
Delay Optimization for Multi-source Multi-channel
Overlay Live Streaming

Jie Dai Zhangyu Chang S.-H. Gary Chan
Department of Computer Science and Engineering

The Hong Kong University of Science and Technology
{jdaiaa,zchang,gchan}@cse.ust.hk

Abstract—In order to provide scalable live streaming service,
a content provider often deploys an overlay cloud consisting of
distributed servers which collaboratively exchange streams with
each other. We consider an overlay consisting of multiple live
channels originating from multiple sources. Server bandwidth
and end-to-end network bandwidth are shared among these
channels. The stream of each channel is divided into multiple
substreams of a certain bitrate, each of which is pushed via a
tree to the servers that subscribe to the channel. The critical
and challenging issue is then how to optimize the topology of the
substream trees so as to minimize the maximum channel delay
(defined as the delay from the source to the subscribing servers).

There has been little work on the optimization of such multi-
source multi-channel live streaming network. We first formulate
the problem which comprehensively and realistically captures
various delay and bandwidth components, and show that it
is NP-hard. We then propose an efficient algorithm called
COMMOS (Collaborative Multi-source Multi-channel Streaming
Overlay) which achieves low channel delay. Extensive simulation
results based on real Internet topologies show that COMMOS
outperforms other state-of-the-art schemes by a wide margin
(often by more than 40%), due to its better utilization of network
resources.

Index Terms—live streaming, overlay routing, optimization,
substream push

I. INTRODUCTION

In order to deliver live contents in a scalable manner, a
content provider often deploys distributed servers close to user
pools. These servers form a collaborative overlay network,
with a certain bandwidth capacity between any pair of them
(which can be zero) [1]. A source is where a live channel
originates, and users may subscribe the channel via their
connected servers, the so-called “home” servers. The servers
subscribe the channels requested by users, get the stream,
and deliver the content to the users. To reduce the end-to-end
streaming delay, the channels are pushed from their sources
to the subscribing servers. With the improvement in edge
bandwidth, we consider that the bandwidth between servers
and users is not the bottleneck. Therefore, we focus on the
overlay consisting of only the sources and servers in this paper,
and study how to minimize the delay from the sources to the
subscribing servers.

We consider a multi-source multi-channel live overlay
streaming with multiple channels and multiple sources, where

This work was supported, in part, by Hong Kong Research Grant Council
(RGC) General Research Fund (610713) and HKUST (FSGRF13EG15).

each of the sources originates one or more channels. Each
server may subscribe to an arbitrary set of the channels (may
be empty, in which case the server does not have users). The
channels may have heterogeneous streaming rate. In order to
better utilize network bandwidth, the full stream of a channel
is divided into a certain number of substreams of a certain
bitrate. The substreams are pushed from the source to the
subscribing servers in the overlay via multiple trees, such that
the subscribing servers have to receive all the substreams of the
channel, i.e., the full stream, before the channel can be played
back. Clearly, the aggregation of all the substream trees of
a channel is a mesh. Without loss of generality, we consider
that the sources subscribe to no channels and hence act as the
roots of the substream trees of their channels. 1 Furthermore,
a channel can only originate from one source. 2

In order to more cost-effectively utilize network resources,
the end-to-end network bandwidth between servers are shared
among all the channels, i.e., there is no bandwidth partitioning
for each channel. Furthermore, the server upload bandwidth to
the other servers is also shared, i.e., its bandwidth may be used
by other channels which it has not subscribed. In other words,
the server may act as a helper by receiving and forwarding
substreams of the other unsubscribed channels.

In live streaming, the end-to-end delay of a channel, or
simply channel delay, is an important optimization objective.
Such delay mainly consists of two components, the propaga-
tion delay and the scheduling delay. Propagation delay is the
time that a packet travels from one server to the next over a
physical connection, usually reflected by the round-trip time
(RTT). Scheduling delay is defined as the time elapsed from
a parent node fully received a packet to the time instant that
the packet is fully departed from the node for its neighbor.
We consider both delay components here, as they accumulate
with the increase of the number of channels, servers and the
hop counts from the source. Our objective is to minimize the
maximum delay of all the channels.

