
OPTIMIZING SEGMENT CACHING FOR PEER-TO-PEER ON-DEMAND STREAMING

Ho-Shing Tang S.-H. Gary Chan Haochao Li

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology

Clear Water Bay, Kowloon, Hong Kong
{wilsont, gchan, cs lhcaa}@cse.ust.hk

ABSTRACT

In peer-to-peer (P2P) on-demand streaming applications,
multimedia content is divided into segments and peers can
seek any segments for viewing at anytime. Since different
segments may be of different popularity, random segment
caching would lead to a segment popularity-supply mis-
match, and hence an uneven workload distribution among
peers. Some popular segments may be far from peers, lead-
ing to inefficient search and streaming. In this paper, we study
optimal segment caching for P2P on-demand streaming.

We first state the segment caching optimization problem,
and propose a centralized heuristic to solve it, which serves
as a benchmark for other algorithms. We then propose a
distributed caching algorithm termed POPCA (POPularity-
based Caching Algorithm), in which each peer adaptively and
independently replaces segments to minimize the popularity-
supply discrepancy and the segment distance from peers.
Through simulations, we show that POPCA achieves near-
optimal performance, and lower peer workload and segment
distance as compared with other schemes.

1. INTRODUCTION

In a P2P on-demand streaming network, there is a server (or
a cluster of servers) with all the segments of user interest,
and a pool of peers who may randomly seek any segments at
anytime.1 Each peer locally caches a number of segments de-
pending on their disk or memory caching capacity. If cached
properly, segments can be found directly in other peers most
of the time; the server is contacted only when the search is
unsuccessful. This is how the server load can be significantly
reduced.

The segment caching optimization problem is that given
limited local storage and heterogeneous segment popularity,
we need to decide which segments to cache in each peer to

This work was supported, in part, by the General Research Fund from
the Research Grant Council of the Hong Kong Special Administrative Re-
gion, China (611107), and the Hong Kong Innovation Technology Fund
(ITS/013/08).

1In this paper, we use “user” and “peer” interchangeably. Moreover, we
use “seek” and “search” interchangeably.

ensure that the popularity and the supply of segments are
matched, and the peer can reach close segment suppliers.
Since we focus on segment caching, other issues such as
buffering, scheduling, and stream optimization through, for
example, network coding are beyond the scope of this work.
We consider segment caching for a single streaming session
(i.e. a movie or an interactive window of a time-shift TV
channel), though, multi-sessions can easily be supported by
replicating multiple instances of our algorithm.

Many P2P on-demand streaming systems adopt the slid-
ing window caching strategy, in which each peer caches
segments within a sliding window of its play-point [1]. The
advantage of this strategy is that peers watching the same
portion of content can share. The supply implicitly matches
the popularity (or demand) of segments. However, as a peer
caches segments according to its play-point, the original
cached segments will no longer be available if the peer seeks
out some other positions of the media content. Performing a
seek operation will lead to severe disruption of the multime-
dia stream to all of the streaming children. Therefore, sliding
window caching does not work well under frequent seeks.

To address the above, peers can store segments statically
(independent of the play-points) in their local storage depend-
ing on their caching capacity. A straight-forward approach in
static caching is to randomly cache segments in storage [2].
However, as mentioned before, random caching can lead to
uneven workload among peers due to heterogeneous segment
popularity. Our caching algorithm, POPCA, is a popularity-
based static caching approach, which is robust to frequent
seeks and achieves more uniform workload among peers.

Some static caching schemes are based on the segment
popularity result in lower demand-supply discrepancy of seg-
ments [3]. However, without minimizing the segment dis-
tance, the above caching schemes may not lead to efficient
P2P search and streaming.

This paper is organized as follows. In Section 2 we
present a centralized algorithm. We discuss the distributed
segment caching altorithm POPCA in Section 3. In Section 4
we evaluate the performance of the proposed algorithm with
illustrative simulation results. We conclude in Section 5.

