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Abstract—With the rapid advances and the penetration of the
Internet of Things and sensors, a massive amount of trajectory
data, given by discrete locations at certain timestamps, have been
extracted or collected. Knowing the similarity between trajec-
tories is fundamental to understanding their spatial-temporal
correlation, with direct and far-reaching applications in contact
tracing, companion detection, personalized marketing, etc. In this
work, we consider the general and realistic sensing scenario
that the locations of the trajectories may be noisy, and that
these trajectories are sporadically sampled with randomness
and asynchrony from the underlying continuous paths. Most
of the prior work on trajectory similarity has not sufficiently
considered the temporal dimension, or the issues of location
noise and sporadic sampling, while others have limitations of
strong assumptions such as a fixed known speed of users or the
availability of a large amount of training data.

We propose a novel and effective spatial-temporal measure
termed STS (Spatial-Temporal Similarity) to evaluate the spatial-
temporal overlap between any two trajectories. In order to
account for the location noise and sporadic sampling, STS models
each location in a trajectory as an observable outcome drawn
from a probability distribution. With that, it efficiently reduces
the need for training data by estimating a personalized spatial-
temporal probability distribution of the object position from
its own trajectory. Based on that, it subsequently computes the
co-location probability and hence derives the similarity of any
two trajectories. We have conducted extensive experiments to
evaluate STS using real large-scale indoor (mall) and outdoor
(taxi) datasets. Our results show that STS is substantially more
accurate and robust than the state-of-the-art approaches, with
an improvement of 63% on precision and 85% on mean rank.

Index Terms—spatial-temporal trajectory similarity, spatial-
temporal data management, trajectory mining

I. INTRODUCTION

In recent years we have witnessed the rapid advances and
the penetration of the Internet of Things (IoT) and sensing
devices. Objects (e.g., users or their devices) may now know
their locations based on signals such as GPS, WiFi, Bluetooth,
video, etc. Besides, they may also leave their trails when using
different service platforms such as call detail records (CDR)
in telecommunication, smart cards in public transportation,
mobile payments (e.g., banks, Alipay, Apple Pay, etc.), and
O2O apps (e.g., bicycle-sharing, ride-hailing, etc.). Conse-
quently, many sensing systems nowadays have extracted a
massive amount of trajectories, each of which is a sequence of

positions indicated by spatial locations and their corresponding
timestamps sampled from a continuous path of the object.

A co-location occurs when two object paths are at the
same spatial grid concurrently, the so-called spatial-temporal
(S-T) overlap. The S-T similarity between two trajectories
measures their level of co-location, i.e., how much the two
trajectories overlap in the spatial and temporal dimensions.
Such a similarity measure has many important applications.
One is to match the trajectories of the same object in different
sensing systems [1] [2]. As an object may leave multiple
trajectories in different sensing systems, these trajectories need
to be correlated for applications such as contact tracing [1],
multimodal sensing [3], user re-identification [4], criminal
investigation [5], etc. Furthermore, spatial-temporal similarity
measure is also fundamental to companion detection for viral
marketing, promotion and advertising [6]–[10], etc.

We propose and study a novel and effective measure to
evaluate spatial-temporal similarity for trajectories. The prob-
lem is challenging, as we consider the following general and
realistic scenarios on the uncertain trajectories due to the issues
of location noise and sporadic sampling:
• Location noise: The process of location extraction and

estimation is fundamentally noisy [11], [12]. As a re-
sult, two physically co-located objects may not appear
so in their trajectories, or vice versa. We illustrate in
Figure 1(a) two co-located people whose estimated lo-
cations may be separated by a rather wide margin. Due
to location noise (estimation error), it would no longer
be sound to measure the spatial-temporal similarity for
trajectories by simply comparing their locations directly.

• Sporadic sampling: Due to the nature of sensing and
beaconing devices, object paths are often sampled spo-
radically, i.e., trajectories are asynchronous with their
locations collected randomly and independently with
possibly time-varying heterogeneous rates. As a result,
positions in an object path are not always observed
in its trajectory and two objects walking together may
not share overlapping trajectories, making it difficult to
measure the spatial-temporal similarity simply based on
co-locations in their trajectories. We show an example in
Figure 1(b), where the trajectories of two people walking
together are sampled at different times. Even without
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(a) Issue of location noise. (b) Issue of sporadic sampling. (c) Co-location probability estimation.

Fig. 1. Illustrations of issues and intuition: (a) Co-located people may be estimated at different locations because of estimation noise. (b) People walking
along the same route (the dotted line) have different sampled locations because of sporadic and asynchronous sampling. (c) The spatial-temporal similarity of
two trajectories can be measured by estimating the co-location probabilities (the dotted box) at the locations of the two merged trajectories.

any location noise, their trajectories share no common
positions. Moreover, the trajectories may be very sparse
and irregular in some sensing systems (such as CDR,
mobile payments, and tap in/out using smart cards in
transportation systems), making the similarity comparison
for all the collected trajectories even more challenging.

Much of the prior study on trajectory similarity considered
only the spatial dimension [13]–[17]. They can hardly be
extended to the spatial-temporal case we consider here. For the
other works on spatial-temporal similarity, some form a pair-
wise alignment for positions of two trajectories and compare
their distance, without considering the general realistic issues
of location noise and sporadic sampling [18]–[21]. Others are
based on strong assumptions such as a fixed known speed of
users or the availability of a large amount of data for model
training [1], [2], [22], [23].

The co-location probability of two objects is defined as
the probability that their paths fall in the same spatial grid
at the same time. Two trajectories with high spatial-temporal
similarity should have high co-location probabilities in their
merged trajectory. We illustrate this in Figure 1(c), where
the trajectories of two people are merged, and their co-
location probability (the dotted box) at each of the positions
is computed.

