
MOTION ESTIMATION FOR H.264/AVC
USING PROGRAMMABLE GRAPHICS HARDWARE

Chi-Wang Ho† Oscar C. Au‡ S.-H. Gary Chan† Shu-Kei Yip‡ Hoi-Ming Wong‡

†Dept. of Computer Science ‡Dept. of Electrical and Electronic Engineering
The Hong Kong University of Science and Technology,

Clear Water Bay, Kowloon, Hong Kong, China.
Email: {jodyho, eeau, gchan, sukiyip, hoimingw}@ust.hk

ABSTRACT
We present an efficient implementation of motion estimation (ME)
for H.264/AVC using programmable graphics hardware. The cost
function for ME in H.264/AVC depends on the motion vector (MV)
predictor which is the median MV of three neighboring coded blocks.
Previous implementations assume no dependency among adjacent
blocks, which is not true for H.264/AVC, they also perform unsatis-
factorily because of their low arithmetic intensity, which is defined as
operation per word transferred. To overcome the dependency prob-
lem, we introduce a new implementation which performs ME on
block-by-block basis. Moreover, we can adjust the arithmetic inten-
sity easily to optimize the performance on different graphics cards.
Experimental results show that our implementation is substantially
faster (by 10 times) than our SIMD optimized CPU implementation.

1. INTRODUCTION

H.264/AVC is the most current international video coding standard
[1] which significantly improves the compression efficiency com-
pared with existing standards, such as H.263+ and MPEG-4. To
achieve such a high coding efficiency, it comes with a set of new
tools to enhance the ability to predict the picture content in the cost
of additional complexity. These tools include variable block-size
motion compensation (MC), quarter-pixel accuracy MC, etc. There
has been much of work on the complexity reduction. Besides this,
Single Instruction Multiple Data (SIMD) extensions have been de-
veloped for central processing unit (CPU) to dramatically enhance
the performance in multimedia applications. However, for high-
definition video encoding, it is still difficult to process in real-time
on CPU even with highly optimized code.

Recently, consumer graphics hardware has become increasingly
more powerful. It is equipped with a powerful graphics process-
ing unit (GPU), a stream processor and specialized for processing
graphics operations in parallel. In term of raw computation power,
it far surpasses that of CPU and the speed is growing at a faster rate
than that of CPU. Furthermore, in modern GPUs, some stages of the
traditional fixed-function pipeline have been replaced by fully pro-
grammable modules. With the increasing programmability, GPU is
becoming a strong candidate for performing computationally inten-
sive operations in many general-purpose applications. Some recent
work has used GPU for non-graphics applications, such as linear al-
gebra, physical simulation, etc.

This work has been supported in part by the Innovation and Technol-
ogy Commission (project no. ITS/122/03 and project no. GHP/033/05) and
Research Grants Council (DAG04/05.EG34) of the Hong Kong Special Ad-
ministrative Region, China.

Some work has developed a GPU-based module for image and
video decoding [2–4]. However, there is little research on encoder
acceleration using GPU [5,6]. Kelly et. al. proposed to perform mo-
tion estimation (ME) on GPU [5,6]. They calculate the absolute dif-
ference at frame-level using GPU. In H.264/AVC, the motion vector
(MV) predictor, which is the median MV of three neighboring coded
blocks, is involved in the cost function for ME, it also affects the
search center of ME. The existing implementations are not suitable
for H.264/AVC because of the dependency introduced by the MV
predictor. Furthermore, they suffer from unsatisfactory performance
in integer-pixel ME because of their low arithmetic intensity which
is defined as operation per word transferred [7]. Motivated by these,
this paper presents a new implementation to perform ME on GPU for
H.264/AVC on block-by-block basis. We first divide the macroblock
(MB) into sixteen 4x4 blocks, then we calculate the cost of each 4x4
block and add them up by using multiple rendering passes. With the
proposed method, the arithmetic intensity can be easily adjusted by
changing the number of 4x4 blocks being processed per rendering
pass. This feature is particularly useful when the proposed method
is applied on different GPUs.

The rest of the paper is organized as follows. In Section 2, a brief
overview of the programmable graphics pipeline and the dependency
problem of rate-constrained ME in H.264/AVC is discussed. Then,
the proposed method is presented in Section 3, followed by the im-
plementation details in Section 4. The performance is evaluated by
comparing with the Intel’s SIMD optimized CPU version in Section
5. We conclude in Section 6.

