
On the Investigation of Path Preference
in End-to-End Network Measurements

Xing Jin Qiuyan Xia S.-H. Gary Chan
Department of Computer Science and Engineering

The Hong Kong University of Science and Technology
Email: {csvenus, xiaqy, gchan}@cse.ust.hk

Abstract— Overlay applications have used various tools to
measure path properties in order to construct efficient overlay
networks. Typical examples include delay measurement, connec-
tivity measurement and residual bandwidth measurement. While
different tools have different measurement targets, it is difficult
to design general criterion for selecting paths to measure. In
this paper, we study path properties and figure out some simple
rules for path selection in measurements. We first examine the
relationship between path delay and residual bandwidth. Our
measurement results indicate that short paths often have high
residual bandwidth. We then impose high preference on short
paths in traceroute measurements. The results show that tracer-
oute measurements with path preference achieve comparable
inference efficiency and much lower overhead as compared to
traditional traceroute measurements. Our study suggests that we
can preferentially select short paths to measure. This can fulfill
various requirements on path properties.

I. INTRODUCTION

With the quick development of network technologies, over-
lay networks have been widely used in various applications.
Examples include application-layer multicast (ALM), peer-
to-peer (P2P) audio and video streaming, and overlay path
routing. According to CacheLogic Research, P2P traffic, which
first emerged in 1999 with Napster, has accounted for as much
as 70% Internet traffic in 2006.

In order to build an efficient overlay network, the knowledge
of the underlay topology is important. For example, two
seemingly disjoint overlay paths may share common underlay
links; therefore the selection of overlay paths without the
knowledge of underlay may lead to serious link congestion.
Currently, there are mainly three types of tools for end-to-end
network inference: (1) Delay measurement using ping: For
example, Narada uses the ping tool to select a close parent
for a new joining host [1]. (2) Connectivity measurement
using traceroute: For example, TAG uses traceroute to infer the
path connectivity among hosts, and constructs a tree with low
delay and low stress [2]. (3) Residual bandwidth measurement
using tools like Pathload [3]: For example, Overcast measures
residual path bandwidth to build a high-bandwidth tree [4].

Clearly, different tools have different measurement targets.
When ping is used, we often want to identify a short path
with low delay. When Pathload is used, we want to identify a
path with high residual bandwidth. When traceroute is used,

This work was supported, in part, by Direct Allocation Grant at the HKUST
(DAG05/06.EG10), and Hong Kong Research Grant Council (611107).

our target is to discover as many underlay links as possible.
Given different measurement targets, it is difficult to design
general criterion for selecting paths to measure.

In this paper, we study path properties and figure out some
simple rules for path selection in topology inference. Our
motivation comes from the observation that paths within the
same local networks often have both low delay and high
residual bandwidth, while paths crossing multiple ISPs often
have high delay and relatively low residual bandwidth. We
hence study the relationship between path delay and resid-
ual bandwidth. We conduct measurements on the PlanetLab
testbed [5]. Our measurement results confirm that short paths
often have higher residual bandwidth than long paths. This
suggests to preferentially select short paths to measure.

We then study the impact of the path preference to tracer-
oute measurements. We impose high preference on short paths
and integrate path preference into Max-Delta, a traceroute-
based topology inference scheme [6]. We compare the per-
formance of Max-Delta with and with no path preference on
different network topologies. Our results show that the two
schemes achieve comparable inference efficiency. In addition,
Max-Delta with path preference achieves much lower mea-
surement overhead as it prefers short paths.

In summary, our study shows that it is beneficial to preferen-
tially select short paths to measure in topology inference. This
can fulfill various requirements on path properties. Hence, in
network measurement, we can first estimate path delay, and
then preferentially select short paths to conduct traceroute or
residual bandwidth measurement. Note that ping measurement
incurs much lower traffic than traceroute and residual band-
width measurement. We can hence estimate path delay with
low overhead. We may also use coordinate estimation tools
like Global Network Positioning (GNP) to estimate path delay.

The rest of the paper is organized as follows. In Section II,
we study the relationship between path delay and residual
bandwidth. In Section III, we compare the performance of
Max-Delta with and with no path preference. Finally, we
conclude in Section IV.