Given the above observation, we propose STS, a novel and
effective Spatial-Temporal Similarity measure for trajectories
with location noise and sporadic sampling. Instead of just
calculating the point-wise distance for two trajectories (such
as [13]–[15], [18]–[21]), STS compares similarity of trajec-
tories by evaluating their co-location probability at different
timestamps. The STS of two trajectories, as derived by the
average of these co-location probabilities, would be high for
co-locating objects, and low otherwise. To this end, STS first
estimates the probability distribution of object position even
if the location at that time is not observed in its trajectory.
Then it compares the spatial-temporal similarity of any two
trajectories by evaluating their co-location probabilities at the
timestamps in their merged trajectory.

To tackle the challenges of location noise and sporadic
sampling, STS exploits a personalized transition probability
estimator to estimate the probability distribution of object
locations at any arbitrary time (i.e., spatial-temporal proba-
bility) based on its speed. While most existing approaches for
transition probability estimation focus on deriving a universal
distribution for all objects by considering the transitions in
the spatial space [24], [25], STS considers the transition
probability estimation in both spatial and temporal dimensions
for individual objects, i.e., transiting from one location at time
t1 to another location at time t2. The transition probability
estimated in STS is hence personalized and spatial-temporal
dependent.

In particular, STS uses a kernel density estimation (KDE)
to model the personalized speed probability distribution of an
object from its own trajectory, and uses its speed distribution to
denote the object transition probability between two locations
in a given time interval. Our speed distribution estimation is
fundamentally different from prior works [1] [26] [22] [23],
which learn the universal speed distribution for all objects
based on the assumptions that the form of the probability
distribution is known and a large amount of training data is
available.

Based on the spatial-temporal probability of objects, their
co-location probability at any time can then be computed.
The spatial-temporal similarity between any two trajectories
is hence given by the average co-location probability in the
merged trajectory.

We conducted an extensive experimental study to evaluate
STS and compare it with the state-of-the-art approaches.
Two real large-scale datasets — an outdoor taxi trajectory
dataset collected in a city and an indoor pedestrian trajectory
dataset collected in a large shopping mall — were used for
evaluation. Our experimental results demonstrate its effective-
ness and accuracy to measure spatial-temporal similarity in
both outdoor and indoor scenarios (with an improvement of
63% on precision and 85% on mean rank). The results also
demonstrate the robustness of STS against location noise and
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sporadic data sampling.
The remainder of this paper is organized as follows. We

present related works in Section II, followed by the pre-
liminaries in Section III. We present the spatial-temporal
probability estimation in Section IV. After that, we introduce
the co-location probability and formulate the STS measure
in Section V. We then discuss the experimental settings and
results in Section VI. Finally, we conclude in Section VII.

II. RELATED WORKS

Trajectory similarity measures have been previously pro-
posed and studied in many works [27]. Most existing met-
rics consider the spatial closeness of trajectories, such as
DTW [13], EDR [14], and ERP [28], [29]. In these works,
a position in a trajectory is matched with another trajectory.
Approaches such as dynamic programming is used to find the
best alignment for these positions. After that, the distance
between the positions in these trajectories is computed as
their similarity. While these early works are impressive, they
only consider the observed positions in a trajectory. Since
trajectories are sporadically sampled, co-location in two paths
may not be observable in the two trajectories. As a result,
pairwise matching for positions in two trajectories fails to
reflect the closeness between two underlying paths. To tackle
the issues, t2vec [16] exploits a sequence-to-sequence model
to learn the latent representation to compute similarity. The
above works consider spatial similarity only, and they cannot
be extended to our spatial-temporal case directly.

Some other works consider trajectory similarity in both the
spatial and temporal dimensions. However, most of them are
usually based on some strong assumptions or manually pre-
defined parameters. For example, Fréchet distance [30] uses
the largest distance between locations of two trajectoies at
the same time to measure their similarity. Since locations
in two trajectories are not always sampled concurrently, and
noisy location is always far away from a trajectory, Fréchet
distance is very sensitive to noise and sporadic sampling.
STLIP [31] uses the in-between polylines distance and defines
a temporal distance to measure spatial-temporal similarity.
Nevertheless, it can only be applied to trajectories with two-
dimensional spatial data. WGM [19] and another work [20]
define similarity metrics based on the assumption that the
length of trajectories is the same. However, it does not make
sense for some scenarios where the length of trajectories
varies because of sporadic sampling. Moreover, LCSS [18] and
CATS [21] use manually defined thresholds to match positions
in the two trajectories. SST [32] is proposed in the work to
measure trajectory similarity based on the spatial-temporal
distance of matching point pairs across trajectories. Their
performance heavily relies on the parameter settings, which
are difficult to determine and are not flexible for sporadic and
heterogeneous sampling.

There has been some works focusing on trajectory link-
ing, which is one of the important applications of spatial-
temporal similarity measure. FTL [1] merges two trajectories
and defines the compatibility of a mutual segment based on

a predefined threshold for velocity. In FTL, a global velocity
threshold is used for all objects. Based on a similar concept
of FTL, ST-Link [22] and SLIM [23] restrict the matching
events to be within a window of a time units of each other,
and use a manually predefined maximum speed to determine
whether two objects are likely to have co-locations. Compared
with the above works, the method we proposed (STS) does
not require preknowledge of object speed. STS uses a per-
sonalized speed model to extract the speed distribution for
any individual object and estimate its transition probability,
which is more reasonable to consider the object mobility.
Furthermore, DPLink [2] proposes an end-to-end deep learning
based framework to link trajectories of the same users from
different data sources. It relies on a large amount of training
data to learn a feature extractor for extracting representative
features for trajectories.

