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Abstract 
Periodic broadcasting (PB) schemes are the most 
promising solution for building large-scale video 
streaming services. Existing PB schemes are all built 
around the traditional client-server model. This paper 
proposes a radically different architecture where only 
end-user hosts are used to build the PB system, thereby 
eliminating the need for a central server or even a service 
provider. Two unique problems pertaining to this 
decentralized, peer-to-peer architecture are addressed: 
transmission scheduling and peer synchronization. A new 
decentralized synchronization algorithm is proposed and 
results obtained from simulations confirm the 
architecture’s feasibility and performance. 

1. Introduction 

Provisioning video streaming services to a large user 
population has long been a challenge to researchers in 
multimedia and networking research. The traditional 
client-server, point-to-point streaming architecture, while 
matured and well-understood, is not scalable to serve tens 
of thousands of concurrent users. To address this scalability 
challenge researchers have developed sophisticated 
periodic broadcasting (PB) schemes [1-3] to vastly 
improve scalability and bandwidth efficiency through the 
use of intelligent multicast streaming algorithms. 

Unlike traditional unicast video streaming, the video 
streams in a PB system are being multicast according to a 
fixed schedule that is predetermined and is independent of 
the user arrival pattern. A new user will undergo a startup 
delay (e.g., in seconds to minutes depending on the 
broadcasting scheme) to cache some of the video data 
before playback begins, and continue to receive multicast 
video data from one or more multicast streams to sustain 
continuous video playback. Interested readers are referred 
to the study by Hu [4] for a review and comparison of 
various PB schemes. 

These existing PB schemes all share one property, i.e., 
they are all based on the client-server model where a 
central video server (or a few servers working as a cluster) 
schedules and transmits the video streams over multiple 
multicast channels. In this paper we investigate a radically 
different architecture for building a PB system – one 
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without any dedicated server at all. 
This server-less architecture is motivated by the rapid 

developments in computing and networking which made 
today’s commodity computing hardware comparable to 
yesteryear’s server hardware, with an increasing amount of 
storage, computation, and bandwidth capacities to spare. 
By exploiting these often available and idle resources in 
end-user computers, many peer-to-peer streaming systems 
have been proposed [5-6]. In SplitStream [5], multiple 
multicast overlays are built on a unicast infrastructure. The 
source splits the data into a number of stripes and 
distributes them through different overlays to the receivers. 
PROMISE [6] focused on multi-sources media streaming 
which dynamically select a good sender set. Unlike these 
previous work which focused on conventional streaming, 
this work investigates a new server-less periodic 
broadcasting architecture that takes advantage of 
multicast-enabled network to lower the network bandwidth 
utilization. Moreover, through the use of redundancies the 
system can even sustain frequent peer failures [7]. 

As PB algorithms are well-studied, our goal in this work 
is not to develop new broadcasting algorithms. Instead, we 
develop a server-less architecture where existing PB 
algorithms can be deployed and illustrate the procedures to 
adapt existing broadcasting algorithms for use in this 
decentralized architecture. 

In particular, our work reveals one unique problem in 
decentralizing any PB algorithms – transmission 
synchronization. Specifically, end-user machines, or called 
peers are generally not clock synchronized and so their 
video data multicast may not be time-aligned. Our 
simulation studies showed that such mis-aligned multicast 
can lead to significant network congestion and 
consequently packet loss (e.g., from 9% to 90% depends on 
the synchronization level of peers). Note that this problem 
does not exist in the client-server architecture as the same 
central server is responsible for scheduling all the multicast 
video streams based on its own internal clock. Moreover, it 
cannot be solved by using a large buffer at the receiver as 
the packet losses occur at the bottleneck routers rather than 
at the receiver. 

In this work we tackle this peer synchronization 
problem by adapting an existing clock-synchronization 
protocol for use in the server-less architecture. Our results 
show that with synchronization the congestion-induced 
packet loss rate can be reduced to less than 3%. Moreover, 
to remove the single point of failure of existing 
synchronization algorithms, we develop a new completely 
decentralized peer synchronization algorithm that does not 
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require any dedicated peer to serve as clock reference, and 
yet can still achieve excellent synchronization accuracy. 