II. REVISITING PATH PROPERTIES

A. Delay and Residual Bandwidth

An end-to-end path may be characterized by many metrics,
e.g., delay, hop count, loss rate and residual bandwidth.
Among them, end-to-end path delay is the most commonly

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

978-1-4244-2075-9/08/$25.00 ©2008 IEEE

used in overlay applications. Path delay is often computed in
terms of round-trip time (RTT), which can be obtained through
the ping program. Given a pair of source and destination
hosts, the ping program sends an Internet Control Message
Protocol (ICMP) request message from the source to the
destination, expecting an ICMP reply message to be returned.
The program usually sends multiple request messages. Among
all the returned results, the minimum RTT is used to compute
path delay.

Ping measurement has been widely used in overlay con-
struction, e.g., NICE, Narada, DT and ALMI. For example, in
Narada, a host keeps selecting some random hosts to ping [1].
It adds a new path into the overlay network if the new path
is short enough. It also drops long paths from the overlay
network. After the overlay is constructed, a shortest path tree
is built on top of the overlay for data delivery. Similarly, many
other applications endeavor to identify short paths with small
RTT between hosts.

Another popular path metric is residual path bandwidth.
The residual bandwidth of a path is defined as the difference
between the path capacity and the amount of bandwidth
already taken by all active and backup traffic traversing the
path. Many tools have been proposed to measure residual
path bandwidth, e.g., Pathload, PTR/IGI, TOPP, Pathchirp and
Spruce.

If we know the residual bandwidth of different paths, we
can select the ones with high residual bandwidth for overlay
construction. As a result, the data transmission rate between
hosts is high. A typical example is Overcast, which aims
to build an overlay tree with high transmission rate [4].
In Overcast, when a new host arrives, it first estimates its
bandwidth to the root and to each of the root’s children. If the
bandwidth to any of these children is close to the bandwidth to
the root, the new host moves one level down to this child and
repeats the process. This procedure continues until the current
host has no children with satisfactory bandwidth to the new
host. Then the current host becomes the new one’s parent.

As discussed, in order to achieve low end-to-end delay, short
paths with small RTT are preferred. On the other hand, in order
to achieve high transmission rate, paths with high residual
bandwidth are preferred. Hence, we have two orthogonal
metrics for path selection. Fortunately, we find that these two
metrics are not fully independent or contradictive. According
to [7], the receiver of a friendly TCP connection can use the
following function to calculate its expected bandwidth:

B =
s

RTT

√
2p
3 + RTO

(
3
√

3p
8

)
p(1 + 32p2)

.

This gives the TCP throughput B in bytes/s, as a function
of the packet size s, round-trip time RTT , steady-state loss
rate p, and the TCP retransmit timeout value RTO. The
function indicates that B is a reciprocal function of RTT. In
other words, a path with small RTT often has high residual
bandwidth, and vice versa.

Fig. 1. Residual bandwidth versus RTT of paths (on PlanetLab).

In order to verify the relationship between path RTT and
residual bandwidth, we have done the following measurement
study on the PlanetLab testbed.

B. PlanetLab Measurement Study

We have obtained a PlanetLab topology through end-to-
end measurements. We randomly select a number of hosts
from PlanetLab and conduct all-pairs traceroutes between
them. Due to network and host dynamics (some hosts may
unexpectedly fail during our measurements), a small portion
of the traceroutes cannot be completed. From the traceroutes
obtained, we construct a topology consisting of 72 hosts and
2540 overlay paths (we assume that paths are symmetric and
only measure one path between a pair of hosts).

We also measure residual bandwidth of paths. In the mea-
surement, a sender sends a data clip to a receiver, and the
receiver measures the downloading time. The path bandwidth
is computed as the data clip size divided by the downloading
time. A data clip contains 1, 000 packets and one packet is
set to 1, 000 bytes. Each host measures its bandwidth to all
the other hosts. Among the 72 hosts, we obtain the bandwidth
results on 2189 paths (some transfer cannot be completed due
to network and host dynamics). The maximum and minimum
bandwidth is about 14.4Mbps and 35Kbps, respectively, and
over 94% paths have bandwidth higher than 1Mbps. We
combine the traceroute results and bandwidth measurement
results to build a testbed topology, with 72 hosts, 2176 overlay
paths, 1145 underlay links and 627 routers.