To mitigate the impact of sporadic data sampling, some
works estimate the locations of an object for better similarity
measurement. EDwP [15] and STED [33] use linear interpo-
lation to model user mobility based on the assumption that
objects do not change their direction between two adjacent
sampled locations, which is too strong for some scenarios. Fur-
thermore, Markov model and Brownian Bridge are often used
to estimate an objecct location in-between two observations in
a trajectory. For example, APM [34] and some works (such
as [24], [25], [34]) utilize the Markov model to estimate user
location. Transition probability between two locations in these
works are based on the frequency of transitions in historical
data. However, the estimated probability in these works is
universal for all users, and these approaches may suffer from
the data sparsity problem and the over-fitting problem [35].
Instead, STS uses a personalized transition model to estimate
the transition probability for any individual user given its tra-
jectory without any need for historical data of other users. For
a Brownian Bridge, motion is also assumed to be a Gaussian
random walk, and the Brownian Bridge allows to estimate the
location in-between two discrete observations [36], [37]. In
STS, object motion is estimated based on its speed probability
distribution. It can be any arbitrary distributions and without
the assumption that the form of the probability distribution is
known. Brownian Bridge can be seen as a special case of our
estimation approach when the speed probability distribution is
assumed to be a Gaussian distribution.

III. PRELIMINARY

In this section, we first define path and trajectory in Sec-
tion III-A, and then overview the proposed Spatial-Temporal
Similarity (STS) in Section III-B.

A. Path and Trajectory

Definition 1: (Path) A path refers to the actual movement
of an moving object, which can be defined as a continuous
function f : T → L where T refers to time space and L is
the geographical space.

Definition 2: (Trajectory) A trajectory Tra is a sequence
of locations, each associated with a timestamp, describ-
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Fig. 2. An overview of STS.

ing the movement of an object. It is defined as Tra =
{(`1, t1), (`2, t2), ..., (`n, tn)}, where `i is a location and ti
is the associated timestamp.

A trajectory is a discrete representation of an object path,
which can be viewed as a sampling process from this path.
With various settings of sampling rates and observed duration,
the length of trajectories is usually not the same.

B. STS Overview

We overview the proposed STS in Figure 2. STS contains
two important modules, the spatial-temporal probability esti-
mation and the spatial-temporal similarity measure.

Given the location noise distribution of any location in a
trajectory, STS uses the spatial-temporal probability estimation
approach to estimate the probability distribution of the object’s
locations at any time (i.e., spatial-temporal probability). The
estimation approach consists of two components: the spatial-
temporal (S-T) probability estimation under location noise and
the transition probability estimation.
• Spatial-temporal (S-T) probability estimation under lo-

cation noise: By taking the existence of location noise
in a trajectory into account, each location in a trajectory
is modeled as an observable outcome from a probability
distribution over some grids instead of a deterministic
point, i.e., location probability distribution. An object’s
spatial-temporal probability distribution is then estimated
from the location probability distributions in a trajectory
and the transition probabilities between the location prob-
ability distributions.

• Transition probability estimation: To estimate an object’s
transition probability between locations in a time interval,
we propose using the probability of the object’s speed to

denote its transition probability. To this end, we propose a
kernel density estimation approach to estimate an object’s
personalized speed probability distribution given her/his
trajectory. Based on that, an object’s transition probability
between any two locations in a time interval is then
defined. Note that the estimated speed probability distri-
bution is personalized for any individual user. Moreover,
only the location data in an object’s trajectory is used to
estimate its speed probability distribution, and no training
data from other objects is required.

Based on the estimated spatial-temporal probability, the
spatial-temporal similarity measure is then formulated.
• Co-location probability: Given the spatial-temporal prob-

ability of objects, the probability of them being concur-
rently located at a grid at time t can be estimated, even
if the location is not observed in a trajectory. Their co-
location probability at a timestamp t can hence be derived
as the sum of the co-location probability at all grids of
the spatial space at t.

• STS: It is formulated as the average co-location probabili-
ties at all timestamps in the two trajectories. For example,
given two trajectories Tra = {(`1, t1), (`2, t2), (`3, t3)}
and Tra′ = {(`′1, t′1), (`′2, t′2), (`′n, t′n)}, their spatial-
temporal similarity is measured by their average co-
location probabilities at times {t1, t2, t3, t′1, t′2, t′3}.

IV. SPATIAL-TEMPORAL PROBABILITY ESTIMATION

In this section, we propose the spatial-temporal (S-T) prob-
ability estimation to estimate how likely an object is to be
located at a grid at any time t given her/his trajectory Tra.
We first derive the S-T probability under location noise in
Section IV-A. Then, we propose an approach to estimate
an object’s speed probability distribution given its trajectory.
Based on that, we define the transition probability between
locations in Section IV-B, which is an important component
for S-T probability estimation.

A. S-T Probability Estimation under Location Noise

We first partition the entire spatial area of interest (e.g.,
a city or a shopping mall) into n disjoint but equal-sized
grids, denoted as R = {r1, r2, . . . rn}. Without loss of general,
we use the central of grids to denote their locations. Based
on these grids, we then estimate the probability P (ri, t|Tra)
that an object is located at ri at t given its trajectory Tra.
According to the definition of conditional probability, the
probability of an object being located at ri at time t can be
formulated as:

P (ri, t|Tra)

=
P ((`1, t1), ..., (`i, ti), (ri, t), (`i+1, ti+1), ..., (`n, tn))

P ((`1, t1), ..., (`i, ti), (`i+1, ti+1), ...(`n, tn))
,

(1)

where ti ≤ t ≤ ti+1.
User transition between locations has been usually modelled

with the Markov process in many prior works, such as [24],
[25], [34], [35]. Formally, P (`i, ti|`i−1, ti−1, ..., `1, t1) =
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P (`i, ti|`i−1, ti−1) for all i = 2, 3, ..., n. Therefore, we can
simplify the conditional probability P (ri, t|Tra) into

P (ri, t|Tra) =
P (ri, t|`i, ti)P (`i+1, ti+1|ri, t)

P (`i+1, ti+1|`i, ti)
, (2)

where P (ri, t|`i, ti) denotes the transition probability that an
object moves from `i at ti to ri at t, which will be discussed
in Section IV-B.

Locations in a trajectory are usually noisy because of
signal fluctuation or estimation error. In reality, location noise
distribution of locations in a trajectory is available for some
localization techniques, like GPS1. To consider the effect
of location noise in S-T probability estimation, locations in
a trajectory should be regarded as having a probabilistic
distribution over the space instead of a deterministic spatial
point.

