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Abstract—We study providing large-scale video-on-demand
(VoD) service to distributed users. In order to achieve scalability
in user capacity and reduce the load of the core network,
local servers with heterogeneous storage are deployed. Each
server replicates the movie segments depending on their access
probabilities. Considering the realistic scenario that underlay
delay is a function of the total traffic in the link (including cross-
traffic), we address two important problems to achieve low user
interactive delay: 1) Which segments should each server replicate
under the constraints of their capacities to achieve network-wide
good locality effect? This is the so-called content replication (CR)
problem; and 2) Given a number of remote servers with the
requested segment, which one should serve the user? This is the
so-called server selection (SS) problem.

CR and SS problems couple with each other. In this paper,
we propose a simple and distributed algorithm which seeks to
jointly optimize CR and SS. The algorithm, termed CR-SS,
achieves good caching locality by adaptively replacing segments
and selecting servers with a simple lookup. Simulation results on
Internet-like topologies show that CR-SS outperforms existing
and state-of-the-art approaches by a wide margin, achieving
substantially lower user delay.

Index Terms—Joint optimization; distributed algorithm; con-
tent replication; server selection; video-on-demand

I. INTRODUCTION

With the penetration of broadband Internet to the home,
video-on-demand (VoD) service has attracted much attention
recently [1], [2]. This is evident from numerous deployed
on-demand Internet movie applications, such as hulu.com,
pplive.com and netflix.com. The traditional client-server ap-
proach is obviously not scalable to serve a large number of
users. In this paper, we consider a scalable distributed server
architecture for large-scale VoD, and study its joint distributed
optimization of content replication (CR) and server selection
(SS).

In the VoD network, there is a repository storing all the
video contents. To scale up the streaming capacity and reduce
network load, a number of distributed servers are placed close
to user pools in the network. The capacity of each server is
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heterogeneous, and may not replicate all the contents.1 As
streaming servers, they stream their contents to their local
users.2 Each movie is divided into fixed-sized segments (say,
5-20 minutes). Each server can replicate any of the segments
depending on their capacities.

In the network, the clients may be some set top boxes
or PCs and may at any time perform random seeks to any
segment of the movies they are viewing. Each user has a
home (or local) server, which is his contact point to the VoD
service. The user “pulls” the segment of interest from his
home server, which serves the user directly if it has replicated
locally the segment of interest (we consider the general case
that the bandwidth between the users and their home servers
is not a bottleneck). Otherwise, it re-directs the request to a
remote server (including repository) with the segment stored.
The remote server then streams directly to the user once
network bandwidth is available. We call such remote server the
streaming parent of the home server. The users may access the
video segments with different probabilities which may slowly
vary over time.

We consider the realistic scenario that the underlay link has
a certain bandwidth, and its delay is a function of its total
traffic including all the cross traffic. There are two important
issues which need to be addressed. First, given a server’s
limited storage capacity, which segments should it replicate
to achieve network-wide good locality effect? This is the so-
called content replication (CR) problem. Second, in case of
a miss in the home server and given a number of available
remote servers storing the requested segment, which of them
should the home server choose to achieve good overall user
delay experience? This is the so-called server-selection (SS)
problem.

The objective of CR is to cooperatively optimize the seg-
ments stored at each server. A home server running a good CR
strategy should therefore satisfy most of its segment requests
by servers within its proximity (content replication), so as
to achieve low interactive delay in accessing the segments

1For example, the size of a 100-minute movie of bitrate 5 Mbps is
around 4GB. To store 10,000 movies, a server requires a capacity of 40TB.
Replicating all the movies at a local server is considered expensive, especially
when most of them are not very popular.

2In this paper, we use “client” and “user” interchangeably.
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and to conserve network bandwidth. On the other hand, the
objective of SS is to optimize the choice of servers with the
same goal of achieving low user delay and avoiding network
congestions. Clearly, CR and SS couple with each other, i.e.,
given a different CR strategy, SS may have a different optimal
solution, and vice versa. A joint optimization of CR and SS
is hence necessary to achieve the overall best performance.

In this work, we address this joint optimization problem.
Optimal replication in VoD is regarded as NP-hard (see, for ex-
ample, [3]). We propose a distributed and cooperative heuristic
called CR-SS (Content Replication and Server Selection) to
address the joint optimization problem. With CR-SS, each
server uses a simple routing table to store segment location.
By exchanging the routing table with its neighbors, each server
is able to find the best set of server(s) for each segment and
makes efficient segment replacement decision. Using a simple
penalizing function, CR-SS is fully distributed and efficient,
and guaranteed to converge to steady state. It has low server
and computational loads.

This paper is organized as follows. In Section II we review
related work. We present the distributed algorithm CR-SS in
Section III. In Section IV we present illustrative simulation
results on the performance and comparison of CR-SS. We
conclude in Section V.

