JOIN(i, x)). Therefore, i can
be x’s child or descendant, but cannot become x’s ancestor. If
x has residual out-degree (i.e., Bx > Dx), x accepts i as its
child. Otherwise, i checks x’s children. From all x’s children
whose out-degree bounds are smaller than that of i, the child
with the maximum out-degree bound is selected, say, m. If
there exists such a host m, i takes up m’s position in the tree:
i selects m’s parent as its parent, accepts m’s children as its
children, and accepts m as its child. If there no such a host m
(i.e., the out-degree bounds of x’s children are all larger than
or equal to that of i), i has to move one level down. i selects
from x’s children the host with the smallest New value, and
repeats the joining process from this host. See Algorithm 1
for more details.

Note that the size of data exchanged between two hosts
is relatively small. For example, a traceroute result requires
only several kilo-bytes. Considering the capabilities of today’s
computers and networks, a powerful PC can have hundreds of
neighbors and support simultaneous data exchange with them.
The out-degree bounds of hosts in our scheme are hence much
larger than those in bandwidth-demanding applications such as
streaming or file sharing.

2) Reducing Bandwidth Consumption: In a traceroute re-
sult, a router is represented by its name and IP address, which
often consist of 20−50 digits or letters. On the other hand, we
note that a router is often visited multiple times in different
traceroutes. We can hence use a compact form to represent
routers so as to reduce the size of traceroute results.

We map each router to an integer. Note that such mapping
should be one-to-one so that traceroute results can be freely
transformed between the two forms without any ambiguity.
Furthermore, the mapping should be universal to all the hosts.
Therefore, we identify one host in the tree to conduct the
mapping. A possible choice is the tree root. The root maintains
a lookup table for routers. When the root finds a new router
in traceroute results, it inserts the router into the lookup
table. It then replaces routers in traceroute results by their
corresponding locations in the lookup table. In this way, each
router can be represented by an integer, whose length depends
on the total number of routers in the topology. The root then
delivers the compact traceroute results as well as the lookup
table to other hosts. Figure 1 shows an example of the raw
traceroute result and compact traceroute result. Since a router
may appear many times in the whole inference process, such
a lookup table can significantly reduce the size of traceroute
results.

IV. ILLUSTRATIVE NUMERICAL RESULTS

In this section we evaluate our inference scheme through
simulations on Internet-like topologies and measurements on

Algorithm 1 : JOINING PROCEDURE OF HOST i

1: procedure TREEJOIN (i)
2: if i is the first joining host then
3: i becomes the root and notifies the RP.
4: return
5: end if
6: if Bi > Broot then
7: i becomes the new root: it accepts root and root’s

children as its children, and notifies the RP.
8: return
9: else

10: JOIN (i, root)
11: return
12: end if
13: end procedure

14: procedure JOIN (i, x)
15: if Bx > Dx then
16: x accepts i as its child.
17: return
18: else
19: if ∃t ∈ x’s children set s.t. Bt < Bi then
20: select x’s child m s.t. Bm = max{By|∀y ∈

x’s children set AND By < Bi}.
21: i replaces m (i.e., i selects m’s parent as its parent

and accepts m’s children as its children) and
accepts m as its child.

22: return
23: else
24: select x’s child n s.t. Newn = min{Newy|∀y ∈

x’s children set}.
25: JOIN (i, n)
26: return
27: end if
28: end if
29: end procedure

 1 cc-cisco2-out1 (199.77.128.1) 10.526 ms 1.208 ms 1.164 ms
 2 gateway2-rtr.gatech.edu (130.207.251.1) 3.545 ms 1.256 ms 2.167 ms
 3 gateway2-rtr.gatech.edu (130.207.254.117) 0.834 ms 0.766 ms 1.403 ms

 275 cc-cisco2-out1 (199.77.128.1)
 276 gateway2-rtr.gatech.edu (130.207.251.1)
 277 gateway2-rtr.gatech.edu (130.207.254.117)

Raw Traceroute Result

Lookup Table

 1 275 10.526 ms 1.208 ms 1.164 ms
 2 276 3.545 ms 1.256 ms 2.167 ms
 3 277 0.834 ms 0.766 ms 1.403 ms

Compact Traceroute Result

Fig. 1. Setting up a lookup table for routers.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

500 1000 2000 4000 8000 16000
3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

4.8
T

re
e

D
ia

m
et

er

Group Size (N)

Fig. 2. Tree diameter versus group size.

PlanetLab [22].