Given the noise distribution f at locations and an observed
position (`, t) in a trajectory Tra, the probability of the object
being located at a grid r at time t is denoted as f(r, `).
When an object is observed to be at ` at t, f(r, `) reflects
the likelihood that the object’s ground-truth location at t is r.

Note that the given location noise distribution f can be
any arbitrary probability distribution. For ease of illustration,
we use Gaussian distribution as a special case in this paper,
as it has been widely used to model the location noise for
localization systems [38]. Given the location noise σ of the
localization system and an observed position (`i, ti) in a
trajectory Tra, the probability of the user actually being
located at a grid r at time t is

f(r, `i) =
1

σ
√
2π

exp

(
−dis(`i, r)

2σ2

)
, (3)

where dis(`i, r) is the distance between `i and r.
A trajectory can then be further represented as a sequence of

probability distributions: T̂ ra = {(D1, t1), (D2, t2), ..., (Dn,
tn)}, where Di = {(rj , f(rj , `i))|rj ∈ R} is the probability
distribution over grids for the observed location `i in the
trajectory Tra, and rj is any arbitrary grid in the space. Note
that the location probability form is a generalized form for a
trajectory since we can get the original trajectory if we set Di

as `i with probability 1.
By considering the location noise, (`i, ti) and (`i+1, ti+1)

in Equation (2) should be modeled as probability distributions
over the spatial space. Thus, the S-T probability estimation for
T̂ ra can be rewritten as

P (ri, t|T̂ ra)

≈
∑

rj∈R(f(rj ,`i)·P (ri,t|rj ,ti))·
∑

rk∈R
(f(rk,`i+1)·P (rk,ti+1|ri,t))∑

rj∈R

∑
rk∈Rf(rj , `i)· f(rk, `i+1) · P (rk, ti+1|rj , ti)

,

(4)
where t1 ≤ ti < t < ti+1 ≤ tn, R is a set of grids, f(rj , `i)
is the probability of the object being located at rj at ti given
the observed position (`i, ti) in its trajectory (Equation (3)),

1https://developer.mozilla.org/docs/Web/API/Geolocation/

and P (ri, t|rj , ti) is the transition probability of moving from
rj to ri in the time duration |ti − t|.

Given an observed position (`i, ti) in an object’s trajectory,
the object may be located at any grid rj with different
probabilities in the spatial space. Thus, considering the effect
of location noise, the transition probability term P (ri, t|`i, ti)
in Equation 2 is replaced by the term

∑
rj∈R(f(rj , `i) ·

P (ri, t|rj , ti)), which is the sum of probabilities over grids.
The terms P (`i+1, ti+1|ri, t) and P (`i+1, ti+1|`i, ti) in Equa-
tion 2 are also rewritten in Equation 4 to consider the location
noise based on the defined grids accordingly.

Above all, the S-T probability STP (`, t, T ra) of an object
being located at a grid rj at time t given a trajectory Tra can
be denoted as

STP (rj , t, T ra) =


f(rj , `i), ∃ ti = t,

P (rj , t|T̂ ra), t1 ≤ ti < t < ti+1 ≤ tn,
0, otherwise.

(5)
If a position (`i, ti) is observed in the trajectory, we use
f(rj , `i) to calculate the S-T probability (Equation (3)); if no
position is observed at t but t1 < t < tn, we use P (rj , t| ˆTra)
for the computation (Equation (4)); and 0 otherwise.

B. Transition Probability Estimation

In our S-T probability estimation, the transition probability
P (`

′
, t

′ |`, t) refers to the probability of an object moving from
` to `

′
in a time interval |t − t′ |. Hence, we propose using

the probability of the object’s speed of moving from ` to `
′

to denote the transition probability, which integrates both the
spatial and temporal information in an object’s mobility.

As observed in a prior work [26], the probability distribution
of speed is distinct for different users, which is relevant to
many factors such as gender, age and scenario. Therefore,
instead of using a universal speed distribution for all users,
we propose to use kernel density estimation to model a speed
distribution for any individual object given its trajectory, i.e.,
each trajectory will have its personalized speed distribution.
Kernel density estimation is a non-parametric way to estimate
the probability density function of a random variable. It can be
used with arbitrary distributions and without the assumption
that the form of the probability distribution is known [39].

The kernel density estimation consists of two steps: speed
sample collection and probability density estimation. To esti-
mate the speed probability density of a trajectory, we firstly
compute the speed between any two consecutive positions
in the trajectory. Let S be the set of speed samples drawn
from some distribution with an unknown density Q. Its kernel
density estimator over a speed v using S is given as

Q̂(v) =
1

h|S|
∑
v′∈S

K

(
v − v′

h

)
, (6)

where |S| denotes the number of samples, K(·) is the kernel (a
non-negative function), and h > 0 is a smoothing parameter
called the bandwidth. We exploit the most popular normal
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kernel and the optimal bandwidth [40]: h =
(

4σ̂5

3|S|

)1/5
, where

σ̂ is the standard deviation of the samples. Therefore, the
transition probability of moving from a location ` at t to
another location `

′
at t

′
is computed as:

P (`
′
, t

′
|`, t) = h · Q̂

(
dis(`, `

′
)

|t− t′ |

)

=
1

|S|
∑
v′∈S

K

(
v − v′

h

)
,

(7)

where dis(`, `
′
) is the distance between ` and `

′
, and v =

dis(`, `
′
)/(|t − t′|). It is worth noting that we only use the

location data in an object’s trajectory to estimate its speed
probability distribution, and no other historical data are needed
in our approach.

V. STS: SPATIAL-TEMPORAL SIMILARITY MEASURE

In this section, based on the estimated S-T probability
of objects, we propose the co-location probability estimation
approach in Section V-A. After that, we take the average
of the co-location probabilities at timestamps in the two
trajectories to denote their spatial-temporal similarity, which is
presented in Section V-B. Finally, we provide the computation
complexity analytics in Section V-C.