810978-1-4244-4291-1/09/$25.00 ©2009 IEEE ICME 2009

2. A CENTRALIZED CACHING SOLUTION

In this section, we present a centralized solution based on
global knowledge. The goal of segment caching optimization
is to determine, for each peer, which segments to cache such
that the segment distance is minimized under the constraints
of demand-supply match.

Let V , U and S be the set of peers, the set of servers and
the set of segments, respectively, where U ⊆ V , |V| = N and
|S| = S. The servers cached all the segments. Denote dij

the distance between peers i and j, where i, j ∈ V . Let ps be
the popularity or demand of segment s (the probability of a
peer accessing segment s), where

∑
s∈S ps = 1. Further let

qs be the supply of segment s (the fraction of peers caching
segment s in the network), where

∑
s∈S qs = 1. The 0-1

variable yijs indicates if peer i has some segment supplier j
caching segment s, where i ∈ V , j ∈ V , s ∈ S.

The goal is to minimize the average segment distance,
defined by min

∑
s∈S

∑
i∈V

∑
j∈V psdijyijs, such that the

demand-supply discrepancy of segment s match within the

scope of access-balancing, defined by
∣∣∣ps−qs

qs

∣∣∣ < ε.

To illustrate, let us start with a simple case where a sin-
gle segment needs to be cached in k peers in order to mini-
mize the segment distance. This problem is the same as the
k-median problem, which selects k facilities from the set of
facilities F to open such that the sum of distances between
nodes and their closest opened facilities is minimized. The k-
median problem is well-studied and can be solved by heuris-
tics [4].

Now we generalize the algorithm for all segments, by run-
ning the k-median heuristic S times, where S is the number
of segments. Let ri be the residual caching capacity of peer
i, C be the sum of caching capacity of all peers, and F be
the set of peers whose residual caching capacity is greater
than zero. The centralized caching algorithm (as presented in
Algorithm 1) iterates through each segment following a de-
scending order of segment popularity. By starting with more
popular segments (i.e. more weighted segments in the op-
timization statement), the algorithm is more likely to yield
a better optimization value. In each iteration, the k-median
heuristic is run to determine which k peers cache the segment,
where the k peers are selected from the set of peers with pos-
itive residual capacity, and k is proportional to the segment
popularity and the number of segment suppliers so that more
popular segments are cached by a larger number of peers.

As the centralized caching algorithm requires global
knowledge and needs to be run for every change of the
segment popularity, it is not scalable to a large group and
dynamic segment popularity. Hence, we will use it as a per-
formance benchmark for our distributed algorithm POPCA.

Algorithm 1 CENTRALIZEDCACHING

1: S ←sortSegmentByPopularity(S, p)
2: for all s ∈ S do
3: F ← ∀i ∩ (ri > 0)
4: k ←min(pshC,N)
5: /* Input: V,F , k, d; Output: x, r */

kMedianHeuristic(V,F , k, d, x, r)
6: end for

3. POPCA: DISTRIBUTED POPULARITY-BASED
SEGMENT CACHING

In this section, we present the details of our distributed
popularity-based segment caching algorithm, POPCA, which
is run adaptively and independently by peers. Each peer runs
the segment replacement algorithm adpatively and indepen-
dently, so as to (i) match the segment supply to the popularity,
and (ii) minimize the segment distance, elaborated as follows:

Matching supply and popularity: Let Ssurplus be the set
of over-supplied segments, i.e. s ∈ Ssurplus iff q̂s−p̂s

q̂s
> ε.