A. Simulation Setup

We generate 5 Transit-Stub topologies with GT-ITM [23].
Each topology is a two-layer hierarchy of transit networks
and stub networks, which contains 3200 routers and around
20, 000 links. We then randomly put N hosts into the network
(N = 500 unless otherwise indicated). Each host is connected
to a unique stub router with 1ms delay, while the delays of
core links are given by the topology generator.

Furthermore, we randomly select 79 hosts from PlanetLab
and conduct pair-wise traceroutes among them. Due to net-
work and host dynamics (some hosts unexpectedly failed
during our measurements), a small portion of the traceroutes
cannot be completed. The resultant topology contains 5589
overlay paths (out of total 78 × 79 = 6162 ones), 1950 links,
946 known routers and some anonymous routers.

For a host in the system, the receiving of traceroute results
from other hosts and the conducting of traceroutes are in
parallel. In our simulations, for simplicity, we assume that
data exchange between hosts is very quick and the conducting
of one traceroute is considerably slow. In other words, we use
similar settings as in Max-Delta, i.e., in each iteration, a host
conducts one traceroute and receives one traceroute result from
each of the other hosts. Given such settings, our scheme has
the same measurement efficiency as Max-Delta. Since Max-
Delta has been thoroughly evaluated in [6], [8], we do not
repeatedly present similar results here and only present the
new results. Note that these settings do not qualitatively affect
the results below.

B. Results

Figure 2 shows the tree diameter versus the group size. The
out-degree bounds of hosts are uniformly distributed within
[30, 100]. As discussed above, data exchanged are of small
size and hosts can have relatively large out-degree bounds.
This is different from bandwidth-demanding applications such

as streaming or file sharing, where a host can only have several
neighbors. From the figure, we can see that the tree diameter
is kept low. When N = 16000, the tree diameter is only
4.7. Therefore, data exchange among hosts can be quickly
accomplished.

Figure 3(a) shows the accumulative router visiting fre-
quencies achieved by Max-Delta. Router visiting frequency
is defined as the number of occurring times of a router in
a set of traceroute paths. From the figure, the router visiting
frequency quickly increases with the iteration number. In the
first iteration, the router visiting frequency is only 4.9. But
after 30 iterations, the accumulative router visiting frequency
increases to 98.5. It shows that a router appears many times
in different traceroutes. On the other hand, in our PlanetLab
measurements, there are totally 82212 known routers in the
5589 paths. However, there are only 946 different routers. It
means that each router averagely appears 82212/946 = 86.9
times. This confirms our simulation results. Therefore, a
lookup table for routers is important.

Figure 3(b) shows the number of routers discovered in
different inference iterations. The above line shows the number
of routers reported in each iteration. In an iteration, each
host usually traceroutes one path (in some case, a host may
not be able to find a traceroute target and does not conduct
any traceroute). In the first iteration, each host randomly
selects a path to traceroute, and the total number of routers
is 4899. In the next iteration, the total number of routers is
only 1613. This is because Max-Delta preferentially selects
a path with a large ∆ value, which corresponds to a small
Euclidean distance and hence a short path. In other words,
Max-Delta preferentially selects the shortest paths. Therefore,
in the following iterations, we see an increase in the total
number of routers reported. The line below in Fig. 3(b)
shows the accumulative number of different routers in different
iterations. After the first 4 iterations, over 99% routers have
been discovered. Therefore, routers can be easily and quickly
discovered. Since the number of different routers is much
smaller than the total number of routers, a lookup table can
significantly reduce the size of traceroute results.

We compare the sizes of traceroute results received by a
host with and without the lookup table in Fig. 3(c). The size of
traceroute results is estimated as follows. The formats of raw
traceroute results and compact traceroute results follow that in
Fig. 1. In the PlanetLab measurements, we have 946 different
routers. The representation of a router (including router name
and router IP) averagely consists of 41.5 letters or digits. With
a lookup table, each router can be represented by 4 digits (4
digits can represent at most 10, 000 routers). From the figure,
the lookup table can averagely reduce the traceroute size by
50.2%. Clearly, this approach is efficient and effective.

V. CONCLUSION

Max-Delta has been proposed to infer a highly accurate
topology among a group of hosts with a low number of
traceroutes. Considering that Max-Delta is centralized and
not scalable, we propose a distributed scheme for scalable

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

(a) Accumulative router visiting frequency;

(b) Number of routers;

(c) Size of traceroute results;

Fig. 3. Reducing bandwidth consumption in inference (N = 500).

topology inference in this paper. In our scheme, hosts form
an overlay tree to exchange traceroute results. A host can
independently select paths to traceroute with no need of central
scheduling. As compared to Max-Delta, our scheme distributes
the computational loads for path selection to all the hosts, and
only requires a host to exchange data with a few other hosts.
Simulation results show that our data delivery tree has a low
diameter, and that the proposed lookup table can significantly
reduce bandwidth consumption in inference.