A. Co-location Probability Estimation

With the S-T probability estimation, the co-location prob-
ability of two trajectories at any time t can be estimated,
even if the location at t is not observed in a trajectory. Given
trajectories Tra1 and Tra2 of two objects, their co-location
probability CP (r, t|Tra1, T ra2) at a grid r at time t is defined
as

CP (r, t|Tra1, T ra2) = STP (r, t, T ra1) · STP (r, t, T ra2),
(8)

where STP (r, t, T ra1) and STP (r, t, T ra2) is the probability
of two objects being located at r at t given their trajectories,
respectively (Equation (5)).

Consequently, the co-location probability of Tra1 and Tra2
at a time t can be approximated as:

CP (t|Tra1, T ra2)

≈
∑
r∈R

CP (r, t|Tra1, T ra2)

=
∑
r∈R

(STP (r, t, T ra1) · STP (r, t, T ra2)) ,
(9)

where R is a set of grids.
Given two trajectories Tra and Tra′ with their noise dis-

tribution f(·) and f ′(·), and a set of grids R, the computation
of the co-location probability of two trajectories at a time ti
is presented in Algorithm 1. If the locations at ti are both
observed in Tra and Tra′ (Line 4), we compute the location
probability at each grid for both trajectories using Equation 3,
and normalize them (Line 5∼8). The co-location probability
at ti is calculated as the sum of the co-location probability

Algorithm 1: Co-location probability of two trajecto-
ries at a time ti.

1 Input: Two trajectories Tra, Tra′, their noise
distribution f(·), f ′(·), a time stamp ti, and a set of
grids R;

2 Output:The co-location probability CP of Tra and
Tra′ at ti .

3 CP = 0;
4 if ti in Tra and ti in Tra′ then
5 foreach r in R do
6 Compute f(r, `i) and f ′(r, `′i);
7 end
8 Normalize f(r, `i) and f ′(r, `′i);
9 foreach r in R do

10 CP+ = f(`, `i)× f ′(`, `′i);
11 end
12 else
13 if ti in Tra then
14 foreach r in R do
15 Compute f(r, `i) and P (r, t|T̂ ra′

);
16 end
17 Normalize f(r, `i) and P (r, t|T̂ ra′

);
18 foreach r in R do
19 CP+ = f(r, `i)× P (r, t|T̂ ra

′
);

20 end
21 else
22 foreach r in R do
23 Compute f ′(r, `i) and P (r, t|T̂ ra);
24 end
25 Normalize f ′(r, `i) and P (r, t|T̂ ra);
26 foreach r in R do
27 CP+ = P (r, t|T̂ ra)× f ′(r, `′i);
28 end
29 end
30 end
31 return CP ;

at all grids (Line 10). Otherwise, if the location at ti is
observed in Tra but not in Tra′ (Line 13), we compute the
location probability at grids for Tra using Equation 3, and for
Tra′ using Equation 4, followed by the normalization (Line
14∼17). As the computation of the denominator in Equation
4 is the same for all grids at ti, we do not have to calculate
it due to the normalization. Based on these probabilities, the
co-location probability can then be calculated (Line 18∼20).
Similarly, if the location at ti is only observed in Tra′ but not
in Tra, the computation process is shown in Lines 22 to 31.

B. Spatial-Temporal Similarity

The spatial-temporal similarity STS of two trajectories is
defined as the average of co-location probabilities at all
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timestamps in the two trajectories:

STS(Tra, Tra′)

=

∑|Tra|
i=1 CP (ti|Tra, Tra′) +

∑|Tra′|
j=1 CP (tj |Tra, Tra′)

|Tra|+ |Tra′|
,

(10)

where |Tra| and |Tra′| are the length of the two trajectories
respectively, and CP (ti|Tra, Tra′) is the two trajectories’ co-
location probability at ti (Equation 9).

As the length of different trajectories varies, the number of
co-location probabilities to be evaluated differs for different
trajectory pairs. To alleviate the impact of the length of differ-
ent trajectories, we use the average of co-location probabilities
as their spatial-temporal similarity.

C. Computation Complexity

We first discuss the complexity of computing the transition
probability (Equation 7), following the discussion on the
Algorithm 1 for Equation 8. Finally, we present the total time
for the computation of spatial-temporal similarity (Equation
10).

To calculate the transition probability (Equation 7), we first
traverse locations in a trajectory for speed sample collection,
the time complexity of which is O(|Tra|). Once the speed
sample is obtained, it takes O(|S|) to compute the transition
probability, where |S| = |Tra| − 1 is the size of the speed
samples.

As shown in Algorithm 1, there are three possible cases
for computing the co-location probability of two trajectories
at a time. The time complexity for the first case (Line 4
∼ 11) is O(|R|). In the second case (Line 13 ∼ 20), the
computation and nomalization of f(r, `i) take O(|R|) for all
r in R. As the computation of the denominator in Equation
4 is the same for all grids at ti, we do not have to calculate
it due to the normalization. The computation complexity is
hence O(|R|2 × |Tra′|). Thus, the time complexity of the
second case is O(|R|2 × |Tra′| + |R|). Similarly, it takes
O(|R|2 × |Tra| + |R|) for the computation for the third
case (Line 22 ∼ 28).

Thus, the worst cast of total time complexity for computing
STS using Equation 10 is O(|Tra|× (|R|2×|Tra′|+ |R|)+
|Tra′ | × (|R|2 × |Tra|+ |R|)) = O(|Tra| × |Tra′ | × |R|2).

VI. ILLUSTRATIVE EXPERIMENTAL RESULTS

We have conducted extensive experiments on two real
datasets to evaluate the performance of STS. In this section,
we first introduce the datasets and baselines in Section VI-A,
followed by the performance metrics (Section VI-B). Then,
we compare the performance of STS with the state-of-the-art
approaches on the task of trajectory matching for different
data sampling rates, heterogeneous data sample rates, location
noise and different components in Section VI-C. Furthermore,
we compare their performance on cross-similarity deviation
with respect to heterogeneous data sampling in Section VI-D.
Finally, we discuss the effect of grid sizes on STS in Section
VI-E.