2. PROGRAMMABLE GRAPHICS PIPELINE AND
MOTION ESTIMATION IN H.264/AVC

2.1. Programmable Graphics Pipeline

Figure 1 shows a high-level diagram of modern graphics pipeline.
The typical pipeline consists of several stages including transform
and lighting (T&L) unit, primitive assembly unit, rasterizer, texture
mapping unit and frame buffer. In a modern graphics architecture,
programmable vertex processor and fragment processor are intro-
duced. A set of customized operations can be applied on per-vertex
and per-fragment basis by executing a program, called shader, on
these programmable processors as an alternative for the T&L unit
and texture mapping unit respectively. They are a SIMD machine
which is capable of performing operations on a vector with 4 com-
ponents. In graphics applications, sophisticated visual effects are
generated with a series of shaders and multiple rendering passes.

For general purpose computation, the GPU is considered a stream

20491424403677/06/$20.00 ©2006 IEEE ICME 2006

CPU

GPU

Render to Texture

Vertex Processor

Transform &
Lighting

Vertex Shader

Primitive
Assembly

Rasterizer

Fragment Processor

Texture
Mapping

Fragment Shader

Frame Buffer

Textures

Application

Fig. 1. The modern programmable graphics pipeline.

processor which executes a number of kernels on data streams. Ap-
plication kernels are written as a series of vertex shaders or frag-
ment shaders. Application-dependent data streams are stored as the
geometries and textures. In the proposed ME module, kernels are
used for cost calculation, merging and reduction. Textures are used
to store the reference frames and the intermediate results. The details
in GPU-based ME will be presented in Section 3.

2.2. Rate-constrained Motion Estimation in H.264/AVC

In H.264/AVC, it provides highly flexible MC and ME scheme which
supports a combination of different block sizes ranging from 4x4
to 16x16 with separate MVs. Therefore, besides the sum of ab-
solute difference (SAD), the cost function for ME also needs the
MV predictor to estimate the bits required to code MVs, and hence
introduces the dependency among adjacent blocks. The problem of
choosing the best MV can formulate as a rate-constrained optimiza-
tion problem and the best MV is the one which minimizes the fol-
lowing Lagrangian cost function,

Jmotion = DDF D + λmotionRmotion. (1)

Therefore, the ME in H.264/AVC can be written as

mv∗ = arg min
mvi∈s

Jmotion. (2)

In the above equation, λmotion is a Lagrangian multiplier impos-
ing rate constraint of motion information which is QP dependent,
Rmotion is the bits required to code MVs. DDF D can be either the
SAD or the sum of absolute difference of Hadamard-transformed co-
efficients (SATD) in H.264/AVC. In this paper, SAD is used as dis-
tortion measure due to its simplicity. The candidate MV i, mvi ∈ S,
which minimizes the cost Jmotion is the best MV, mv∗.

As shown in the Eq. (1), Jmotion is a function of DDF D, λmotion

and Rmotion. Rmotion captures the dependency among the adja-
cent blocks. It depends on the difference between the current candi-
date MV and the MV predictor. Since the implementations proposed
in [5,6] are not designed for the cost function in Eq. (1), they are not
applicable for H.264/AVC. In this paper, we propose a GPU-based
implementation to perform ME efficiently in H.264/AVC using the
above cost function. Furthermore, the proposed implementation al-
lows us to adjust the arithmetic intensity to utilize the computing
power of different graphics cards.

3. GPU-BASED MOTION ESTIMATION

In this section, we first present the data representation and the dataflow
of GPU-based ME module, followed by a discussion on the tech-
niques of implementation in Section 4.

3.1. Proposed GPU-based Motion Estimation

We have implemented the exhaustive motion search on GPU, instead
of other fast ME algorithms, because of its regular memory access
pattern. Although other fast ME algorithm can certainly be imple-
mented, we need an additional layer of texture to specify the target
searching position and this results in random memory access pat-
tern and dependent texture read. The repercussion of these are quite
significant in modern graphics architecture. In the following sub-
sections, we present the representation of different elements of ME
in graphics hardware and the high-level dataflow in the system.

3.2. Data Representation in Graphics Hardware

The current MB and reference frames can be represented as texture
objects and stored in the texture memory. However, bandwidth is ex-
pensive in the graphics hardware, so too much texture access should
be avoided. As the current MB participates in each cost calculation
at different positions, it is beneficial to pass it as uniform parameter
instead of store as texture object. This eliminates a large number
of texture operations. We used sixteen 4x4 matrices (float4x4)
to represent the values of current MB and pass them into the frag-
ment program. This representation takes advantage of data-level par-
allelism and also matches the smallest partition size supported by
H.264/AVC. For the reference frames, as their size is quite large and
they will be repeatly accessed by the fragment program, it is desir-
able to load them once to the texture memory before the encoding of
the current frame.