II. RELATED WORK

There has been much work on VoD based on file down-
loading (e.g., [4]). In contrast, our work considers interactive
streaming with problems in content replication and segment
replacement. Other work on VoD focuses on its infrastructure
and framework [5]–[7]. Although this body of work contains
elements of CR and SS, it has not addressed the critical
distributed joint optimization of CR and SS which we consider
here. The SS problem in the context of overlay routing has
been well studied in the literature [8], [9]. There has been
work to optimize CR [4]. While these works treat CR and SS
independently, we consider the joint optimization of CR and
SS here.

Joint optimization of CR and SS has been studied in [10],
[11]. We differ by considering the influence of cross traffic in
each link and the more realistic scenario where the delay of
the underlay links as a non-linear function of the link traffic.
This calls for a totally different approach and solution. Borst
et al. [10] assumes a specific tree topology with homogeneous
link bandwidth and user demand in studying CR and SS
problems. However, it has not taken into account the influence
of cross traffic in each underlay link, and cannot be extended
to a general mesh network topology with heterogeneous link
bandwidth and user demand. The work in [11] considers
joint optimization of CR and SS for multi-view video, which
assumes a special coding structure and considers the optimiza-
tion in the view dimension only.

III. DISTRIBUTED AND COOPERATIVE CR-SS
ALGORITHM

In the VoD network, there is a certain segment access delay
between any pair of servers, including repository (the delay
may be traffic dependent). We present in this section CR-SS
(Content Replication and Server Selection), which decides the
segments to replicate in each server to minimize the average
access delay in the system.

In CR-SS, each server independently minimizes the average
segment delay in its local region through segment replacement.
It jointly optimizes CR and SS by iteratively minimizing a
delay function in a fully distributed manner. Such iteration is
guaranteed to converge.

We present first how CR-SS uses a probabilistic framework
to select servers (parents), then the segment replacement of
CR-SS, followed by the complexity analysis of CR-SS.

A. Probabilistic Server Selection

Every server running CR-SS has a simple routing table,
each entry of which corresponds to a video segment. For each
video segment, the row contains a certain maximum number
ns of servers with the segment and hence can be chosen as
its streaming parent. Each server periodically exchanges its
routing table with its neighbors, and pings the path delay to
them.

Let Ei
j be the set of servers stored in the entry for segment

j at server i. Let dikj be the access delay of segment j from
server k for users homed at server i. For each server k ∈ Ei

j ,
the entry also stores a utility value indicating the importance
of server k as U ik

j . Obviously, U ik
j should be a monotonically

decreasing function in dikj (note that our algorithms are not
restricted to any particular form of the function). In order to
choose close servers as streaming parents and not to direct
all the traffic to a particular server, we adopt a probabilistic
framework to achieve load spreading. In the framework, the
probability that server k is chosen as the streaming parent for
segment j is given by

P ik
j =

U ik
j∑

t∈Ei
j
U it
j

. (1)

From the equation, if the home server has stored the segment
(and hence Ei

j is the server itself), it has probability 1 to
become the streaming parent (and hence surely serves its local
users). On the other hand, if the segment is not found in
the home server, the larger the path delay, the lower is its
probability to become the streaming parents.

Consider a user request sent to its home server i for segment
j. Server i then inspects the parent list in the corresponding
entry of its routing table. The server chooses one of them as
streaming parent according to Equation (1).
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B. Segment Replacement of CR-SS

From Equation (1), the expected segment delay for users at
home server i to get segment j is given by

d̄ij =
∑
k∈Ei

j

P ik
j dikj . (2)

Let λj be the popularity of segment j, which is defined as
the probability that a user accesses segment j. The average
segment access delay at server i is hence given by

d̄i =
∑
j

λj d̄
i
j . (3)

Each server has a certain number n neighbors, which are
the closest servers according to the delay. Denote this set of
neighbors for server i as N i. The local region Li = N i ∪ {i}
is defined as the set including the server i and its neighbors
in N i. The average access delay in Li is hence given by

d̄Li =
∑
k∈Li

d̄k. (4)

In CR-SS, each server i independently minimizes the aver-
age segment access delay in its local region (i.e., d̄Li ) through
segment replacement presented below.

The server initially replicate some segments. The initial
assignment is not likely to be optimal, and hence the server
goes through segment replacement to improve the perfor-
mance. A server decides which segment to replace using the
routing tables exchanged from its neighbors. Given all its
neighbors’ routing tables, a server examines the gain (in terms
of reduction in access delay) of a certain segment replacement.