A. Datasets and Baselines
We evaluate the performance of STS using trajectory data

collected outdoors and indoors. The description of the two
datasets used in our experiments is as follows.
• Taxi dataset: The taxi dataset2 DT was collected by all

the 422 taxis running in the city of Porto, in Portugal
over 12 months. These taxis operate through a taxi dis-
patch center, using mobile data terminals installed in the
vehicles to collect the location data. Each taxi reports its
location every 15 seconds. The trajectory dataset contains
1.7 million trajectories. In our experiments, we removed
trajectories the length of which was less than 20 so that
we could sample sub-trajectories with different sampling
rates to evaluate the effect of low and heterogeneous data
sampling rates.

• Shopping mall dataset: The shopping mall dataset DS

was collected by pedestrians in a large shopping mall.
We deployed a WiFi fingerprint-based sensing system
in a large shopping mall to collect pedestrians’ location
data [41]. The shopping mall consists of stores, corridors
and some open space. Locations of pedestrians whose
mobile devices have WiFi on would be collected by our
sensing system. A record in the system consists of the
device’s MAC address, the coordinate of the device’s
location, and the timestamp. To construct trajectories,
we group the location data based on the MAC address,
and sort them by the timestamp. In our experiment, we
collected 896, 900 records of location data of 12, 858
MAC addresses from 08:00 to 22:00 in one day, forming
12, 858 trajectories. For the purpose of the experiments,
we removed trajectories the length of which was less than
20, which yielded 1, 561 trajectories.

We compared our proposed model with the following state-
of-the-art models:
• CATS [21]: The Clue-Aware Trajectory Similarity

(CATS) is a metric for measuring trajectory similarity,
which aims to couple as many spatially and temporally
co-located data points between two trajectories. CATS
relies on two manually defined parameters to tackle
the challenges of location noise and heterogeneous data
sampling.

• EDwP [15]: Edit Distance with Projections (EDwP) is
a robust distance function to quantify the similarity be-
tween trajectories. It has been proved to be efficient for
similarity measurement under condition of inconsistent
and variable sampling rates. It uses the linear interpo-
lation to infer a user’s location to address the issue of
sporadic and heterogeneous sampling.

• APM [34]: APM uses a trajectory calibration process to
transform a heterogeneous trajectory dataset to one with
unified sampling strategies. In our experiments, we divide
the space into grids, and use the centrals of grids as the
anchor points for calibration. DTW [13] is used as the
similarity metric after calibration.

2http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html

1230

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 01,2021 at 13:57:10 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3. Sample two sub-trajectories Tra
(1)
i and Tra

(2)
i from a raw trajectory

Trai.

• KF: Kalman filter (KF) is an algorithm to estimate un-
known variables that tend to be more accurate than those
based on a single measurement. It is used to estimate
the object location at a given time in our experiments.
After the locations are estimated, we use DTW [13] for
similarity comparison.

• WGM [19]: WGM measures similarity as the arithmetic
mean of point-wise distances (e.g., origin vs. origin and
destination vs. destination), each achieved through the
weighted geometric mean of Euclidean similarity (spatial)
and their temporal similarity.

• SST [32]: SST measures the similarity by synchronously
matching the spatial distance against temporal distance.
It matches points of two trajectories using the strategy of
minimal point-to-segment similarity and maximal point-
to-point similarity.

We do not include traditional similarity metrics such as
DTW, LCSS, EDR in our experiments, since CATS and
EDwP have been proved to outperform them in many previous
works [15], [16], [21].

We implement STS, CATS, APM, KF, WGM and SST using
Python. EDwP is implemented by the authors of the work [15]
using Java, which is available online. The default grid sizes
are set as 100m ×100m and 3m ×3m for the taxi dataset
and the shopping mall dataset, respectively. The experiment
settings for baseline approaches are adopted as introduced in
prior works.

B. Performance Metrics

One of the most important applications for spatial-temporal
similarity measurement is trajectory matching [1], [16]. In a
space with various types of sensing systems, a user leaves
multiple trajectories for different sensing systems. Given two
sets of trajectories D(1) and D(2) collected by different
sensing systems, an effective similarity measure should match
correctly two trajectories of the same user, namely identifying
a user’s trajectory in D(1) as the most similar one to her/his
trajectory in D(2). Thus, we evaluate the performance of STS
and other baseline approaches on trajectory matching. The
experiment design is similar to that of prior works [15], [16].

Assume that Tra(1)i ∈ D(1) and Tra
(2)
i ∈ D(2) are tra-

jectories from the same objects. For each trajectory Tra(1)i in
D(1), we measure the similarity of Tra(1)i and any trajectories

from D(2). We sort the trajectories in D(2) with respect to the
similarity, and denote the rank of Tra(2)i as ri. Based on that,
two performance metrics, precision and mean rank, which have
been used to evaluate the performance of trajectory matching
in prior works, are used for evaluation.

• Precision: If ri = 1, we define pi for T (1)
i as 1, and 0

otherwise. Thus, the precision P is defined as

P =
(
∑n
i=1 pi)

n
. (11)

• Mean rank: It is defined as the average of all ri:

MR =
(
∑n
i=1 ri)

n
. (12)

The performance of trajectory matching in terms of precision
and mean rank will be discussed in Section VI-C.

Furthermore, a good similarity measure should be able
to preserve the similarity between two different trajectories,
regardless of the data sampling strategy. Thus, we use the
metric cross-similarity deviation for evaluation, which is also
used in the previous works [16] and [34]. The cross-similarity
deviation is defined as follows:

|d(Tra1, T ra
′

2)− d(Tra1 − Tra2)|
|d(Tra1 − Tra2)|

, (13)

where Tra1 and Tra2 are two distinct trajectories, and Tra
′

2

is a sub-trajectory of Tra2 which is sampled from Tra2 with
a given sampling rate. A smaller cross-similarity deviation
indicates that the measured similarity is closer to the ground-
truth [16]. The comparison of cross-similarity deviation will
be presented in Section VI-D.

