
Decentralized Periodic Broadcasting for Large-Scale Video Streaming

K. K. To and Jack Y. B. Lee
Department of Information Engineering
The Chinese University of Hong Kong

{kkto3, yblee}@ie.cuhk.edu.hk

G. S. H. Chan
Department of Computer Science

Hong Kong University of Science and Technology
gchan@cs.ust.hk

Abstract
Periodic broadcasting (PB) schemes are the most
promising solution for building large-scale video
streaming services. Existing PB schemes are all built
around the traditional client-server model. This paper
proposes a radically different architecture where only
end-user hosts are used to build the PB system, thereby
eliminating the need for a central server or even a service
provider. Two unique problems pertaining to this
decentralized, peer-to-peer architecture are addressed:
transmission scheduling and peer synchronization. A new
decentralized synchronization algorithm is proposed and
results obtained from simulations confirm the
architecture’s feasibility and performance.

1. Introduction

Provisioning video streaming services to a large user
population has long been a challenge to researchers in
multimedia and networking research. The traditional
client-server, point-to-point streaming architecture, while
matured and well-understood, is not scalable to serve tens
of thousands of concurrent users. To address this scalability
challenge researchers have developed sophisticated
periodic broadcasting (PB) schemes [1-3] to vastly
improve scalability and bandwidth efficiency through the
use of intelligent multicast streaming algorithms.

Unlike traditional unicast video streaming, the video
streams in a PB system are being multicast according to a
fixed schedule that is predetermined and is independent of
the user arrival pattern. A new user will undergo a startup
delay (e.g., in seconds to minutes depending on the
broadcasting scheme) to cache some of the video data
before playback begins, and continue to receive multicast
video data from one or more multicast streams to sustain
continuous video playback. Interested readers are referred
to the study by Hu [4] for a review and comparison of
various PB schemes.

These existing PB schemes all share one property, i.e.,
they are all based on the client-server model where a
central video server (or a few servers working as a cluster)
schedules and transmits the video streams over multiple
multicast channels. In this paper we investigate a radically
different architecture for building a PB system – one

This work is funded in part by a Direct Grant, an Earmarked Grant
(CUHK4211/03E) from the HKSAR Research Grant Council, and the
UGC Area of Excellence in Information Technology Scheme
(AoE/E-01/99).

without any dedicated server at all.
This server-less architecture is motivated by the rapid

developments in computing and networking which made
today’s commodity computing hardware comparable to
yesteryear’s server hardware, with an increasing amount of
storage, computation, and bandwidth capacities to spare.
By exploiting these often available and idle resources in
end-user computers, many peer-to-peer streaming systems
have been proposed [5-6]. In SplitStream [5], multiple
multicast overlays are built on a unicast infrastructure. The
source splits the data into a number of stripes and
distributes them through different overlays to the receivers.
PROMISE [6] focused on multi-sources media streaming
which dynamically select a good sender set. Unlike these
previous work which focused on conventional streaming,
this work investigates a new server-less periodic
broadcasting architecture that takes advantage of
multicast-enabled network to lower the network bandwidth
utilization. Moreover, through the use of redundancies the
system can even sustain frequent peer failures [7].

As PB algorithms are well-studied, our goal in this work
is not to develop new broadcasting algorithms. Instead, we
develop a server-less architecture where existing PB
algorithms can be deployed and illustrate the procedures to
adapt existing broadcasting algorithms for use in this
decentralized architecture.

In particular, our work reveals one unique problem in
decentralizing any PB algorithms – transmission
synchronization. Specifically, end-user machines, or called
peers are generally not clock synchronized and so their
video data multicast may not be time-aligned. Our
simulation studies showed that such mis-aligned multicast
can lead to significant network congestion and
consequently packet loss (e.g., from 9% to 90% depends on
the synchronization level of peers). Note that this problem
does not exist in the client-server architecture as the same
central server is responsible for scheduling all the multicast
video streams based on its own internal clock. Moreover, it
cannot be solved by using a large buffer at the receiver as
the packet losses occur at the bottleneck routers rather than
at the receiver.