1If not, we may split the node into two parts, one being the “source” with
all the channels and the other being the “server” subscribing to the channels.
The two parts are then connected by a link of infinite bandwidth capacity and
zero delay.

2If not (i.e., the channel has multiple sources), we may form a “virtual”
source connecting to all the sources as its first-hop neighbors with infinite
bandwidth and zero delay. In other words, the sources become the first-hop
servers subscribing the channel originating at the virtual source.

8587

2

Source 1
Channel 1

Server 4
Channel 2

Optimizer

Server 1
Channel 1

Server 2
Channel 1

Server 3
Channel 1, 2

: substream 1 of Channel 1

: substream 2 of Channel 1

: substream 1 of Channel 2

: control message

Source 2
Channel 2

Fig. 1. A multi-source multi-channel overlay live streaming network with
server collaboration.

We show in Figure 1 an example of the streaming network
under consideration. Source 1 and Source 2 are streaming
channels 1 and 2, respectively, where Channel 1 has two
substreams (higher bitrate) while Channel 2 has only one
(lower bitrate). Server 4 does not subscribe to Channel 1 but
acts as its helper: it receives a substream from Source 1 and
forwards it to Server 3. In this way, the bandwidth bottleneck
between Server 2 and Server 3 is overcome by such multi-
path streaming. Topology optimization is carried out by a
central optimizer, which continuously sends control messages
to sources and servers to collect network information. Based
on such information and network capacity constraints, it
computes the substream trees and informs the servers of the
optimized topology.

The live overlay network we consider is general and re-
alistic. It uniquely considers substreams and its optimization
under such setting. Such dividing each channel into multiple
substreams leads to better utilization of network bandwidth as
compared with the single-stream approach. The collaboration
of servers and bandwidth sharing increase the reservoir of
available bandwidth in the network, and provide rich path
diversity to overcome bandwidth bottlenecks to achieve low
delay.

There has been little work on multi-source multi-channel
overlay live streaming. We study delay optimization problem
for such network through substream tree construction. Our
contributions are as follows:

• Problem formulation and complexity analysis: We present
a realistic delay model for multi-source multi-channel
overlay live streaming with collaborative servers, which
captures various network components and constraints. We
formulate the optimization problem of constructing mul-
tiple substream trees, which is to minimize the maximum
delay of the channels while meeting the constraints. We
analyze its complexity and prove that it is NP-hard.

• COMMOS: A novel algorithm for low-delay multi-
source multi-channel overlay live streaming: We propose
an efficient and implementable heuristic termed COM-
MOS (Collaborative Multi-source Multi-channel Overlay
Streaming). It achieves overall low streaming delay while

meeting bandwidth capacity constraints by constructing
multiple substream trees.

• Extensive simulation results: We conduct extensive simu-
lation study based on real Internet topologies to evaluate
the performance of our COMMOS, and show that server
collaboration can significantly reduce the streaming delay
while meeting high streaming rate.

We briefly review related work here. While much work
has been done on peer-to-peer (P2P) live streaming, most of
them [2]–[7] focus on single-source single-channel overlay
streaming. These works cannot be extended to multi-source
multi-channel live streaming due to the shared resources such
as link capacity and server upload bandwidth. Though some
works have been done on multi-channel P2P live streaming
[8]–[12], they consider different objective functions, such as
maximizing bandwidth to support more users or minimizing
the load of servers through collaboration of users. Few have
addressed how to optimize the overall streaming delay, which
is an important metric for user experience in live streaming.