C. Performance of Trajectory Matching

We compare STS with other state-of-the-art methods on the
task of trajectory matching. We first introduce the construction
of datasets, and then discuss the effect of low data sampling
rates, heterogeneous data sampling rates, and location noise.
Furthermore, we also evaluate the effectiveness of each com-
ponent in STS on the trajectory matching.
Dataset construction To overcome the lack of ground-truth,
we construct the dataset following the prior work [16]. As
shown in Figure 3, for each trajectory Trai in a dataset, we
sample two sub-trajectories by alternately taking points from
it, denoted as Tra(1)i and Tra

(2)
i , and use them to construct

two new datasets D(1) = {Tra(1)i |i = 1, 2, . . . , n} and D(2) =

{Tra(2)i |i = 1, 2, . . . , n}. In the constructed dataset, Tra(1)i ∈
D(1) and Tra(2)i ∈ D(2) belong to the same object.

We perform the construction approach on the taxi dataset
DT and the bike dataset DS respectively, and obtain two pairs
of new datasets (D

(1)
T , D

(2)
T ) and (D

(1)
S , D

(2)
S ). After that, we

evaluate the performance of trajectory matching on these two
pairs of new datasets, respectively.
Effect of different data sampling rates: The similarity of
trajectories with a low data sampling rate will be challenging
to measure. To study the effect of different data sampling
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Fig. 4. Precision versus low data sampling rates.

 1

 1.5

 2

 2.5

 3

 3.5

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

m
e
a
n
 r

a
n
k

data sampling rate

 WGM
 SST
 CATS
 STS

(a) Shopping mall dataset.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

m
e
a
n
 r

a
n
k

data sampling rate

 WGM
 SST
 KF
 CATS
 APM
 EDwP
 STS

(b) Taxi dataset.

Fig. 5. Mean rank versus low data sampling rates.

rates, for each trajectory in D(1) and D(2), we sample a sub-
trajectory with a sampling rate, which is set to be 0.1 ∼ 0.9.

The precision versus different data sampling rates is shown
in Figure 4(a) (Shopping mall dataset) and Figure 4(b) (Taxi
dataset). From Figure 4(a), we learn that as the data sampling
rate increases, the precision of all approaches increases, be-
cause the location data become more dense in the trajectories.
Compared with the state-of-the-art methods, STS has the
highest precision for all data sampling rates. The difference
in the precision of STS and other approaches becomes larger
when the data sampling rate drops. STS makes a significant
improvement for trajectories with low data sampling rates
(e.g., around 12% for CATS and SST, and 38% for WGM
when the data sampling rate is 0.1 in our experiments), which
demonstrates the effectiveness of STS to tackle the challenge
of low data sampling rates. The result of the taxi dataset in
Figure 4(b) can lead to some similar findings. We present
the result of mean rank versus data sampling rate in Figure
5(a) (Shopping mall dataset) and Figure 5(b) (Taxi dataset).
Because the mean rank of EDwP, APM and KF is too large
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Fig. 6. Precision versus heterogeneous data sampling rates.
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Fig. 7. Mean rank versus heterogeneous data sampling rates.

on the shopping mall dataset (from 9.28 to 90.75), we did
not plot it in Figure 5(a). As the data sampling rate increases
in Figure 5(a), the mean rank of all approaches decreases,
indicating that the performance is improved. STS always
outperforms other approaches, and the difference becomes
more significant when the data sampling rate becomes lower.
Similar results can be found from the mean rank of the taxi
dataset (Figure 5(b)). However, compared with the shopping
mall dataset, we find that precision is much lower and mean
rank is much larger for the taxi dataset when the data sampling
rates are low. The potential reason could be that there are
more trajectories in the taxi dataset. Moreover, when the data
sampling rate is extremely low (90% of data are filtered),
some of the trajectories become very sparse, i.e., only a
few locations in a trajectory. Consequently, the mean rank of
these trajectories in taxi dataset may become extremely high.
Meanwhile, EDwP has much better performance on the taxi
dataset than on the shopping mall dataset, which reveals the
limitation of EDwP in the indoor scenario due to its strong
assumptions of user mobility. The performance of APM and
KF also degrades significantly on the shopping mall dataset.
The reason could be that the impact of location noise and
sporadic data sampling becomes more severe in a narrow
site, and the performance of the frequency-based transition
estimation degrades significantly due to the more complex
topological structures in a shopping mall (e.g., walls, stairs,
etc.) Compared with other approaches, STS is more general
and robust in different scenarios.
Effect of heterogeneous sampling rates: To evaluate the
effect of sporadic sampling on the similarity measure, we
discuss the precision and mean rank versus heterogeneous data
sampling rates. For each trajectory in D(2), we sample a sub-
trajectory with a sampling rate α and compute the similarity
between the sub-trajectories and trajectories in D(1). A smaller
α indicates a larger difference between two trajectories in the
sampling rate. α is set as {0.1, 0.2, . . . 0.9} in the discussion.

Results of precision versus heterogeneous data sampling
rates of the shopping mall dataset are shown in Figure 6(a). As
the difference in sampling rate increases (the α decreases), the
precision of all approaches decreases. The precision of STS
is always higher than that of others. The improvement of STS
becomes more obvious when the difference in the sampling
rate increases (with an improvement of 20% on CATS and
40% on WGM). The result of mean rank is shown in Figure
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Fig. 8. Precision versus location noise.
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Fig. 9. Mean rank versus location noise.

7(a), from which we can draw the consistent conclusion to
the result of precision. We do not include the result of EDwP,
APM and KF since its values are too large to plot in the figure.
The results reveal that STS is effective to measure spatial-
temporal similarity for trajectories with heterogeneous data
sampling rates. A similar trend of the change can be observed
in the results on the taxi dataset, which are presented in Figures
6(b) and 7(b).
Effect of location noise: To study the effect of location noise,
we distort the location in trajectories from the datasets D(1)

and D(2) by adding a Gaussian noise with radius β meters as
follows

xi = xi + β · dx, dx ∼ Gaussian(0, 1),
yi = yi + β · dy, dy ∼ Gaussian(0, 1).