2. Decentralization of Periodic Broadcasting 

In this section we present the procedures to decentralize a 
PB scheme. In particular we use a modified Staggered 
Broadcasting (SB) scheme as an example to illustrate the 
design issues in the decentralization process. The same 
procedure can be applied to other PB schemes. 

The modified SB scheme depicted in Fig. 1 is among the 
simplest form of PB system. A video title of bitrate b and of 
duration L seconds is divided into N fixed-size segments 
and the segments are further divided into a number of 
fixed-size data blocks, which will be distributed to multiple 
peers in a round-robin manner. For a system with M peers, 
each peer is then responsible for streaming 1/Mth of data of 
each segment in N different multicast channels repeatedly. 

To begin a new video streaming session, the client 
simply join the first multicast channel and cache for L/N 
seconds, then the peer starts playback while at the same 
time joins the next multicast channel for caching the next 
video segment. More importantly, as the multicast 
transmission schedules are fixed irrespective of the number 
of receivers in the system, this modified SB scheme can 
virtually support an unlimited number of receivers. Note 
that there are many far more sophisticated PB schemes that 
can achieve significantly shorter start-up latency, lower 
bandwidth consumption, or both [4] but the procedures to 
decentralize them are similar. 

Under the modified SB scheme, the upstream 
bandwidth requirement of each peer is then equal to Nb/M. 
The peer packetizes the video segment j into packets with 
size Pk and periodically broadcast them in an interval of 
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to achieve an average bitrate of b/M per channel. As a 
result, all peers would have the same transmission schedule 
which is very much alike the original centralized one. 

However, a previous work by Chan and Lee [8] showed 
that when the number of peers increases, the aggregate 
network traffic from the many peers could congest the 
network routers and/or the receivers, leading to significant 
packet loss (e.g., from 9% to 90% depending on the 
alignment of packet transmissions from different peers). 

To address this problem we can explicitly space out the 
packet transmissions from the peers to achieve a smoother 
aggregate traffic. Specifically, the schedules of packets of 
segment j in peer i are shifted by 
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where i=0,1,…,M-1 and j=0,1, …,N-1. 
This transmission schedule can reduce the 

congestion-induced packet loss to as low as 0.1% if the 
peers are clock-synchronized. However, synchronizing 
peers in a decentralized system is far from trivial. The next 
section addresses this issue. 

 

3. Peers Synchronization 

There are two problems inherent in peer synchronization. 
First, the clock of the peers are initially unsynchronized or 
only loosely synchronized. Second, even after 
synchronization the hardware clock of the peers will still 
slowly drift away [9]. The more general problem of clock 
synchronization has been studied extensively in the 
literature. One such synchronization algorithm called PCS 
proposed by Arvind [10] estimates the remote clock by 
asking the remote machine to send a series of m  messages 
back to the estimator. The estimator then obtains an 
estimate, Test, of remote machine’s clock from 

( ) ( )est mT R R m T m d= − + +  (3)
where d  is an estimate of expected message delay and 
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where Ti is the transmission timestamp of the i th message as 
recorded by the remote machine while Ri is the reception 
timestamp of the ith message as recorded by the estimator. 
This synchronization procedure is repeated periodically to 
refresh the estimates of the remote clocks’ values. 

3.1. Integrating PCS with Periodic Broadcasting 

While we can run the PCS algorithm independently from 
and concurrently with the PB algorithm, we note that a peer 
in a decentralized PB system is continually injecting data 
into the network through the multicast channels. Thus we 
can exploit this property to piggyback the broadcasting 
position (i.e., the time with respect to the broadcasting 
schedule) on the video packets and thus eliminate the 
message overheads associated with the PCS. In this 
modified PCS (MPCS), the number of synchronization 
messages increases with the video bitrate, and peers refresh 
remote clock estimates from every received packet. 

Similar to the original PCS algorithm, MPCS selects 
one of the peers as the reference peer and sends out the 
synchronization messages (through piggybacking) for all 
other peers to estimate the reference peer’s broadcasting 
position, which then adjust their positions accordingly to 
maintain synchronized broadcasting schedules. 