This paper is organized as follows. We first formulate the
optimization problem and prove its NP-hardness in Section II.
We then present the Collaboration Multi-source Multi-channel
Streaming Overlay (COMMOS) algorithm that constructs the
streaming overlay network in Section III. Illustrative simula-
tion results and comparison with other state-of-the-art schemes
are presented in Section IV. We conclude in Section V.

II. PROBLEM FORMULATION AND COMPLEXITY ANALYSIS

We present our optimization problem, Minimum-Delay
Streaming with Server Collaboration, in Section II-A. We
show the NP-hardness of the problem in Section II-B.

A. The Minimum-Delay Streaming with Server Collaboration
Problem

We model the overlay as a directed graph G = (V,E),
where V is the set of vertices corresponding to the node
indices of both servers and sources. Let S be the set of sources
and P be the set of servers, where V = S∪P . Let E ⊆ V ×V
be the set of possible overlay connections between nodes in
V . Note that the graph does not have to be complete.

Let M be the set of channels. Each channel is divided into
multiple substreams of similar bandwidth. We consider that
all the bandwidth (server upload bandwidth and end-to-end
network capacity) is normalized by some unit denoted as τ
(e.g., τ = 400 kb/s). Let K(m) be the set of substream indices
for channel m ∈ M , and |K(m)| be its cardinality, i.e., the
number of substreams for channel m. For every node i ∈ P ,
let Mi be the set of channels that node i subscribes to.

Each substream is delivered to all the subscribed nodes
in P by a delivery tree, and hence there are a total of∑

m∈M |K(m)| delivery trees. Denote the delivery tree of the
kth substream of channel m as T (mk).

For every node i ∈ V , it has an upload capacity of Ui ∈ Z+

units which is normalized by τ . Therefore, Ui represents
the maximum total number of children it can serve in all
substream trees. Note that each source server l ∈ S has an

8588

3

upload capacity of Ul units and has no parent. For each edge
〈i, j〉 ∈ E, there is an end-to-end capacity bij ∈ Z+ units and
a bandwidth tij ∈ N units normalized by τ . In other words, bij
is the maximum number of substreams that can simultaneously
accommodate in edge 〈i, j〉, and tij is the concurrent number
of substreams in edge 〈i, j〉. Note that as tij is bounded by
both the link capacity of edge 〈i, j〉 and the upload capacity
of node i, tij has to satisfy

0 ≤ tij ≤ min(bij , Ui) (1)

and ∑
j∈Ci

tij ≤ Ui, (2)

where Ci is the set of the children of node i in all the
substream trees.

For the streaming session to be feasible, the network has to
satisfy the following constraints:

1) The total upload capacities must be larger than the total
streaming bandwidth:∑

i∈V
Ui ≥

∑
i∈P

∑
m∈Mi

|K(m)|. (3)

2) The aggregate incoming capacities of each node must be
larger than the streaming rate:∑

i∈V
min(bij , Ui) ≥

∑
m∈Mj

|K(m)|, ∀j ∈ P. (4)

For any node i ∈ P , if node i receives all substreams in
K(m), it is fully served for channel m and can play back the
channel m with continuity. Let a(mk)

i be an indicator variable
indicating whether node i is in tree T (mk). a(mk)

i = 1 if i ∈
T (mk); otherwise a(mk)

i = 0. Therefore, node i is fully served
for channel m if and only if a(mk)

i = 1 for every k ∈ K(m).
Denote the propagation delay of edge 〈i, j〉 as dPrp

ij and the
worst-case scheduling delay of node i as dSchi . dSchi is given
by

dSchi =
∑
j∈Ci

L · tij
min(bij , Ui)τ

, (5)

where L (bits) is the segment size used in streaming.
Denote the source-to-end delay of node j in substream tree

T (mk) as D(mk)
j , which equals to the delay of its parent i

in tree T (mk) plus the scheduling delay of i and propagation
delay between i and j, i.e., D(mk)

j = D
(mk)
i + dSchi + dPrp

ij .
Denote the source-to-end delay of node i of channel m as

D
(m)
i . It equals to the maximum source-to-end delay of node

i in all the substream tree T (mk), ∀k ∈ K(m), i.e., D(m)
i =

maxk∈K(m) D
(mk)
i .