Motion search area specifies a set of possible candidate MVs.
As the search area is clipped at the frame boundary, this is usually
handle, in CPU implementation, by having boundary checking with
an if-statement. However, limited branching support in the latest
GPUs implies that it would introduce extra cost due to the execution
of a branch in the fragment program. To avoid boundary checking,
the search area is determined by the CPU. Then a quadrilateral is
drawn to represent this in graphics hardware. Only the fragments
inside this quadrilateral after projection is processed by the fragment
program. The actual position in the reference frame is specified as
texture coordinates. As a result, we have a branch-free fragment
shader which is preferable in existing GPUs with limited branching
support.

3.3. GPU Working Flow

We present in Figure 2 a high-level view of our shaders and the
dataflow between them. The system is divided into three concep-
tual components. The first part is the cost calculation for 4x4 blocks.
As shown in Eq. (1), the motion cost is calculated by CPU and in-
termediate results are loaded into the texture. The blending function
adds the motion cost and result from the fragment shader. Then, the
merging procedure which is necessary for our method to adjust the
arithmetic intensity. This is used to combine the intermediate re-
sults in different rendering targets and determine the final cost. We
present in Section 4.2 how to adjust arithmetic intensity. Finally,
the cost for the search area goes through a labelling and reduction
process and return the minimum cost and its corresponding position.
Prior to the reduction, labelling process associates the cost with its
corresponding position. Therefore, the result of reduction is a triple
(SAD, refx, refy), where refx and refy are the coordinates of the
reference position corresponding to the minimum cost. However,
this is optional since, in some cases, extra rendering passes may be
more expensive than data readback from GPU.

2050

H.264/AVC Encoder (CPU)

ME (GPU)

Yes

No

Read frame

Decompose MB
into 4x4 blocks

Transfer reference
frame as texture

Find minimum
Eq. (1)

P MB

Encode &
Reconstruct

Intermediate
Results

Reference
Frame

Merge
Intermediate

Results

Labelling and
Reduction
(Optional)

Calculate cost
of 4x4 blocks

Cost Surface

Minimum cost
and position

Fig. 2. Block diagram of the high-level view of the GPU-based mo-
tion estimation module (Vertex shader is not shown in the figure).

The address calculation, such as the position of reference block
and intermediate result, is performed by the vertex processor and
the rasterization interpolates them for each fragment. The fragment
processor is responsible for cost calculation. The workload is dis-
tributed over vertex processor and fragment processor.

R1 R2 R3 R4 R5 R6 R7 R8

C1

C2

C3

C4

C2 C2 C2

C3 C3 C3

C4 C4 C4

C1 C1 C1

PIXEL 1 PIXEL 2

(a) Absolute difference calculation
of four reference positions.

+

+

+

SAD1 SAD2 SAD3 SAD4=

AD4,4 AD5,4 AD6,4 AD7,4

AD3,4 AD4,3 AD5,3 AD6,3

AD2,2 AD3,2 AD4,2 AD5,2

AD1,1 AD2,1 AD3,1 AD4,1

(b) Summation of four vectors
to get the SAD.

Fig. 3. Demonstration of SAD calculation and its data packing.

4. IMPLEMENTATION

In this section, we describe in details how our implementation leads
to data-level parallelism and hence efficient SAD computation using
GPU and how arithmetic intensity can be adjusted by our implemen-
tation. Arithmetic intensity is formally defined as operation per word
transferred. With higher arithmetic intensity, more computation can
be performed while a word is fetched from memory. Our implemen-
tation is based on OpenGL as this is a cross-platform API and all the
shaders are written in Cg language.

4.1. Data-level Parallelism

In section 3.2, we presented how different parts of the ME are repre-
sented in graphics sense. The current MB is decomposed into sixteen
4x4 matrices as float4x4 so that we can use the matrix manipu-
lation routines in GPU. On the other hand, the reference frames are

loaded into the texture memory once so that the fragment program
fetches the pixel values for calculation. GL RGBA8 is chosen as the
internal data type for storing the reference frames. Four luminance
values are packed in a pixel with 8-bit per channel. This provides
the minimum sufficient precision needed. Also, data packing is pre-
ferred to take advantage of data-level parallelism and better band-
width utilization, because we can process and fetch more data at a
time. However, ME need to access a chunk of values at any position.
With this packing strategy, it restricts the access to the multiple of
four position only.