In this work we tackle this peer synchronization
problem by adapting an existing clock-synchronization
protocol for use in the server-less architecture. Our results
show that with synchronization the congestion-induced
packet loss rate can be reduced to less than 3%. Moreover,
to remove the single point of failure of existing
synchronization algorithms, we develop a new completely
decentralized peer synchronization algorithm that does not

0-7803-9332-5/05/$20.00 ©2005 IEEE

require any dedicated peer to serve as clock reference, and
yet can still achieve excellent synchronization accuracy.

2. Decentralization of Periodic Broadcasting

In this section we present the procedures to decentralize a
PB scheme. In particular we use a modified Staggered
Broadcasting (SB) scheme as an example to illustrate the
design issues in the decentralization process. The same
procedure can be applied to other PB schemes.

The modified SB scheme depicted in Fig. 1 is among the
simplest form of PB system. A video title of bitrate b and of
duration L seconds is divided into N fixed-size segments
and the segments are further divided into a number of
fixed-size data blocks, which will be distributed to multiple
peers in a round-robin manner. For a system with M peers,
each peer is then responsible for streaming 1/Mth of data of
each segment in N different multicast channels repeatedly.

To begin a new video streaming session, the client
simply join the first multicast channel and cache for L/N
seconds, then the peer starts playback while at the same
time joins the next multicast channel for caching the next
video segment. More importantly, as the multicast
transmission schedules are fixed irrespective of the number
of receivers in the system, this modified SB scheme can
virtually support an unlimited number of receivers. Note
that there are many far more sophisticated PB schemes that
can achieve significantly shorter start-up latency, lower
bandwidth consumption, or both [4] but the procedures to
decentralize them are similar.

Under the modified SB scheme, the upstream
bandwidth requirement of each peer is then equal to Nb/M.
The peer packetizes the video segment j into packets with
size Pk and periodically broadcast them in an interval of

, 0,1, , 1k
j

MPU j N
b

= = −…

(1)

to achieve an average bitrate of b/M per channel. As a
result, all peers would have the same transmission schedule
which is very much alike the original centralized one.

However, a previous work by Chan and Lee [8] showed
that when the number of peers increases, the aggregate
network traffic from the many peers could congest the
network routers and/or the receivers, leading to significant
packet loss (e.g., from 9% to 90% depending on the
alignment of packet transmissions from different peers).

To address this problem we can explicitly space out the
packet transmissions from the peers to achieve a smoother
aggregate traffic. Specifically, the schedules of packets of
segment j in peer i are shifted by

,i j j
iS U

M
= ⋅ (2)

where i=0,1,…,M-1 and j=0,1, …,N-1.
This transmission schedule can reduce the

congestion-induced packet loss to as low as 0.1% if the
peers are clock-synchronized. However, synchronizing
peers in a decentralized system is far from trivial. The next
section addresses this issue.

3. Peers Synchronization

There are two problems inherent in peer synchronization.
First, the clock of the peers are initially unsynchronized or
only loosely synchronized. Second, even after
synchronization the hardware clock of the peers will still
slowly drift away [9]. The more general problem of clock
synchronization has been studied extensively in the
literature. One such synchronization algorithm called PCS
proposed by Arvind [10] estimates the remote clock by
asking the remote machine to send a series of m messages
back to the estimator. The estimator then obtains an
estimate, Test, of remote machine’s clock from

() ()est mT R R m T m d= − + + (3)
where d is an estimate of expected message delay and

() ()
1 1

1 1 and
m m

i i
i i

T m T R m R
m m= =

= =∑ ∑ (4)

where Ti is the transmission timestamp of the i th message as
recorded by the remote machine while Ri is the reception
timestamp of the ith message as recorded by the estimator.
This synchronization procedure is repeated periodically to
refresh the estimates of the remote clocks’ values.

3.1. Integrating PCS with Periodic Broadcasting

While we can run the PCS algorithm independently from
and concurrently with the PB algorithm, we note that a peer
in a decentralized PB system is continually injecting data
into the network through the multicast channels. Thus we
can exploit this property to piggyback the broadcasting
position (i.e., the time with respect to the broadcasting
schedule) on the video packets and thus eliminate the
message overheads associated with the PCS. In this
modified PCS (MPCS), the number of synchronization
messages increases with the video bitrate, and peers refresh
remote clock estimates from every received packet.