The channel delay D(m) of channel m is defined by its
maximum source-to-end delay of channel m for all the nodes
i that has subscribed to channel m, i.e., D(m) = maxiD

(m)
i .

The streaming diameter D is the maximum channel delay
in M , i.e., D = maxm∈M D(m).

We finally state below the problem under study:
Minimum-Delay Streaming with Server Collaboration

(MDSSC) problem: The MDSSC problem is to find an overlay
of substream deliver trees {T (mk)} which minimizes the
maximum delay (i.e., minimizes the streaming diameter),

minD = min max
m∈M

D(m), (6)

subject to the subscription requirement a(mk)
i = 1 ∀i ∈ P,m ∈

Mi, k ∈ K(m) (i.e., each server i ∈ P receives all substreams
k ∈ K(m) for each channel m ∈ Mi), and the bandwidth
requirements given in Equations (1) to (4).

B. Complexity Analysis

The complexity of this MDSSC problem is NP-hard
since the Travelling Salesman Problem (TSP) is reducible to
MDSSC problem in polynomial time. Let G′(V ′, E′) be an
instance of TSP. We transform the instance of TSP G′(V ′, E′)
to an instance of MDSSC G(V,E) by adding a vertex Send

and edges from all vertices to Send. The vertices in V represent
servers and the weights on the edges are the propagation delay
plus the transmission delay between two adjacent servers. In
this particular instance, there is only one streaming source
existing in the network. Let Ssrc be the source, and consider
the special case that the streaming rate is 1 unit of the
substream and upload capacity of each server is also 1 unit
except that Send has zero upload capacity. The resulting
overlay topology must be a chain starting from the streaming
source Ssrc to Send. The streaming diameter D is equal to
the delay at Send, which is the sum of all the delays along
the chain. Hence, D in G is the minimum if and only if the
cost of the Hamiltonian cycle is the minimum. Hence, TSP is
polynomial-time reducible to MDSSC.

III. COMMOS: COLLABORATIVE MULTI-SOURCE
MULTI-CHANNEL OVERLAY STREAMING

In this section, we first present COMMOS (Collaborative
Multi-source Multi-channel Overlay Streaming), which con-
structs a streaming overlay given network information on
server distance and bandwidth capacities. Due to the NP-
hardness of the problem, the algorithm is heuristic in nature,
which is to construct delivery trees for each substream and
involve helpers if necessary to meet the streaming bitrate
requirement. We present the preliminary in Section III-A, and
the algorithmic details in Section III-B.

A. Preliminary

Let rij ∈ N be the residual traffic that can be transmitted
from i to 〈i, j〉, which is given by rij = bij − tij . Recall
that tij is the number of concurrent substreams and bij is the
end-to-end capacity on edge 〈i, j〉.

Let Rout
i ∈ N be the residual uploading capacity that node

i can stream out, which is given by Rout
i = Ui−

∑
j∈Ci

tij . A
node i can be a potential parent and serve node j if Rout

i > 0
and rij > 0.

A node i can be a potential helper for other channel if it
has surplus incoming capacity to serve the others after it fulfils
its subscriptions. Denote Rin

i ∈ Z as the residual incoming

8589

4

capacity that node i can receive beyond its own subscription
requirement, which is defined by

Rin
i =

∑
〈j,i〉∈E

bji −
∑

m∈Mi

K(m). (7)

Node i is a valid candidate of being a helper if Rin
i > 0.

Define the subtree delay of node i as the maximum delay
of all the nodes in all the subtrees rooted at node i. It is given
by

δi = max
j∈Qi,m∈Mi,k∈K(m)

D
(mk)
j , (8)

where Qi denotes the set of all the descendant nodes of i in
all substream trees.

