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ABSTRACT

Multihypothesis motion-compensated prediction (MHMCP)
can be used as an error resilience technique for video cod-
ing. Motivated by MHMCP, we propose a new error re-
silience approach named Alternative Motion-Compensated

Prediction (AMCP), where two-hypothesis and one-hypothesis

predictions are alternatively used with some mechanism.
Both theory and simulation results show that in case of one
frame loss, the expected converged error using AMCP is
smaller than that using two-hypothesis MCP.

1. INTRODUCTION

Since the quality of compressed video is vulnerable to er-
rors, video transmission over unreliable Internet is very chal-
lenging today. If INTER mode is used in video coding, each
frame is predicted from a previously coded frame by Mo-
tion Compensation, and sent to the decoder. In case of data
loss, the corresponding frame will be corrupted, and this
error will be propagated to the following frames until the
next INTRA-coded frame is correctly received. Due to these
facts, it is useful to develop some schemes to improve the
Error Resilience (ER) capability of the compressed video
[1]. Several ER methods have been developed for video
communication, such as Forward Error Correction (FEC)
[2], Layered Coding [3], Multiple Description Coding (MDC)
[4], and Multihypothesis Motion-Compensated Prediction
(MHMCP) [5]. Our work is motivated by the latter two
methods.

In temporal sub-sampling MDC, the video is coded into
multiple decodable streams; each with its own prediction
and transmission [6]. One simple implementation is odd/even
sub-sampling: an even (odd) frame is predicted from the
previous even (odd) frame. Since the reference frames are
farther in time, the prediction of such approach is not as
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good as the conventional codec and the compression effi-
ciency is lower. On the other hand, since each stream is
separately encoded and transmitted , the corruption of one
stream will not affect the other. As a result, the decoder can
simply display the correct video stream, or reconstruct the
corrupted frame by Temporal Interpolation.

In MHMCP, a linear combination of multiple signals
(hypothesis) is used to predict each macroblock. Since such
prediction is better than that using only one hypothesis, cod-
ing efficiency is improved. Besides its coding gain, MHMCP
can also improve the error resilience capability of a codec.
In [5], each frame (except I frame) is predicted from its
previous two frames. The error propagation model at the
decoder side is analyzed, which is combined with the en-
coder predictor to strike a balance between compression ef-
ficiency and error resilience capability. In contrary to the
odd/even sub-sampling approach, if one frame is corrupted
during the transmission, error will propagate to all the fol-
lowing frames and converge at last. We define Error Ratio
to be the ratio of converged value to the first error, and call
this two-hypothesis approach THMCP.

Based on the properties of previous methods, we pro-
pose a novel motion compensation approach, where odd/even
sub-sampling and two-hypothesis prediction are combined.
The novelty is that by using Alternative Motion-Compensated
Prediction (AMCP), the expected Error Ratio at the decoder
is less than that obtained from THMCP. The rest of this pa-
per is organized as follows: In Section 2, we describe the
working of AMCP and derive its error propagation model.
The expected Error Ratio of AMCP and THMCP are com-
pared in Section 3. Section 4 shows the simulation results
and Section 5 is conclusion.

2. ALTERNATIVE MOTION-COMPENSATED
PREDICTION (AMCP)

In THMCP [5], frame (1) has two hypotheses and is pre-
dicted by

~

¥(n) = h(n —1) + hoto(n — 2), (1)
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where n > 2 and hy + hy = 1. @ZNJ(n — k) is a motion-
compensated prediction from the k* previous reconstructed
frame, k = 1, 2. Note that if ho = 0, this becomes a con-
ventional predictor. And if ho = 1, this is the same as the
odd/even sub-sampling method.

Based on the idea of THMCP and odd/even sub-sampling

method, we try one simple approach first, where each even
frame is predicted from its previous two frames using (1)
and each odd frame is predicted from its previous odd frame,
as in Figure 1(a). Suppose one frame is lost. If it is an
odd frame (with o), error will propagate to all the follow-
ing frames; if it is an even frame (with x), the error value
will decrease and converge to zero quickly. Motivated by
the good characteristics of the latter case, we propose a new
ER approach named Alternative Motion-Compensated Pre-
diction (AMCP). In AMCP, the video sequence is divided
into periodic Intervals {Iy, I1, ...}, which start after an I
frame. The frame index within an Interval (Interval Index)
goes from O to (2N + 1), and the (2N + 1)** frame is the
0t frame of the next Interval, as illustrated in Figure 1(b).
In each Interval, the odd frame is predicted from its previ-
ous two frames using (1), and the even frame is predicted
from its previous even frame. Here the odd or even frame
is defined by its Interval Index, instead of its frame index in
the video sequence. A special case is N = 0, which makes
the predictor the same as THMCP.

Consider the case of one frame loss during the transmis-
sion. Assume the lost frame is ¢)(1) and define error e(k) to
be the difference between the reconstructed (I + k)" frame
at the decoder and that at the encoder. Using THMCP, the
error propagation model is

1 — (—hg)kt!
e(k) = 1(+;j

If the effect of spatial filtering caused by Sub-Pixel Motion
Compensation is not considered, this error will converge at
last with Error Ratio Ry = ﬁ [51.

In our AMCP method, without loss of generality, sup-
pose ¥(1) belongs to I and the first error is also €(0). We
want to obtain the error propagation model. Similar as the
simple approach we state previously, the loss of an odd
frame (with x) or an even frame (with o) will form different
error propagations, as in Figure 1(c).