Figure 1 shows the relationship between residual bandwidth
and RTT of paths. We divide path RTT into a few intervals.
The intervals start from 0ms and each interval spans 5ms.
For example, in the curve denoted “Number of Paths”, a
point (5, 296) means that there are 296 paths whose RTT
falls into the interval [0ms, 5ms). Similarly, a point (10, 94)
means that there are 94 paths whose RTT falls into the interval
[5ms, 10ms). However, the last point in the curve has different

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

meaning. The point (105, 13) in the curve means that there are
in total 13 paths whose RTT is no less than 100ms. Note that
other points in the curve have shown the distribution of paths
whose RTT is less than 100ms.

The curve denoted “Average Bandwidth” in Fig. 1 shows the
average path bandwidth in different RTT intervals. With the
increase of RTT, average path bandwidth generally decreases.
As shown, there are a few paths with significantly high residual
bandwidth (higher than 4.5Mbps) and low RTT (less than
15ms). These are mainly paths within the same campus net-
work. In the current PlanetLab, a university usually contributes
2 − 4 computers as PlanetLab hosts. These computers are
often close to each other and have high bandwidth connections
between each other. As the last point in the curve shows, the
average bandwidth of paths whose RTT is higher than 100ms
is 2.3Mbps. This is unexpectedly higher than its previous
points. However, as there are only 13 paths whose RTT is
higher than 100ms, the path number is too small and the result
lacks enough representativeness.

The curve denoted “Accumulative Bandwidth” shows the
average bandwidth of paths in an accumulative RTT range.
For example, the point (10, 4.58) in the curve means that the
average bandwidth of paths whose RTT is less than 10ms
is 4.58Mbps. Unlike other points, the last point (105, 3.06)
means that the average bandwidth of all paths is 3.06Mbps.
As shown, when we take long paths into computation, the
average residual bandwidth decreases.

The above measurement results show that a short path often
has relatively high residual bandwidth, while a long path often
has relatively low residual bandwidth. This suggests us to
preferentially use short paths for overlay construction, since
they can provide low end-to-end delay and high transmission
rate.

III. CONSIDERING PATH PREFERENCE IN TRACEROUTES

A. Comparison Schemes

We now study the impact of path preference to traceroute
measurements. We select Max-Delta as the baseline scheme
for verification [6]. Max-Delta is proposed to efficiently infer
the topology among a group of hosts by traceroute. It works
as follows: Hosts first utilize light-weight tools such as GNP
to estimate their network coordinates, and report them to a
central server. The following inference procedure is divided
into multiple iterations. In each iteration, the server selects a
target for each host to traceroute. Hosts then traceroute their
targets and report the results to the server. The server combines
all the results obtained in the iteration and based on that,
starts the next iteration on target assignment. Such process
is repeated until a certain stop rule is achieved (e.g., reaching
a certain number of iterations).

A target is selected as follows. For a certain host A, suppose
that the path between A and another host B has not been
measured. The server computes the distance between A and
B in the discovered topology Dp(A,B), using shortest path
routing. The server also computes the distance between them
based on their coordinates, Euclidean(A,B). If coordinate

TABLE I

UNMEASURED PATHS ADJACENT TO A HOST.

Path Euclidean (ms) ∆ (ms)
1 55 25
2 95 30
3 85 50
4 130 70

estimation is accurate, Euclidean(A,B) will approximate
the real network distance between A and B. Define the gap
between these two values as

∆(A,B) = Dp(A,B) − Euclidean(A,B).

If ∆(A,B) is large, it is with high probability that some links
between A and B (leading to a shorter path in the discovered
topology) are not discovered yet. For all unmeasured paths
between A and other hosts, the server selects the path with
the maximum ∆ value as A’s traceroute target.

To integrate path preference into Max-Delta, we modify
the target selection mechanism as follows. We first define a
few intervals for path delay. The intervals start from 0ms and
each interval spans tms, where t is a system parameter. An
unmeasured path is put into a certain interval according to its
Euclidean value. We then examine the intervals according
to their starting values in an ascending order. For a certain
interval, we examine the unmeasured paths falling into it, and
select the one with the maximum ∆ value. If there exists
such a path, the path is selected as the traceroute target in
the next iteration. Otherwise, the interval does not contain
any unmeasured paths. We then move to the next interval
with larger starting value, and repeat the above process. In the
following, we call this scheme distance limited Max-Delta, or
simply DLMD. Its work flow is shown in Algorithm 1.