When a server starts to replace the segments. It examines
the routing table obtained from its neighbor k. Recall that
Ek

j is the entry which stores the parent list for segment j in
server k. If i ∈ Ek

j , server i is possibly chosen by k as the
streaming parent for segment j. However, if server i decides
to replace j, server k has to remove i from Ek

j . The expected
access delay of segment j at server k (i.e., d̄kij in Equation (2))
also changes. Denote this access delay change of segment j
at server k as Cki

j . Let d̄ki
∗

j and d̄kij be the expected segment
delay at server k with and without the entry of server i in Ek

j ,
respectively. Thus, we have

Cki
j = d̄kij − d̄ki

∗

j . (5)

We further define the gain Gi
j as the sum of change of the

average delay of segment j in server i’s local region Li. Given
Equation (4), Gi

j is defined as

Gi
j =

∑
k∈Li

Cki
j . (6)

The server i first calculates the gain for each segment. Then
it selects the segment j with the lowest Gi

j among all the
replicated segments and the segment t with highest Gi

t among
all the non-replicated segments. If (Gi

t − Gi
j)/

∑
k G

k
j is

larger than a certain threshold α, it continues to examine the
next pair of segments. Otherwise, the server i stops segment

replacement. Note that since (Gi
t − Gi

j)/
∑

k G
k
j is always

smaller than 1, α must be set smaller than 1; otherwise, the
server will not replace any segment. CR-SS is guaranteed to
converge, because it continuously reduces the average segment
access delay through segment replacement.

C. Exchange Overhead and Computational Load

Let T be the set of segments, and |T | be the number of
segments. Note that the servers do not need to exchange the
entire full routing tables. They only need to exchange two
types of information. First, when a server i performs segment
replacement, it only needs the information of the delay change
of a neighbor k as given by Equations (5). Such information
of the potential delay change can be efficiently calculated at
neighbors in O(|T |) time and sent to the server with size
O(|T |). Second, after the replacement, the server has to send
its segment replication information (in a bitmap of O(|T |) to
each of its neighbors. Clearly, the exchange overhead of both
types of information is rather small.

The computational load of CR-SS is rather low. As men-
tioned above, each neighbor computes potential delay change
with time complexity O(|T |). After obtaining all such informa-
tion, a server sorts them in O(|T | log |T |) time. For segment
replacement, we simply calculate the reduction of delay by
removing the segment of lowest gain and replacing it with
the segment of highest gain. We repeat this process until the
reduction of delay is less than the threshold. The running time
of the whole process is O(|T |), because the segments have
already been sorted. Hence the total running time of CR-SS
for replacement is O(|T | log |T |).

IV. SIMULATION ENVIRONMENT AND
ILLUSTRATIVE RESULTS

A. Simulation Environment and Metrics

We have conducted extensive simulations to study the
performance of CR-SS on Internet-like topology generated by
BRITE. Our BRITE topology is a router-only topology, which
contains 3,072 routers and 10,850 underlay links. We will vary
some of them to study their effect on system performance. Un-
less otherwise stated, we use the following baseline (default)
parameters in simulation: link bandwidth 5 Gbits/s, number of
servers 30, number of segments 1200, capacity 30, s = 0.4,
streaming bitrate 5 Mbits/s, downloading bitrate 25Mbits/s,
number of neighbors 30, segment replacement interval 12
minutes, λ = 6 requests/minute. (We have also conducted
simulations on real Internet topologies obtained from an ISP
(http://personalpages.manchester.ac.uk/staff/m.dodge/cyberge-
ography/atlas/more isp maps.html). The results are qualita-
tively the same and omitted here.)

A certain number of servers are randomly attached to the
routers in the topology. Each server has a fixed replication
capacity and has a fixed number of nearest servers as its neigh-
bors. All segments are of the same size and their popularities
follow the Zipf distribution with skewness parameter s. When
s is small (e.g., s = 0), all segments have similar popularities;
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Fig. 1. Average user delay versus request rate given
different schemes.
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Fig. 2. Average miss delay versus request rate given
different schemes.
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Fig. 3. Average user delay versus streaming bitrate
given different schemes.

on the other hand, when s is high (e.g., s = 1), the distribution
is more skewed.

We write our event-driven simulation in Java. Segment
requests arrive at a server according to a poisson process with
rate λ (requests/minute). For the server selection, we set U ik

j to
1/dikj in Equation (1). A server periodically replaces its cached
segments. When a replacement decision is made, the server
downloads the segment from another server with the segment
according to the server selection algorithm. The downloading
bitrate is higher than the streaming bitrate (2 times in our
simulation). When the downloading is completed, the server
informs its neighbors its new routing table and the neighbors
update theirs accordingly. For each experiment, we run it till
steady state, after which we take the statistics.