To solve this problem, the fragment program fetches two adja-
cent pixels (eight luminance values) from texture and performs cal-
culation of four reference positions in a single pass. A 1D demon-
stration is illustrated in Figure 3(a). Pixel 1 and 2 contain eight
values in reference frame, Ri, where i = 1, 2, ..., 8 and given the
current block as Cj where j = 1, 2, 3, 4. By making use of swiz-
zle operator, we compute absolute difference on each component
of current block against the reference frame as shown in the figure
and obtain four vectors containing the absolute difference, ADi, j
where i and j indicate the position corresponding to reference frame
and current block respectively, i = 1, 2, ..., 8 and j = 1, 2, 3, 4 in
Figure 3(b). Then, we can compute the four SADs corresponding to
reference position R1, R2, R3 and R4 by summing these four vec-
tors as shown in Figure 3(b). The result will render to frame buffer.
This method solves the problem of restricted access and provides a
certain degree of parallelism.

4.2. Adjustable Arithmetic Intensity

The performance of the GPU-based method is usually measured by
the arithmetic intensity. It is good to provide a mechanism to adjust
the arithmetic intensity depending on the processing ability of hard-
ware. In the proposed method, the arithmetic intensity can be ad-
justed by processing more 4x4 blocks per rendering pass. Referring
to Figure 3(a), besides C1, C2, C3 and C4, we can also compute
the absolute difference for C5, C6, C7 and C8 with Ri and ren-
der the results to another rendering target. This approach results in
more output values so it needs to use with multiple rendering target
(MRT), which allows more than one RGBA pixels output in each
pass. Then, in the merging step, the results are added together by
offsetting the textures. We perform more more arithmetic operations
with the same number of texture operations. However, the increase
in arithmetic intensity is bounded by the limited number of MRTs
available in current graphics hardware, which is up to four.

5. PERFORMANCE EVALUATION

We now examine the performance of the proposed GPU-based im-
plementation on both consumer-level (Nvidia GeForce 6600GT AGP)
and high-end (GeForce 7800GT PCIe) graphics cards running ver-
sion 81.98 driver on Windows XP. Extensive tests have been per-
formed on a PC with Intel Pentium 4 3.2GHz processor and 1 GB
DDR2 memory. Another PC with Intel Pentium 4 1.8GHz proces-
sor and 1GB RDRAM memory is used as reference, and all results
will be normalized by the results of this PC. Since the existing GPU-
based implementations are not applicable for H.264/AVC, the com-
parison will not be given. Experiments are conducted to evaluate the
performance of the proposed GPU implementation, the impact on
limited download bandwidth and the performance change by adjust-
ing the arithmetic intensity.

Figure 4 provides a breakdown of the performance of proposed
GPU implementation. The execution time is the user time measured

2051

0
2
4
6
8

10
12
14
16
18
20
22
24

720p±32 720p±64 720p±128 720p±256 1080p±64 1080p±128 1080p±256

R
el

at
iv

e
P

e r
fo

rm
an

ce

P4 1.8GHz SIMD-optimized P4 3.2GHz SIMD-optimized GF6600GT Readback
GF7800GT Readback GF6600GT w/o readback GF7800GT w/o readback

P4-1.8GHz P4-3.2GHz
GF6600GT
Readback

GF7800GT
Readback

GF6600GT
w/o readback

GF7800GT
w/o readback

1080p ± 256 256197 142196 42962 25428 29050 12156

1080p ± 128 71331 39146 13706 7975 8768 3706

1080p ± 64 19909 10359 4800 2996 2756 1603

720p ± 256 33684 15787 5271 3215 3509 1593

720p ± 128 11268 5184 2025 1290 1275 665

720p ± 64 3134 1481 778 615 459 396

720p ± 32 847 400 378 343 247 359

Fig. 4. Comparison between the relative performance of CPU and GPU
implementation which is normalized by the Intel Pentium4 1.8GHz perfor-
mance. The table gives the average execution time for processing one frame
in millisecond (ms).

from the beginning to the end of ME. We can see the speed of P4-
3.2GHz shows constantly about two times faster than P4-1.8GHz in
different resolutions and search ranges. However, the speed of the
proposed GPU implementation with data readback shows ten times
and five times faster than the CPU implementation on P4-1.8GHz
and P4-3.2GHz respectively. We observed that the speed increases
with the search range because larger search range diminishes the
effect of setup overhead of graphics API.