A node j will incur an increment to the streaming diameter
when it joins tree T (mk) via node i and we denote such
increment as ∆D

(mk)
ij .

Algorithm 1: COMMOS

1 Initialize the overlay parameters;
2 while there is unsatisfied subscription do
3 (∆D

(mk)
ij , i, j, h,m, k)← findMinDInc(P,M,K);

4 if h = ∅ then
5 Include server j into T (mk) via i;
6 else
7 Include server j, helper h into T (mk) via i;
8 end
9 Update the overlay parameters;

10 end

B. Algorithmic Details and Complexity

We construct
∑

m∈M |K(m)| delivery trees through iter-
ations. Delivery trees are expanded from the source to the
destinations. In each iteration, we add one server into one
partially constructed delivery tree.

We outline COMMOS in Algorithm 1. We initialize residual
uploading capacity Rout

i , residual incoming capacity Rin
i for

each node i ∈ V and the residual traffic rij for each
edge 〈i, j〉 ∈ E. Each delivery tree, or T (mk), is initialized
containing only the streaming source S(m) ∈ S and the
streaming diameter, D, is initialized as zero.

There are totally
∑

i∈p
∑

m∈mi
|K(m)| nodes to be

joined into all the delivery trees. We loop through∑
i∈p
∑

m∈mi
|K(m)| iterations and add a server into a de-

livery tree in each iteration. For a node j, we find the delivery
T (mk) such that it increases the streaming diameter least when
it joins T (mk) via node i.

Algorithm 2 states the process to find a node j for tree
T (mk) with the least diameter increment. For each tree T (mk),
there are two ways for node j to join it via i:

1) directly connect a node i in tree T (mk): its potential
source-to-end delay is

D
(mk)
j = D

(mk)
i + dPrp

ij + dSchi , (9)

if rij > 0 and Rout
i > 0. This new connection in-

curs an increment to the streaming diameter, denoted as
∆D(mk)(i, j). We calculate this increment delay as

∆D(mk)(i, j) = max
(
δi + ∆dSchi , D

(mk)
j

)
−D, (10)

where ∆dSchi is the increment of the scheduling delay of
node i.

2) Connect node i through a potential helper node h: Note
that node h 6∈ T (mk) and m 6∈ Mh and it has enough
residual capacities to receive and server others. The
potential source-to-end delay of node j is:

D
(mk)
j = D

(mk)
i + dPrp

ih + dSchi + dPrp
hj + dSchh , (11)

if rih, rhj , Rout
i , Rout

h , Rin
h > 0. We calculate the incre-

ment to the streaming diameter of node i through helper
h, ∆D(mk)(i, j, h) as

max
(
δi + ∆dSchi , δh + ∆dSchh , D

(mk)
j

)
−D. (12)

Therefore, if Rout
i > 0, the increment to streaming

diameter of node i serving node j, denoted as ∆D
(mk)
ij ,

is given by

min

(
∆D(mk)(i, j),min

h∈H
∆D(mk)(i, j, h)

)
, (13)

where H is the set of potential helpers.
For each iteration, we choose the connection 〈i, j〉 incurring

the lowest increment to the streaming diameter and connect
node j to the corresponding tree T (mk), i.e.,

argi,j,m,k min ∆D
(mk)
ij . (14)

Then, we add the connection 〈i, j〉 into tree T (mk) to the
overlay and update the networking parameters and streaming
diameter.

The complexity of the COMMOS algorithm is
O(|M |2|P |3|V |) where |M | is the number of channels,
|P | is the number of servers and |V | is the number of sources
and servers. In the tree construction step, adding one server
into one delivery tree takes O(|M ||P |2|V |) time and the
calculation of the increment of streaming diameter of the
influenced servers takes O(|M ||V |2); hence, each step takes
O(|M ||P |2|V |) time. There are O(|M ||P |) iterations in total.
Therefore the tree construction takes O(|M |2|P |3|V |) time.