We show an example to illustrate Max-Delta and DLMD.
Table I shows the set of unmeasured paths adjacent to a
host in a certain iteration. In Max-Delta, the host selects the
path with the maximum ∆ value as the traceroute target, i.e.,
path 4. If we use DLMD, we put the paths into different
intervals according to their Euclidean values. Suppose t =
50ms. We sequentially examine the intervals. The first interval
[0ms, 50ms) does not contain any paths. We then move to the
second interval [50ms, 100ms). There are three paths in the
interval, i.e., paths 1, 2 and 3. From these three paths, we
select the one with the maximum ∆ value, i.e., path 3. Hence,
path 3 is selected as the traceroute target in the next iteration.

B. Results on Internet-like Topologies

We evaluate Max-Delta and DLMD through simulations.
We generate a number of Transit-Stub topologies with GT-
ITM [8]. Each topology is a two-layer hierarchy of transit
networks and stub networks. A topology contains 6, 000
routers and around 42, 000 links. We randomly put 500 hosts
into the network. Each host is connected to a unique stub
router with 1ms delay, while the delay of core links is given
by the topology generator. In DLMD, we set t = 50ms. We
use the following metrics to evaluate an inference scheme.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

Algorithm 1 : TARGET SELECTION FOR HOST i IN DLMD
INPUT: t - interval span

Emax - the maximum path delay in theory
(a constant, assuming Emax is larger than all
Euclidean values)

Si - set of unmeasured paths adjacent to i
OUTPUT: A path from Si as the next traceroute target
1: p← �Emax/t�
2: for j ← 0 to p− 1 do
3: set Ij ← ∅
4: end for
5: for all path t− i in Si do
6: k ← �Euclidean(t, i)/t�
7: put path t− i into set Ik

8: end for
9: for j ← 0 to p− 1 do

10: if Ij �= ∅ then
11: select path m− i from set Ij s.t.

∆(m, i) = max{∆(x, i)|∀ path x− i ∈ Ij}
12: output path m− i
13: return
14: end if
15: end for

• Link ratio: defined as the ratio of the number of links in
the inferred topology to the total number of links in the
actual underlay topology [6].

• Router ratio: defined as the ratio of the number of routers
in the inferred topology to the total number of routers in
the actual underlay topology [6].

• Resource usage: Given a traffic between two points,
the resource usage is computed as the size of traffic
packets times the delay between the two points. We
compute the resource usage of an inference scheme as
the total resource usage for traceroute measurements in
the inference. The resource usage of a single traceroute
can be computed as in [9].

Figure 2 compares the performance of the two inference
schemes. Figure 2(a) shows the accumulative link ratios
achieved by the schemes. Max-Delta can quickly discover over
95% links, after 4 iterations. Its link ratio then converges
around 99%. DLMD achieves comparable performance as
Max-Delta. It discovers over 95% links only after 3 iterations.
Its link ratio is higher than Max-Delta’s in the first several
iterations and in the iterations after the 8th. Figure 2(b)
shows the accumulative router ratios achieved by the schemes.
DLMD performs slightly better than Max-Delta. Max-Delta
can discover over 99% routers after 4 iterations, and DLMD
achieves it only after 2 iterations. From these two figures, we
see than DLMD achieves slightly higher inference efficiency
than Max-Delta.

Figure 2(c) shows the accumulative resource usage achieved
by the schemes. As expected, DLMD achieves much lower
resource usage than Max-Delta. DLMD preferentially selects
short paths to traceroute. Hence, its traceroute averagely sends
less probing packets than that in Max-Delta, and these packets
traverse shorter distances. As shown, after 30 iterations, the
resource usage of DLMD is only 43% of that of Max-Delta.
Hence, DLMD can significantly reduce the measurement over-

(a)

(b)

(c)

Fig. 2. Performance comparison of different inference schemes. (a) Accu-
mulative link ratio. (b) Accumulative router ratio. (c) Accumulative resource
usage.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

Fig. 3. Accumulative link ratio by paths no more than certain length.

head.
The above results show that DLMD achieves higher infer-

ence efficiency than Max-Delta. This contradicts the intuition
that short paths only contain a few links and routers, and hence
only a few undiscovered links or routers. We examine our
GT-ITM topologies to explain DLMD’s good performance.
Given the number of hosts N = 500, all-pairs traceroutes
between hosts result in N(N − 1)/2 = 124, 750 paths
(assuming paths are symmetric). We analyze the properties
of the paths in a typical simulation. In the simulation, there
are in total 1, 677 different links and 1, 055 different routers
in the paths.