To study how the download bandwidth (GPU to CPU) may affect
the overall performance, we simply perform same set of experiments
without readback the data from GPU to CPU. The speed is doubled
comparing with the previous experiments with the data readback in
both graphics cards tested. Although the newest PCIe is expected to
provide higher readback bandwidth than AGP, however, they show
similar readback bandwidth of float texture in RGBA format (around
500 MB/sec) in GPUbench [8], which is a benchmark tool for GPU.
This is the main bottleneck in most general purpose computation on
GPU which needs to read the data for further processing.

Finally, we adjust the arithmetic intensity by using our method
and study the performance impacts. By increasing the number of
4x4 blocks processed in a single pass, the average execution time
needed on GeForce 7800GT PCIe is shown in Figure 5. We found
that the best performance of GeForce 7800GT PCIe can be achieved
when two 4x4 blocks are processed in a single pass with two render-
ing targets. We have the arithmetic intensity about 10:1. To further
increase the number of 4x4 blocks processed in a single pass, the
speed decreases since the GPU is overloaded. The proposed GPU
implementation allows the performance optimization by adjusting
the arithmetic intensity.

6. CONCLUSIONS

We have presented a GPU-based ME implementation to offload the
computation burden from CPU to GPU which is applicable in the
latest H.264/AVC video coding standard. It provides a mechanism
to adjust the arithmetic intensity to maximize the performance on
different GPUs. We have implemented the proposed ME module
and demonstrated its effectiveness with both the consumer-level and

0

10
20

30
40

50

Four 4x4 blocks Two 4x4 blocks One 4x4 block

E
xe

cu
tio

n
tim

e
(s

ec
)

Fig. 5. Comparison between the execution time of performing motion es-
timation on 1080p format and ±256 search range with different number of
4x4 blocks processed in a single pass.

high-end graphics cards. Both of them outperform our optimized
CPU implementation, and achieve about ten times speed-up. The
performance boost is currently limited by the download bandwidth
as shown in our experiments. This bottleneck is expected to be al-
leviated with the increasing bandwidth of PCIe bus in the future.
With our GPU-based ME module, an alternative way to speed-up
the computationally intensive encoding processing by utilizing the
processing power of GPU is provided.

Acknowledgment
This work has been supported in part by the Innovation and Technol-
ogy Commission (project no. ITS/122/03 and project no. GHP/033/05)
and Research Grants Council (DAG04/05.EG34) of the Hong Kong
Special Administrative Region, China.

7. REFERENCES

[1] Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG,
Draft ITU-T recommendation and final draft international stan-
dard of joint video specifiction (ITU-T Rec. H.264/ISO/IEC 14
496-10 AVC), May 2003, JVT-G050.

[2] Guobin Shen, Guang-Ping Gao, Shipeng Li, Heung-Yeung
Shum, and Ya-Qin Zhang, “Accelerate video decoding with
generic GPU,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 15, no. 5, pp. 685–693, May 2005.

[3] Jianqing Wang and Tien-Tsin Wong and Pheng-
Rnn Heng and Chi-Sing Leung, “Dis-
crete Wavelet Transform on GPU,” May 2004,
http://www.cse.cuhk.edu.hk/ ttwong/demo/dwtgpu/dwtgpu.html.

[4] Bo Fang, Guobin Shen, Shipeng Li, and Huifang Chen, “Tech-
niques for efficient DCT/IDCT implementation on generic
GPU,” in Proceedings of the IEEE International Symposium
on Circuits and Systems, May 2005, vol. 2, pp. 1126–1129.

[5] Francis Kelly and Anil Kokaram, “General purpose graphics
hardware for accelerating motion estimation,” in Irish Machine
Vision and Image Processing Conference (IMVIP), Sept. 2003.

[6] Francis Kelly and Anil Kokaram, “Fast image interpolation
for motion estimation using graphics hardware,” in IS&T/SPIE
Electronic Imaging - Real-Time Imaging VIII, May 2004, vol.
5297, pp. 184–194.

[7] Matt Pharr and Randima Fernando, GPU Gems 2: Program-
ming Techniques for High-Performance Graphics and General-
Purpose Computation, Addison Wesley Professional, 2005.

[8] Ian Buck, Kayvon Fatahalian, and Pat Hanrahan, “GPUBench:
Evaluating gpu performance for numerical and scientific appli-
cations,” in ACM Workshop on General Purpose Computing on
Graphics Processors, Aug. 2004.

2052