IV. ILLUSTRATIVE SIMULATION RESULTS

In this section, we first present our simulation environment
and performance metrics in Section IV-A. Then we discuss
illustrative simulation results in Section IV-B.

A. Simulation Setup and Performance Metrics

We have implemented the simulation of COMMOS using
Python. The simulation is carried out on a real Internet topol-
ogy provided by CAIDA, which was collected on June 12th,
2011. The round trip times (RTTs) between inter-connected
routers are also given in the topology. In underlay routing,

8590

5

70 90 110 130 150 170 190 210 230 250 270
Server Number

1.0

1.2

1.4

1.6

1.8

2.0

D
ia

m
et

er
 (s

ec
on

ds
)

View Upload Decoupling
Constrained Server Chaining
COMMOS

Fig. 2. Diameter versus server number.

70 90 110 130 150 170 190 210 230 250 270
Server Number

0.6

0.8

1.0

1.2

1.4

A
ve

ra
ge

 D
el

ay
 (s

ec
on

ds
)

View Upload Decoupling
Constrained Server Chaining
COMMOS

Fig. 3. Average delay versus server number.

14 16 18 20 22 24 26 28 30 32 34 36 38
Channel Number

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

D
ia

m
et

er
 (s

ec
on

ds
)

View Upload Decoupling
Constrained Server Chaining
COMMOS

Fig. 4. Diameter versus channel number.

Algorithm 2: findMinDInc(P,M,K)

1 foreach j ∈ P,m ∈Mj , k ∈ K(m) do
2 foreach potential parent i ∈ T (mk) do
3 ∆D

(mk)
ij ← ∆D(mk)(i, j);

4 foreach potential helper h ∈ H do
5 ∆D

(mk)
ij ← min(∆D

(mk)
ij ,∆D(mk)(i, j, h));

6 end
7 end
8 end
9 return (∆D

(mk)
ij , i, j, h,m, k) correspond to ∆D

(mk)
ij ;

we use distance-vector to compute the latencies between any
two router nodes in the network. To generate the simulation
environment, sources and servers are randomly attached to
the router nodes in the live streaming network. Without loss
of generality, the link capacity between servers is generated
by normal distribution (accepting only the positive values).
Channels are randomly assigned to the sources. Each server
subscribes to a channel based on the Zipf’s law, i.e., the
probability that a subscription for the nth most popular chan-
nel is n−z/

∑|M |
i=1 i

−z , recalling that |M | is the number of
channels. (Note that COMMOS can be applied to any network
environment. For concreteness in our simulation, we use the
above settings as an example.) Unless otherwise stated, we use
the following parameters in our simulation: number of servers
= 150, number of channels = 20, the full streaming rate is 1.2
Mbps with a substream as 400 kbps, the segment size = 100
kbits, server upload capacity Ui = 6.5 Mbps, the mean and
standard deviation of link capacity are µ = 4 Mbps and σ = 1
Mbps, the Zipf shape parameter z = 0.4.

We compare the performance of COMMOS with the fol-
lowing state-of-the-art schemes:

• Constrained Server Chaining (CSC) [7], whose objective
function is to minimize the source-to-end delay. This is a
pull-based algorithm. A server requests live streams from
those servers providing the content. No collaboration is
involved in this scheme.

• Video-Upload Decoupling (VUD) [10], a P2P multi-
channel overlay algorithm. With minor modifications, we

can easily adapt this algorithm into our network setting.
Servers are fully collaborative: each one is a helper in
this scheme. A server receives and provides channels
independent of what it subscribes to.

We evaluate the performance of our proposed algorithm
mainly by several delay metrics. The streaming diameter
is the maximum source-to-end delay of all the subscribed
channels among all servers in the network. The average delay
is the average of the channel delays in the network. Besides
these overlay diameters, we are also interested in the delay
distribution of the channels.