Figure 3 shows the accumulative link ratio achieved by
paths no more than certain length. For example, path length 5
corresponds to 95.9% in the curve. It means that if we only
measure paths whose length is less than or equal to 5, we can
discover 95.9% links on the underlay. When path length is
10, such value is 100%. It means that we can cover the whole
underlay topology using paths whose length is no more than
10. The figure shows that short paths have contained most
of underlay links. We can discover almost all links by only
tracerouting short paths. Therefore, when we integrate path
preference into Max-Delta and prefer short paths in inference,
we do not sacrifice inference efficiency.

C. Result on PlanetLab Topology

We further evaluate the inference schemes on the PlanetLab
topology. We select 60 hosts from the topology and neglect
traceroutes among them that contain anonymous routers. By
careful selection of the hosts, the remaining topology consists
of around 96% of the pairwise paths. We use this topology
as the complete underlay topology among the hosts. Fig-
ure 4 shows the link ratios achieved by the schemes on the
PlanetLab topology. Both Max-Delta and DLMD can quickly
discover underlay links. Max-Delta performs slightly better
than DLMD. To achieve a certain link ratio, Max-Delta needs
less iterations than DLMD. For example, to discover 95%
links, Max-Delta needs 9 iterations, while DLMD needs 11
iterations. As the performance gap between the two schemes

Fig. 4. Accumulative link ratios achieved by the schemes (on PlanetLab
topology).

is not large, we conclude that DLMD’s performance is com-
parable with Max-Delta’s.

IV. DISCUSSION AND CONCLUSION

There are various ways to measure path properties in
topology inference. In this paper, we try to figure out some
simple rules for path selection in order to fulfill various
measurement targets. Our study shows that it is beneficial to
preferentially select short paths to measure. Short paths often
have high residual bandwidth. And traceroute measurements
with such path preference can reduce measurement overhead,
at negligible penalty in inference efficiency. On the other
hand, the real Internet is complicated. A short path does not
necessarily have higher residual bandwidth than a long path.
And in traceroute measurements, it is not always efficient to
select short paths to measure (as shown in Fig. 4). We hence
cannot select paths to measure only based on their delay. We
need to carefully design how to assign preference to short
paths in topology inference.

REFERENCES

[1] Y. H. Chu, S. Rao, S. Seshan, and H. Zhang, “A case for end system
multicast,” IEEE JSAC, vol. 20, no. 8, pp. 1456–1471, Oct. 2002.

[2] M. Kwon and S. Fahmy, “Topology-aware overlay networks for group
communication,” in Proc. ACM NOSSDAV’02, May 2002, pp. 127–136.

[3] M. Jain and C. Dovrolis, “End-to-end available bandwidth: Measurement
methodology, dynamics, and relation with TCP throughput,” in Proc.
ACM SIGCOMM’02, Aug. 2002, pp. 295–308.

[4] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. W.
O’Toole, “Overcast: Reliable multicasting with an overlay network,” in
Proc. OSDI’00, Oct. 2000, pp. 197–212.

[5] PlanetLab. [Online]. Available: http://www.planet-lab.org
[6] X. Jin, W.-P. K. Yiu, S.-H. G. Chan, and Y. Wang, “Network topology

inference based on end-to-end measurements,” IEEE JSAC, vol. 24,
no. 12, pp. 2182–2195, Dec. 2006.

[7] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
throughput: a simple model and its empirical validation,” in Proc. ACM
SIGCOMM’98, Sept. 1998, pp. 303–314.

[8] E. Zegura, K. Calvert, and S. Bhattacharjee, “How to model an inter-
network,” in Proc. IEEE INFOCOM’96, March 1996, pp. 594–602.

[9] X. Jin, Q. Xia, and S.-H. G. Chan, “A cost-based evaluation of end-
to-end network measurements in overlay multicast,” in Proc. IEEE
INFOCOM MiniSymposium’07, June 2007, pp. 2581–2585.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

	Select a link below
	Return to Main Menu