Similar to the original PCS algorithm, MPCS selects
one of the peers as the reference peer and sends out the
synchronization messages (through piggybacking) for all
other peers to estimate the reference peer’s broadcasting
position, which then adjust their positions accordingly to
maintain synchronized broadcasting schedules.

However, as the reference peer is just an ordinary
end-user host, it may fail or shut down from time to time.
This creates a serious problem as the MPCS algorithm
cannot operate without the reference peer. Given that
end-user hosts are likely to have significantly lower
reliability than dedicated central servers, this reliance on a
reference peer is clearly undesirable.

Seg0 Seg1 Seg2 SegN-1……Video

……

Seg0

Seg1

Seg2

SegN-1

Seg0

N
 c

ha
nn

el
s b

L/N

Seg0 Seg0 Seg0

Seg1 Seg1 Seg1 Seg1

Seg2 Seg2 Seg2 Seg2

SegN-1 SegN-1 SegN-1 SegN-1

Fig. 1. Modified Staggered Broadcasting transmits a single
video segment in each channel

3.2. Distributed PCS

To tackle the single-point-of-failure problem, we present in
this section a new distributed PCS (DPCS) that does not
require any peer to be designated as a reference peer.
Instead, peers under the proposed DPCS algorithm
progressively converge and so the effect of individual peer
failure will not disrupt the synchronization process.

All peers under the DPCS algorithm piggyback their
synchronization messages in the video packets they sent.
As the synchronization message size is much smaller than
the video packet (e.g., 16 bytes versus 8192 bytes) the
additional bandwidth consumed is insignificant. Thus
every peer in the system can estimate the broadcasting
positions of all other peers by extracting the
synchronization messages from the received video packets.
After receiving the estimated broadcasting positions of
other peers (, ij estT), peer j then resynchronizes its
broadcasting position according to

1

, ,
0

1
i

M

j est j est
i

T T
M

−

=

= ∑ (5)

By setting the broadcasting position to the average of
the estimates, we can reduce the variance of the peers’
broadcasting positions. However, (5) assumes that all the
estimates are taken simultaneously – clearly impossible as
synchronization messages arrive at different time instants.
To address this problem, we allow peer j to collect more
than m synchronization messages before obtaining an
estimate '

, ij estT of peer i. After it collected at least m
synchronization messages from each peer, then peer j
resynchronizes itself using (5) and

()'
, , , , ,i ij est j est j resync j i lastT T T R= + − (6)

for i=0,1,…,M−1, where Tj,resync and Rj,i,last are the
timestamps at resynchronization and the last received
synchronization message from peer i respectively. From (6)
we readjust the estimated '

, ij estT before using it to calculate

, ij estT to compensate for the time lag between the
resynchronization time and the time of taking the estimated

'
, ij estT . However, as the compensation is calculated locally,

this will reduce the accuracy of , ij estT as the drift rate of
the local clock may differ from the remote clocks.

Furthermore, as the peers resynchronize independently
and asynchronously, the accuracy of other peers’ estimates
may be affected as well. For example, assume peer 0 is in
the process of collecting synchronization messages from
peer 1 when peer 1 resynchronizes itself. This will renders
the messages previously received by peer 0 inaccurate as
peer 1’s broadcasting position has already been adjusted to
a new value. To address this issue we add an offset field in
the synchronization message to specify the difference of
broadcasting positions before and after resynchronization.
With this additional field the other peers can then adjust the
estimate of that peer without significant loss of accuracy.

If a peer fails, it will cause a timeout in the estimation
procedure which only affects the accuracy of ,j estT but

will not disrupt the synchronization process. Given that
there are many peers in the system, the failure will be
effectively masked by the averaging step in computing

,j estT .