€(0). 2)

Casel A frame with an odd Interval Index is lost and the
error propagation within I is

€1(2n) = h3¢€(0),
e1(2n+1) =0,

n>1,

n > 0. 3

Case2 A frame with an even Interval Index is lost and the
error propagation within I is

e2(2n) = €(0), n>1,

e2(2n +1) = (1 — hi ™e(0), n > 0. )
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Fig. 1. Tllustration of AMCP and its error propagation.

€1(k) (e2(k)) is the error at the (I + k)" frame. To analyze
the error propagation in the following Intervals, define the
error in the 7" frame of Interval mis e™(r) (r € [0,2N +
1]), and e™*1(0) = e™(2N + 1). For simplicity, suppose
the errors of the last two frames in I are known: e°(2N) =
£, and €%(2N + 1) = &,. Using similar deriving process as
(3) and (4), we can obtain

3 -3 m+1 1—
eM(2N +1) = +1(+[17 Ea+

(-
1+3

€b, (5)

where § = héVH. By (3) and (4), we can see that if the
frame loss is casel, the values of ¢, and ¢, will be much
smaller than those of case2, thus leading to a smaller con-
verged value of €™ (2N + 1).

3. EXPECTED ERROR RATIO OF AMCP

From the analysis of the previous section, we can see that
the values of £, and ¢;, are determined by the position of the
first error, using (3) for casel or (4) for case2. Consider the
condition of one frame loss in Iy. Its Interval Index can be
i =0,1,...,2N, each with equal probability. (2N + 1)
is not included since it can be counted as the first one in
the next Interval. The expected value of €, and €, can be
calculated as
N+1
Bleal = 5577°

(0), (©6)

N
N+1-—htt

Eled = =577

€(0). @)
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Combine (6), (7) with (5), we can obtain the expected con-
verged error of AMCP. The expected Error Ratio is

N+NB+1

B = (1+B)2N+1)’

(®)

where 3 = h‘2V+1 ,ho < 1. Define A = Ry — R;. When
N is fixed and hy € (0,1), A is a monotone increasing
. Lo N
function of hy. Its range is (— SN 0).
Based on the previous analysis, we can make the follow-
ing conclusions, which will be verified in the next section:

e When O < hy < 1, Ry < Ry, for fixed N. In other
words, the expected converged error using AMCP is
smaller than that using THMCP.

e When hy approaches O, AMCP performs much better
than THMCP. On the other hand, a small value of hs
makes both R and R; large. If ho = 0, THMCP be-
comes a conventional codec and ¢(0) will propagate
to all the following frames. Similar result for case2
of AMCEP. If the loss is casel, only one frame is cor-
rupted and the rest of the stream remains correct!

e When hy approaches 1, AMCP and THMCP perform
similar, both with decreasing Error Ratio. A spe-
cial case is ho = 1, both methods converge to the
odd/even sub-sampling method, thus Error Ratio can-
not converge.

4. SIMULATION RESULTS

We use the JVT reference software version 8.2 for our simu-
lations [7]. The first 200 frames of video sequence Foreman
(QCIF) are used for testing, encoded at 30fps and only the
first frame is I frame. B frame is used to implement the
frame with two references. Fixed QP is used, 28 for I frame
and 30 for both P and B frames. In order to analyze error
propagation, Intra-MB is not used in P and B frames. We
simulate the case of one frame loss, and the lost frame is
error concealed by copying the previous frame.

To test the error propagation of AMCP, we randomly
select one frame to be lost for casel (Figure 2(a,b)) and an-
other one for case2 (Figure 2(c,d)). PSNR at the decoder
after that frame is plotted, which is defined to be 99.99 for
no error. THMCP, AMCP with N = 2and N = 5 are tested
for each case, with weight he = 0.1 or hy = 0.9. The first
distortions (PSNR) for these three methods are very close:
around 23.7 dB for casel and 24.8 dB for case2. From the
figure we can see that for a large ho, AMCP and THMCP
perform similar for both cases, except that AMCP converges
slower than THMCP. For a small /o, AMCP performs much
better than THMCP in casel and only a little worse in case2.
A smaller N makes AMCP more close to THMCP.

The expected distortion for one frame loss is also com-
pared. The Mean Square Error (MSE) at the decoder is
used as the distortion measure. For AMCP, the frames in [;
with Interval Index O to 2N are selected for loss, one at a
time. For each of the loss, the MSE at the decoder is com-
puted, and the average of these (2N + 1) MSEs is used as
the expected distortion. Figure 3(a) and (b) are the simu-
lation results for N = 5, where the expected distortion is
translated into PSNR for representation. The MSEs for the
same losses in THMCP are also obtained, and the identical
calculation as AMCP is used to get the expected distortion.
From the figure we can see that with hy = 0.9, AMCP and
THMCP perform similar, while with hy = 0.1, the expected
distortion of AMCP is much smaller than that of THMCP.

5. CONCLUSION

In this paper, we propose an error resilience approach named
Alternative Motion-Compensated Prediction (AMCP), which
can be a generalization of two-hypothesis MCP. We prove
that the expected converged error using AMCP is smaller
than that using THMCP, in case of one frame loss. Simula-
tion results are given for the justification.
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Fig. 2. Error propagation at the decoder for one frame loss: (a,b) for casel and (c,d) for case2.
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