REFERENCES

[1] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris,
“Resilient overlay networks,” in Proc. ACM SOSP’01, Oct. 2001, pp.
131–145.

[2] Y. H. Chu, S. Rao, S. Seshan, and H. Zhang, “A case for end system
multicast,” IEEE JSAC, vol. 20, no. 8, pp. 1456–1471, Oct. 2002.

[3] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker,
I. Stoica, and H. Yu, “OpenDHT: A public DHT service and its uses,”
in Proc. ACM SIGCOMM’05, Aug. 2005, pp. 73–84.

[4] M. Kwon and S. Fahmy, “Topology-aware overlay networks for group
communication,” in Proc. ACM NOSSDAV’02, May 2002, pp. 127–136.

[5] J. Han, D. Watson, and F. Jahanian, “Topology aware overlay networks,”
in Proc. IEEE INFOCOM’05, March 2005, pp. 2554–2565.

[6] X. Jin, Y. Wang, and S.-H. G. Chan, “Fast overlay tree based on efficient
end-to-end measurements,” in Proc. IEEE ICC’05, May 2005, pp. 1319–
1323.

[7] Traceroute. [Online]. Available: http://www.traceroute.org/
[8] X. Jin, W.-P. K. Yiu, S.-H. G. Chan, and Y. Wang, “Network topology

inference based on end-to-end measurements,” IEEE JSAC, vol. 24,
no. 12, pp. 2182–2195, Dec. 2006.

[9] S. Y. Shi, J. S. Turner, and M. Waldvogel, “Dimensioning server access
bandwidth and multicast routing in overlay networks,” in Proc. ACM
NOSSDAV’01, 2001, pp. 83–91.

[10] S. Y. Shi and J. S. Turner, “Routing in overlay multicast networks,” in
Proc. IEEE INFOCOM’02, June 2002, pp. 1200–1208.

[11] M. Coates, R. Castro, R. Nowak, M. Gadhiok, R. King, and Y. Tsang,
“Maximum likelihood network topology identification from edge-based
unicast measurements,” in Proc. ACM SIGMETRICS’02, 2002, pp. 11–
20.

[12] M. Coates, A. Hero, R. Nowak, and B. Yu, “Internet tomography,” IEEE
Signal Processing Magazine, vol. 19, no. 3, pp. 47–65, May 2002.

[13] D. G. Andersen, N. Feamster, S. Bauer, and H. Balakrishnan, “Topology
inference from BGP routing dynamics,” in Proc. ACM SIGCOMM
IMW’02, Nov. 2002, pp. 243–248.

[14] F. Wang and L. Gao, “On inferring and characterizing Internet routing
policies,” in Proc. ACM SIGCOMM IMC’03, Oct. 2003, pp. 15–26.

[15] Skitter. [Online]. Available: http://www.caida.org/tools/measurement/
skitter/

[16] R. Govindan and H. Tangmunarunkit, “Heuristics for Internet map
discovery,” in Proc. IEEE INFOCOM’00, March 2000, pp. 1371–1380.

[17] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with Rocketfuel,” in Proc. ACM SIGCOMM’02, Aug. 2002, pp. 133–
145.

[18] B. Donnet, P. Raoult, T. Friedman, and M. Crovella, “Efficient algo-
rithms for large-scale topology discovery,” in Proc. ACM SIGMET-
RICS’05, June 2005, pp. 327–338.

[19] B. Donnet, P. Raoult, T. Friedman, and M. Crovella, “Deployment of
an algorithm for large-scale topology discovery,” IEEE JSAC, vol. 24,
no. 12, pp. 2210–2220, Dec. 2006.

[20] T. S. E. Ng and H. Zhang, “Predicting Internet network distance
with coordinates-based approaches,” in Proc. IEEE INFOCOM’02, June
2002, pp. 170–179.

[21] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A decentralized
network coordinate system,” in Proc. ACM SIGCOMM’04, Aug. 2004,
pp. 15–26.

[22] PlanetLab. [Online]. Available: http://www.planet-lab.org
[23] E. Zegura, K. Calvert, and S. Bhattacharjee, “How to model an inter-

network,” in Proc. IEEE INFOCOM’96, March 1996, pp. 594–602.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

	Select a link below
	Return to Main Menu