(14)

In our experiments, β is set to be [2m, 4m, 6m, 8m] for the
shopping mall dataset, and [20m, 40m, 60m, 80m, 100m] for
the taxi dataset. Precision and mean rank are used as evaluation
metrics.

Effect of location noise on precision and mean rank of the
shopping mall dataset is presented in Figures 8(a) and 9(a),
respectively. We take away the mean rank of EDwP, APM and
KF since it is too large to plot in Figure 9(a). As the location
noise increases, the precision of all approaches declines while
the mean rank increases, indicating that the performance of
all approaches declines when location noise becomes more se-
vere. However, STS performs better than other approaches for
different levels of location noise. Moreover, the performance
difference of our approach and other baselines becomes more
significant when the location noise becomes larger. Precision
and mean rank versus location noise on the taxi dataset are
presented in Figures 8(b) and 9(b), respectively. The result
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Fig. 11. Cross-similarity deviation of heterogeneous data sampling rates.

of WGM is taken away from Figure 9(b) as its value is too
large. Our proposed metric also outperforms other baseline
approaches on the taxi dataset. The results on the two datasets
illustrates that it is more robust against location noise than
others.
Effectiveness of each component: We evaluate the effective-
ness of different components in STS by comparing STS with
the following variants:
• STS-N: It does not consider location noise. Each location

in STS-N is regarded as a deterministic spatial point
instead of a probability distribution.

• STS-G: It does not consider personalized transition prob-
ability. Instead, it uses a constant global speed distribut
ion for all objects.

• STS-F: It uses a frequency-based approach to estimate
the transition probability between grids for all objects,
which is also used in prior work, such as [24], [25], [34].

Following the previous experiment, we also distort the
location in trajectories from the datasets D(1) and D(2).
The location noise is set as 6m and 20m for the shopping
mall dataset and the taxi dataset, respectively. The precision
and mean rank on the two datasets are presented in Figures
10(a) and 10(b). STS outperforms STS-N on both datasets,
indicating that the STS is effective in terms of considering
location noise. Moreover, STS achieves higher precision and
lower mean rank than STS-G and STS-F, which illustrates the
effectiveness of our proposal personalized transition probabil-
ity estimation approach.

D. Comparison of Cross-Similarity Deviation

We further evaluate the performance of STS in terms of
cross-similarity deviation. Since the performance of EDwP,
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Fig. 12. Impact of grid sizes on efficiency.
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Fig. 13. Impact of grid sizes on precision.

APM and KF is poor in the above evaluation, we only
compare STS with CATS, WGM and SST in the following
discussion. In our experiment, we randomly selected 1000 pair
of trajectories (Tra1, T ra2) from a dataset. For each Tra2,
we down-sampled 9 sub-trajectories from it with a different
sampling rate α, where α is set to be from 0.1 to 0.9.

The average of cross-similarity deviation (Equation 13) for
different sampling rates is presented in Figure 11(a) (Shop-
ping mall dataset) and Figure 11(b) (Taxi dataset). From the
result of the shopping mall dataset, as the data sampling rate
becomes larger, the cross distance deviation becomes smaller.
That is because a larger sampling rate indicates a smaller dif-
ference between Tra2 and Tra

′

2, and the difference between
d(Tra1, T ra2) and d(Tra1, T ra

′

2) should be smaller. The
cross-similarity deviation of STS is always smaller than that
of other approaches. Although CATS has a good performance
on the metric precision and mean rank, its performance is not
as good as other approaches on the metric of cross-similarity
deviation. A comparison of the results indicates that STS is
able to preserve the distance between two different trajectories,
regardless of the data sampling strategy. Consistent experiment
results could be found on the taxi dataset, which is shown in
Figure 11(b).

E. Grid Size

A small grid size means a larger number of grids, leading
to a better probability approximation but higher time cost. We
discuss the effect of grid size on effectiveness and efficiency
for STS. The precision and mean rank are used as metrics
for effectiveness evaluation, and the running rime is used to
evaluate the efficiency.

The results on the shopping mall dataset are presented
in Figures 12(a), 13(a), 14(a). As the grid size increases,
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Fig. 14. Impact of grid sizes on mean rank.

the precision and the running time decline while the mean
rank increases on both datasets, which is consistent with our
intuition. The decline in running time is not obvious for
the shopping mall dataset when the grid size is larger than
3m (Figure 12(a)). Meanwhile, precision drops and mean rank
increases dramatically when the grid size is larger than 3m. As
the location error of the localization technique used to collect
the shopping mall dataset is also around 3m, we suggest that
the grid size could be set to be the same as the location error
to balance the trade-off of the effectiveness and the efficiency.
As for the taxi dataset, a grid size of 100m ∼ 150m could be
a good choice considering the effectiveness and the efficiency.

VII. CONCLUSION

We propose STS, a novel and effective measure to evaluate
the spatial-temporal similarity between any pair of trajectories
with location noise and sporadic location sampling. STS
employs a spatial-temporal probability estimation approach to
compute the probability distribution of the object location at
any time. In the proposed estimation approach, each location
in a trajectory is modeled as a probability distribution over
space instead of a spatial point. Then the transition probability
of an object between any two locations is estimated based
on the personalized speed probability distribution drawn from
the trajectory itself. Based on the estimated spatial-temporal
probability of objects, their co-location probability can be
estimated. Finally, STS used the average co-location prob-
abilities of two trajectories to denote their spatial-temporal
similarity. We conducted extensive experiments using two real
datasets for taxis and a shopping mall. The results show that
STS is substantially more accurate and robust against location
noise and sporadic data sampling than the state-of-the-art
approaches, with improvements of 63% on precision and 85%
on mean rank. The excellent performance in the taxi and mall
datasets illustrated that our proposed STS can be applied in
both indoor and outdoor scenarios.
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