However, as the reference peer is just an ordinary 
end-user host, it may fail or shut down from time to time. 
This creates a serious problem as the MPCS algorithm 
cannot operate without the reference peer. Given that 
end-user hosts are likely to have significantly lower 
reliability than dedicated central servers, this reliance on a 
reference peer is clearly undesirable. 
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Fig. 1. Modified Staggered Broadcasting transmits a single 
video segment in each channel



3.2. Distributed PCS  

To tackle the single-point-of-failure problem, we present in 
this section a new distributed PCS (DPCS) that does not 
require any peer to be designated as a reference peer. 
Instead, peers under the proposed DPCS algorithm 
progressively converge and so the effect of individual peer 
failure will not disrupt the synchronization process. 

All peers under the DPCS algorithm piggyback their 
synchronization messages in the video packets they sent. 
As the synchronization message size is much smaller than 
the video packet (e.g., 16 bytes versus 8192 bytes) the 
additional bandwidth consumed is insignificant. Thus 
every peer in the system can estimate the broadcasting 
positions of all other peers by extracting the 
synchronization messages from the received video packets. 
After receiving the estimated broadcasting positions of 
other peers ( , ij estT ), peer j then resynchronizes its 
broadcasting position according to 
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By setting the broadcasting position to the average of 
the estimates, we can reduce the variance of the peers’ 
broadcasting positions. However, (5) assumes that all the 
estimates are taken simultaneously – clearly impossible as 
synchronization messages arrive at different time instants. 
To address this problem, we allow peer j to collect more 
than m synchronization messages before obtaining an 
estimate '

, ij estT  of peer i. After it collected at least m 
synchronization messages from each peer, then peer j 
resynchronizes itself using (5) and 

( )'
, , , , ,i ij est j est j resync j i lastT T T R= + −  (6)

for i=0,1,…,M−1, where Tj,resync and Rj,i,last are the 
timestamps at resynchronization and the last received 
synchronization message from peer i respectively. From (6) 
we readjust the estimated '

, ij estT  before using it to calculate 

, ij estT  to compensate for the time lag between the 
resynchronization time and the time of taking the estimated 

'
, ij estT . However, as the compensation is calculated locally, 

this will reduce the accuracy of , ij estT  as the drift rate of 
the local clock may differ from the remote clocks. 

Furthermore, as the peers resynchronize independently 
and asynchronously, the accuracy of other peers’ estimates 
may be affected as well. For example, assume peer 0 is in 
the process of collecting synchronization messages from 
peer 1 when peer 1 resynchronizes itself. This will renders 
the messages previously received by peer 0 inaccurate as 
peer 1’s broadcasting position has already been adjusted to 
a new value. To address this issue we add an offset field in 
the synchronization message to specify the difference of 
broadcasting positions before and after resynchronization. 
With this additional field the other peers can then adjust the 
estimate of that peer without significant loss of accuracy. 

If a peer fails, it will cause a timeout in the estimation 
procedure which only affects the accuracy of ,j estT  but 

will not disrupt the synchronization process. Given that 
there are many peers in the system, the failure will be 
effectively masked by the averaging step in computing 

,j estT . 

4. Performance Evaluations 

In this section, we present simulation results to evaluate the 
proposed server-less PB architecture under different 
synchronization algorithms. We apply the extended BA 
model proposed in [11] to generate network topologies 
with 500 routers for use in the simulations. The peers are 
randomly attached to one of the edge routers in the network. 
The core network has abundant bandwidth and introduces 
random delay which simulates the effect of cross traffic. 
Edge routers have separate buffers for each outgoing link 
and packets are dropped if their corresponding outgoing 
link buffer is full. Each set of results is obtained from the 
average of six randomly-generated network topologies and 
peer placements. Table 1 summarizes the other default 
parameters used in the simulations. 

We employ a simple multicast routing algorithm which 
constructs a source-based shortest-path tree for every peer. 
This resembles many of the existing multicast routing 
protocols such as DVMRP, MOSPF and PIM-SM. The 
clock skew of each peer, defined as the different between 
peers’ clocks, is modeled as a normally-distributed random 
variable with zero mean; and the clock drift rate of each 
peer is modeled as a normally-distributed random variable 
with a mean of one. Note that a clock with drift rate one 
represents a correct real-time clock. 