B. Illustrative Results

Figure 2 shows the diameter versus the server number and
Figure 3 shows the average delay versus the server number.
As the subscription number of each channel increases with
the rise of server number, more hops are needed to deliver the
contents. Therefore, both propagation delay and scheduling
delay increase, which lead to increasing diameter and average
delay. COMMOS achieves the lowest delay because it utilizes
the surplus bandwidth properly. VUD keeps high diameter and
average delay because it aims at maximizing bandwidth but
ignores delay. CSC has a relatively low average delay but a
high streaming diameter because it optimizes each channel
without server collaboration. Therefore, CSC usually achieves
low delay for not-so-popular channels, but popular channels
with more subscribed servers suffer high delay due to lack of
resources and server collaboration. For the same reason, the
streaming diameter of CSC increases sharply with the increase
of server number. As both streaming diameter and average
delay show the same trend in Figure 2 and Figure 3, we will
focus on streaming diameter in the following figures.

We plot in Figure 4 the diameter versus the channel number.
The diameter decreases as the channel number increases for
all schemes. With a fixed expected value of total subscription
to all the channels, the number of subscription to each channel
declines with the rise of channel number, which also decreases
the depth of each tree and the streaming diameter. COMMOS
enjoys more performance improvement with fewer channels
because it comprehensively considers the delay components
and utilizes the collaboration among servers. In such scenario,
a tree contains more servers and has to face both higher

8591

6

2800 3400 4000 4600 5200 5800 6400 7000 7600
Link Capacity

1.0

1.2

1.4

1.6

1.8

2.0

D
ia

m
et

er
 (s

ec
on

ds
)

View Upload Decoupling
Constrained Server Chaining
COMMOS

Fig. 5. Diameter versus link capacity.

70 90 110 130 150 170 190 210 230 250 270

1.0

1.4

1.8

2.2

A
ve

ra
ge

 D
el

ay
 (s

ec
on

ds
)

30% Most Popular Channel

View Upload Decoupling
Constrained Server Chaining
COMMOS

70 90 110 130 150 170 190 210 230 250 270
Server Number

1.0

1.4

1.8

A
ve

ra
ge

 D
el

ay
 (s

ec
on

ds
)

30% Least Popular Channels

View Upload Decoupling
Constrained Server Chaining
COMMOS

Fig. 6. Diameter versus server number with respect
to channel popularity.

0 2 4 6 8 10 12 14 16 18
Channel Index

0.6

0.8

1.0

1.2

1.4

D
el

ay
 (s

ec
on

ds
)

COMMOS
Constrained Server Chaining
View Upload Decoupling

Fig. 7. Channel delay versus channel index.

scheduling and propagation delays. COMMOS achieves over-
all low delay by balancing between delay components and
dredging extra bandwidth through server collaboration.

We show in Figure 5 the diameter versus the link capacity.
The diameter decreases with the link capacity because more
traffic can be transmitted through links with low propagation
delay. COMMOS outperforms other schemes in all network
environments. In the network with limited link capacity,
COMMOS reduces delay through high bandwidth availability
provided by server collaboration. In the network with abundant
link capacity, however, the performance of VUD degrades
because the servers with access to low-propagation-delay links
have too many children and suffer higher scheduling delay.
COMMOS considers delay components comprehensively and
achieves overall low delay.

We plot in Figure 6 the average channel delay versus server
number for the 30% leading popular and 30% least popular
channels respectively. COMMOS keeps the lowest delay in
both the most and least popular channels and the performance
gap is wider with increasing number of servers. As the
server number increases, more hops are needed to transmit
the streaming data and the channels suffer higher delay. In
COMMOS, servers with surplus capacity offer alternative
paths to streams with high delay to reduce the overall delay.

We plot in Figure 7 the channel delay for each channel. The
popularity of each channel is given by Zipf law and the chan-
nels are placed in the decreasing order of popularity. Channels
with higher popularity are subscribed more and suffer higher
delay. Hence, worst-case delay (streaming diameter) often
happens in popular channels. COMMOS not only achieves low
streaming diameter, but also outperforms the other schemes
in each channel. This is because the servers collaboratively
donate bandwidth even though they do not subscribe to those
channels.