The performance metrics that we are interested in are:
• User (interactive) delay, which is defined as the delay

from the request of a segment until the segment is
streamed to the user. As a result, the delay is the sum
of the path delay of the segment from the request and
the waiting time for the end-to-end streaming bandwidth
to be available in case the network and servers are
congested.

• Miss delay, which is defined as the user delay for the
requested segment not stored by the home servers. We
are interested in both its average and distribution.

• Wait probability, which is the probability of a segment
request which, due to network and server congestion,
needs to wait for the available bandwidth before it is
served. This is measured as the ratio of the number of
requests that cannot be served immediately to the total
number of requests.

• Reneging rate, due to the abortion of a segment request on
impatience after waiting for a certain amount of time (10
seconds in our simulation). Reneging rate is calculated as
the fraction of requests leaving the system without being
served.

We compare CR-SS with the following schemes:
• Random, where each server randomly replicates segments

without considering the segment popularity;
• MPF (Most Popular First), where each server only repli-

cates the most popular segments;
• LRU (Least Recently Used), where each server only

replicates the segments that are most recently requested
at itself;

• Local Greedy Replication, where each server indepen-
dently replaces segments to reduce access cost in accor-
dance with [10]. The access cost takes into consideration
of both segment access delay and segment popularity.

For all of the above comparison schemes, if a request cannot
be served directly by its local storage, the home server will
choose the nearest server as the streaming parent.

B. Illustrative Results

We present illustrative results in this section. Figure 1 plots
the average user delay versus request rate given different
schemes. User delay increases with request rate due to the
increase in network and server load. CR-SS clearly achieves
much lower user delay among all the schemes. LRU and Local
Greedy do not perform well mainly because of their high
frequency of segment replacement, which incurs large amount
of download traffic in the network. Random replacement does
not have any segment replacement, and hence achieves lower
replacement traffic. MPF, due to its replication of only the
most popular segments, does not take advantage of content
replication. CR-SS achieves the best performance because it
has low replacement overhead.

Figure 2 plots the average miss delay versus request rate
given different schemes. We have similar observation here
as the user delay. CR-SS achieves much lower miss delay
as compared with all other schemes due to its better content
replication and server selection. As the performance of miss
delay is qualitatively the same as user delay, we will only
show user delay in the following.

Figure 3 plots the average user delay versus the streaming
bitrate given different schemes. User delay increases with
the streaming bitrate, because network traffic increases with
streaming bitrate. It is clear that CR-SS achieves much lower
user delay as compared with all other schemes. Given the same
requirement on user delay, CR-SS is able to support a much
higher streaming bitrate and hence video quality.
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Fig. 4. Average user delay versus zipf parameter s
given different schemes.
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Fig. 5. Average wait probability versus request rate
given different schemes.
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Fig. 6. Average reneging rate versus request rate
given different schemes.

Figure 4 plots the average user delay versus zipf parameter s
(i.e., skewness) given different schemes. User delay decreases
with the zipf parameter. This is because a skewed popularity
means that more requests are concentrated on fewer segments.
Consequently, the miss rate decreases, leading to lower delay.
We can see that CR-SS achieves substantially lower delay than
the other schemes. This shows that CR-SS makes very good
content replication and server selection decisions. When s is
large, CR-SS achieves similar performance as MPF. This is
because it makes effective decision as MPF by replication
high-popularity segments at each of the servers.

Figure 5 plots wait probability versus request rate. The prob-
ability increases with request rate due to network congestion.
CR-SS achieves the lowest wait probability due to its better
replication and server selection algorithms. LRU and Local
Greedy do not perform well because of their ineffective repli-
cation and server selection algorithm, leading to bottleneck
link in the network. Random and MPF do not have segment
replacement, hence enjoying lower wait probability.

Figure 6 plots the reneging rate versus request rate. The
reneging rate increases with request rate due to network and
server congestion. CR-SS has substantially lower reneging rate
as compared with the other schemes because requests are
served with much lower delay.

V. CONCLUSION

In this work, we study the provisioning of large-scale video-
on-demand (VoD) services to distributed users. We address
the joint optimization of Content Replication (CR) and Server
Selection (SS) to achieve low user (interactive) delay. We
propose a simple and fully distributed algorithm called CR-
SS. With CR-SS, each server uses a simple routing table to
store segment location information. CR-SS makes effective
distributed replacement decision and uses probabilistic server
selection to minimize user delay and network load.

We have conducted extensive simulation and comparison
study of CR-SS on Internet-like topologies. The results show
that CR-SS achieves much lower user delay, miss delay, wait
probability and reneging rate than traditional (i.e., Random,
LRU and MPF) and state-of-the-art schemes (i.e., Local

Greedy). Given the same requirement on user delay, it is able
to support much higher streaming bitrate and request rate to
provide distributed VoD service.
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