We first investigate the packet loss rate of the server-less 
PB system under different synchronization algorithms. Fig. 
2 plots the packet loss rate versus the variance of the peers’ 
clock drifts. A larger variance represents that the peers’ 
clocks drift away more rapidly from one another, thus 
leading to asynchrony in the broadcasting positions. The 
results show that if no synchronization is employed the 
packet loss rate can reach 8%, which is clearly 
unacceptable. The high packet loss rate remains even if we 
randomize (within the multicast period of length L/N 
seconds) the transmission time of packet because the 
burstiness of the aggregate traffic is due to the large 
number of peers sending data simultaneously. 

By contrast, when the peers are synchronized using 
MPCS and DPCS the loss rate drops to 2.8% and 5% 
respectively. Note that in general MPCS outperforms 
DPCS at the expense of requiring a particular peer to be 
designated as the reference peer for the synchronization 
process to work. By contrast, DPCS is completely 
decentralized and does not suffer from single point of 

Table 1. Default simulation parameters 
Parameter Value Parameter Value 
Avg. Network Delay 0.05 s Peer Uplink BW 4Mbps 
Edge Router Buffer 32 kB Peers Count, M 100 
Avg. Clock Skew Var. 1 s2 Video Length, L 3600 s 
Avg. Clock Drift 1 s/s Video Bitrate, b 4Mbps 
Avg. Clock Drift Var. 1-12 s2/s2 Startup Latency 600 s 
Sync. Msg. Count, m 10 Sys. Utilization 95% 
Avg. Sync. Msg. Delay 0.05 s Packet Size, Pk 8kB 
Peer Downlink BW 4.4Mbps Simulation Time 10 hrs 



failure. We are currently investigating the effect of peer 
failures on the MPCS algorithm to develop efficient 
recovery protocols to improve its robustness. 

Another observation in Fig. 2 is that the packet loss rates 
are all generally insensitive to the variance of clock drifts. 
This is because inter-transmission time of synchronization 
messages is relatively short (e.g., 1.5 seconds), thus the 
asynchrony caused by the clock drift is corrected quickly. 

In Fig. 3 we turn our attention to the dynamic behavior 
of the system. In particular, we study the maximum skew 
among peers’ broadcasting positions and the skew variance 
against time under 55% and 95% system utilization 
respectively. Without synchronization the maximum skew 
(not plotted) will increase with time as the peers’ 
broadcasting positions continue to drift away from each 
other (e.g., reaching 6s after a simulation time of 6,000s). 

By contrast, the maximum skew under MPCS and 
DPCS quickly converge to 0.16 seconds (after 4,500 
seconds) and 0.5 seconds (after 7,300 seconds) 
respectively at 95% system utilization. MPCS converges 
faster than DPCS and achieves a lower maximum skew 
because peers under DPCS calculate the new broadcasting 
position by averaging the estimates of all other peers’ 
positions. As each peer synchronizes asynchronously, there 
are cases where a peer synchronizes to a new position when 
other peers are still using old estimates. This results in the 
slower convergence rate and the higher skew of DPCS. 

Another observation is that the system utilization has a 
substantial effect on the synchronization performance. This 
is a direct consequence of piggybacking synchronization 
messages within the video packets, where only the active 
peers streaming and playing back video participate in the 
synchronization process. To address this problem we can 
either let the idle peers receive video data periodically to 
maintain synchronization or decouple the synchronization 
messages from the video data altogether. 

5. Conclusions 

With the growing popularity of peer-to-peer systems and 
applications, it is only a matter of time for many existing 
applications to migrate to decentralized architectures. This 
paper tackled the transmission scheduling and 
synchronization challenges in decentralizing periodic 
broadcasting schemes for large-scale video streaming 
applications. The early results are very encouraging and 
more work is needed to further investigate (a) the 
decentralization of more sophisticated periodic 

broadcasting algorithms; (b) applications other than 
streaming (e.g., software update, data distribution); and (c) 
multicasting over application-layer multicast for 
deployment over the current Internet, which does not yet 
support native multicast at the global scale. 
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Fig. 3. Dynamic behavior of MPCS and DPCS 
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Fig. 2. Packet loss rate under different synchronization algorithm