4. Performance Evaluations

In this section, we present simulation results to evaluate the
proposed server-less PB architecture under different
synchronization algorithms. We apply the extended BA
model proposed in [11] to generate network topologies
with 500 routers for use in the simulations. The peers are
randomly attached to one of the edge routers in the network.
The core network has abundant bandwidth and introduces
random delay which simulates the effect of cross traffic.
Edge routers have separate buffers for each outgoing link
and packets are dropped if their corresponding outgoing
link buffer is full. Each set of results is obtained from the
average of six randomly-generated network topologies and
peer placements. Table 1 summarizes the other default
parameters used in the simulations.

We employ a simple multicast routing algorithm which
constructs a source-based shortest-path tree for every peer.
This resembles many of the existing multicast routing
protocols such as DVMRP, MOSPF and PIM-SM. The
clock skew of each peer, defined as the different between
peers’ clocks, is modeled as a normally-distributed random
variable with zero mean; and the clock drift rate of each
peer is modeled as a normally-distributed random variable
with a mean of one. Note that a clock with drift rate one
represents a correct real-time clock.

We first investigate the packet loss rate of the server-less
PB system under different synchronization algorithms. Fig.
2 plots the packet loss rate versus the variance of the peers’
clock drifts. A larger variance represents that the peers’
clocks drift away more rapidly from one another, thus
leading to asynchrony in the broadcasting positions. The
results show that if no synchronization is employed the
packet loss rate can reach 8%, which is clearly
unacceptable. The high packet loss rate remains even if we
randomize (within the multicast period of length L/N
seconds) the transmission time of packet because the
burstiness of the aggregate traffic is due to the large
number of peers sending data simultaneously.

By contrast, when the peers are synchronized using
MPCS and DPCS the loss rate drops to 2.8% and 5%
respectively. Note that in general MPCS outperforms
DPCS at the expense of requiring a particular peer to be
designated as the reference peer for the synchronization
process to work. By contrast, DPCS is completely
decentralized and does not suffer from single point of

Table 1. Default simulation parameters
Parameter Value Parameter Value
Avg. Network Delay 0.05 s Peer Uplink BW 4Mbps
Edge Router Buffer 32 kB Peers Count, M 100
Avg. Clock Skew Var. 1 s2 Video Length, L 3600 s
Avg. Clock Drift 1 s/s Video Bitrate, b 4Mbps
Avg. Clock Drift Var. 1-12 s2/s2 Startup Latency 600 s
Sync. Msg. Count, m 10 Sys. Utilization 95%
Avg. Sync. Msg. Delay 0.05 s Packet Size, Pk 8kB
Peer Downlink BW 4.4Mbps Simulation Time 10 hrs

failure. We are currently investigating the effect of peer
failures on the MPCS algorithm to develop efficient
recovery protocols to improve its robustness.

Another observation in Fig. 2 is that the packet loss rates
are all generally insensitive to the variance of clock drifts.
This is because inter-transmission time of synchronization
messages is relatively short (e.g., 1.5 seconds), thus the
asynchrony caused by the clock drift is corrected quickly.

In Fig. 3 we turn our attention to the dynamic behavior
of the system. In particular, we study the maximum skew
among peers’ broadcasting positions and the skew variance
against time under 55% and 95% system utilization
respectively. Without synchronization the maximum skew
(not plotted) will increase with time as the peers’
broadcasting positions continue to drift away from each
other (e.g., reaching 6s after a simulation time of 6,000s).

By contrast, the maximum skew under MPCS and
DPCS quickly converge to 0.16 seconds (after 4,500
seconds) and 0.5 seconds (after 7,300 seconds)
respectively at 95% system utilization. MPCS converges
faster than DPCS and achieves a lower maximum skew
because peers under DPCS calculate the new broadcasting
position by averaging the estimates of all other peers’
positions. As each peer synchronizes asynchronously, there
are cases where a peer synchronizes to a new position when
other peers are still using old estimates. This results in the
slower convergence rate and the higher skew of DPCS.

Another observation is that the system utilization has a
substantial effect on the synchronization performance. This
is a direct consequence of piggybacking synchronization
messages within the video packets, where only the active
peers streaming and playing back video participate in the
synchronization process. To address this problem we can
either let the idle peers receive video data periodically to
maintain synchronization or decouple the synchronization
messages from the video data altogether.