V. CONCLUSION

We have studied the delay optimization of a multi-source
multi-channel live streaming network with server collabora-
tion. The channel stream is divided into multiple substreams
and pushed in multiple trees to the subscribing servers. We
present a realistic delay model capturing both propagation

and scheduling delays, and formulate the optimization problem
to minimize the maximum channel delay. We show that the
problem is NP-hardness, and propose an efficient algorithm,
COMMOS (Collaborative Multi-source Multi-channel Overlay
Streaming), to address the problem. We have conducted exten-
sive simulation studies on real Internet topologies to evaluate
the performance of our proposed algorithm, and show that
COMMOS outperforms other state-of-the-art schemes by a
wide margin (often by more than 40%).

REFERENCES

[1] J. Chen, S.-H. Chan, and V. O. Li, “Multipath routing for video delivery
over bandwidth-limited networks,” IEEE Journal on Selected Areas in
Communications, vol. 22, no. 10, pp. 1920–1932, 2004.

[2] M. Wang and B. Li, “R2: Random push with random network coding
in live peer-to-peer streaming,” IEEE Journal on Selected Areas in
Communications, vol. 25, no. 9, pp. 1655–1666, 2007.

[3] T. Small, B. Li, and B. Liang, “Outreach: peer-to-peer topology con-
struction towards minimized server bandwidth costs,” IEEE Journal on
Selected Areas in Communications, vol. 25, no. 1, pp. 35–45, 2007.

[4] N. Magharei and R. Rejaie, “Prime: Peer-to-peer receiver-driven mesh-
based streaming,” IEEE/ACM Transactions on Networking (TON),
vol. 17, no. 4, pp. 1052–1065, 2009.

[5] D. Ren, Y.-T. H. Li, and S.-H. G. Chan, “Fast-mesh: A low-delay high-
bandwidth mesh for peer-to-peer live streaming,” IEEE Transactions on
Multimedia, vol. 11, no. 8, pp. 1446–1456, Dec. 2009.

[6] H. Azarpira and S. Yousefi, “On optimal topology in hierarchical P2P
live video streaming networks,” in Sixth International Symposium on
Telecommunications (IST). IEEE, 2012, pp. 644–649.

[7] Z. Zhuang and C. Guo, “Optimizing CDN infrastructure for live stream-
ing with constrained server chaining,” in 9th International Symposium
on Parallel and Distributed Processing with Applications (ISPA). IEEE,
2011, pp. 183–188.

[8] Z. Wang, C. Wu, L. Sun, and S. Yang, “Strategies of collaboration in
multi-channel P2P VoD streaming,” in IEEE Global Telecommunications
Conference (GLOBECOM). IEEE, 2010, pp. 1–5.

[9] C. Wu, B. Li, and Z. Li, “Dynamic bandwidth auctions in multioverlay
P2P streaming with network coding,” IEEE Transactions on Parallel
and Distributed Systems, vol. 19, no. 6, pp. 806–820, June 2008.

[10] D. Wu, C. Liang, Y. Liu, and K. Ross, “View-upload decoupling: A
redesign of multi-channel P2P video systems,” in The 28th Conference
on Computer Communications (INFOCOM). IEEE, 2009, pp. 2726–
2730.

[11] C. Wu, B. Li, and S. Zhao, “Multi-channel live P2P streaming: Refocus-
ing on servers,” in The 27th Conference on Computer Communications
(INFOCOM). IEEE, 2008.

[12] J. Liu and G. Simon, “Fast near-optimal algorithm for delivering multiple
live video channels in CDNs,” in 22nd International Conference on
Computer Communications and Networks (ICCCN). IEEE, 2013, pp.
1–7.

8592