5. Conclusions

With the growing popularity of peer-to-peer systems and
applications, it is only a matter of time for many existing
applications to migrate to decentralized architectures. This
paper tackled the transmission scheduling and
synchronization challenges in decentralizing periodic
broadcasting schemes for large-scale video streaming
applications. The early results are very encouraging and
more work is needed to further investigate (a) the
decentralization of more sophisticated periodic

broadcasting algorithms; (b) applications other than
streaming (e.g., software update, data distribution); and (c)
multicasting over application-layer multicast for
deployment over the current Internet, which does not yet
support native multicast at the global scale.

References
[1] L. S. John and L. M. Tseng, “Staircase Data Broadcasting and

Receiving Scheme for Hot Video Service,” IEEE Trans. on
Consumer Electronics, vol. 43, no. 4, Nov 1997, pp.1110-7

[2] K. A. Hua and S. Sheu, “Skyscraper Broadcasting: A New
Broadcasting Scheme for Metropolitan Video-on-Demand
Systems,” Proc. of the ACM SIGCOMM '97, vol. 27, no. 4, Sep 1997,
pp. 89-100.

[3] S. Viswanathan and T. Imielinski, “Metropolitan Area
Video-on-Demand Service Using Pyramid Broadcasting,” IEEE
Multimedia Systems, vol. 4, no. 4, Aug 1996, pp. 197-208.

[4] A. Hu, “Video-on-Demand Broadcasting Protocols: A
Comprehensive Study,” Proc. of the IEEE Infocom 2001, Anchorage,
AK, Apr 2001, pp. 508-517.

[5] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron and A.
Singh, “SplitStream: High-Bandwidth Multicast in Cooperative
Environments,” Proc. of 19th ACM SOSP’ 03, New York, Oct., 2003.

[6] M.Hefeeda, A. Habib, B. Botev, D. Xu and D. B. Bhargava,
“PROMISE: Peer-to-Peer Media Streaming Using CollectCast,”
Proc. of ACM Multimedia, 2003.

[7] Jack Y. B. Lee and W. T. Leung, “Design and Analysis of a
Fault-Tolerant Mechanism for a Server-Less Video-On-Demand
System,” Proc. 2002 International Conference on Parallel and
Distributed Systems, Taiwan, Dec 17-20, 2002, pp.489-494.

[8] C. Y. Chan and Jack Y. B. Lee, “On Transmission Scheduling in a
Server-less Video-on-Demand System,” Proc. International
Conference on Parallel and Distributed Computing, Klagenfurt,
Austria, August 26-29, 2003.

[9] F. Cristian, “A Probabilistic Approach to Distributed Clock
Synchronization,” Distrib. Comp., vol. 3, 1989, pp. 146-158.

[10] K. Arvind, “Probabilistic Clock Synchronization in Distributed
Systems,” IEEE Trans. on Parallel and Distributed Systems, vol. 5,
no. 5, May 1994, pp. 474-487.

[11] R. Albert, and A.-L. Barabási, “Topology of Evolving Networks:
Local Events and Universality,” Physical Review Letters, vol. 85,
2000, pp. 5234-5237.

Fig. 3. Dynamic behavior of MPCS and DPCS

0.1

1

10

1000 11000 21000 31000

MPCS 0.55
MPCS 0.95
DPCS 0.55
DPCS 0.95

Simulation Time (s)

M
ax

. S
ke

w
 D

iff
er

en
t (

s)

(a) Maximum Skew Different

0

0.2

0.4

0.6

0.8

1

1000 11000 21000 31000

MPCS 0.55
MPCS 0.95
DPCS 0.55
DPCS 0.95

Simulation Time (s)

Sk
ew

 V
ar

ia
nc

e
(b) Skew Variance

0

0.02

0.04

0.06

0.08

0.1

Clock Drift Variance (s2/s2)

Pa
ck

et
 L

os
s R

at
e

10-15 10-12 10-9 10-6

Randomize

No Sync.
DPCS

MPCS

Fig. 2. Packet loss rate under different synchronization algorithm