Similarly, let Sdeficit be the set of under-supplied segments,
i.e. s ∈ Sdeficit iff p̂s−q̂s

q̂s
> ε. The popularity and the supply

of each segment can be estimated by means of distributed av-
eraging [5]. For each peer, segments can either be cached or
not cached, as indicated by the sets Scached and Snot−cached.
In order to match the supply with the popularity, each peer
replaces segment s with a replacement probability PR

s and
cache segment s′ with a cache probability PC

s′ .
The rationale of the replacement probability PR

s and the
cache probability PC

s′ is as follows. For an over-supplied
segment s, each of the Nq̂s peers caching segment s inde-
pendently replaces the segment with a probability PR

s , so
that N(q̂s − p̂s) copies are replaced and eventually only Np̂s

copies are left in the network. To match the demand and
supply, the following equation needs to be satisfied: Nq̂s ·
PR

s = N(q̂s−p̂s). Thus, the replacement probability is PR
s =

q̂s−p̂s

q̂s
,∀s ∈ Ssurplus ∩ Scached.

A peer with residual capacity will cache an under-
supplied segment s′. If the popularity-supply discrepancy of
a segment is large, the segment will be cached with a higher
probability. The cache probability should be proportional
to the popularity-supply discrepancy, i.e. we take PC

s′ =
p̂s′− ˆqs′∑

i∈Sdeficit∩Snot−cached
(p̂i−q̂i)

, ∀s′ ∈ Sdeficit∩Snot−cached.

Minimizing segment distance: Let Smatch be the set of
popularity-supply matched segments, i.e. s ∈ Smatch iff∣∣∣ p̂s−q̂s

q̂s

∣∣∣ < ε, W be a subset of all peers where W ⊆ V ,

D
(1)
ws be the distance between peer w and its closest segment

supplier with segment s, and D
(2)
ws be the distance between

peer w and its second closest segment supplier with segment
s, where w ∈ W .

We explain how to compute the cost of replacing segment

811

i x

w

(a) replace segment s at peer i

y i

w

(b) cache segment s’ at peer i

d
iw

D
ws’

(1)D
ws

(2)
d

iw

Fig. 1. An illustration of computing cost of replacing segment
s at peer i, and benefit of caching segment s′ at peer i.

s, and the benefit of caching segment s′ at peer i. Let x be
the original second closest segment supplier of w for seg-
ment s, and y be the original closest segment supplier of w
for segment s. To compute the cost of replacing segment s
(Figure 1a), where s ∈ Smatch ∩ Scached, a subset of peers
W is examined. If peer i is the closest segment supplier of
peer w for segment s, replacing s at the peer i will result in
peer w switching to x. The segment distance for this is in-
creased by D

(2)
ws − diw. Thus, the cost of replacing segment s

is cost(s) = p̂s ·
∑

w∈W max
(
D

(2)
ws − diw, 0

)
.

Similarly, to compute the benefit of caching segment
s′ (Figure 1b), s′ ∈ Smatch ∩ Snot−cached, a subset of
peers W is examined. If the distance between i and w
is less than the distance between y and w, caching s′ at
peer i will result in peer w switching to peer i for seg-
ment s′. The segment distance for this is decreased by
D

(1)
ws′ − diw. Thus, the benefit of caching segment s′ is

benefit(s′) = p̂s′ ·
∑

w∈W max
(
D

(1)
ws′ − diw, 0

)
.

The score of replacing segment s by s′ is given as
scoress′ = benefit(s′) − cost(s). If the score of a seg-
ment replacement is greater than zero, it is beneficial to do
that as the segment distance is likely to reduce. In the score
computation, a peer only needs to examine a subset of peers
due to scalability.

4. PERFORMANCE EVALUATION

In this section, we evaluate POPCA through simulations. In
our simualtion, BRITE is used to generate an Internet-like
topology (with more than 3, 000 nodes and 10, 000 links).
Users arrive according to a Poisson process with rate λ
peers/seconds. Their lifetimes are exponentially distributed
with mean τ seconds, independent of each other. To sim-
ulate peer churn, peers rejoin the network after leaving the
network. We consider that segment popularity follows a Zipf
distribution.

We define the following performance metrics to evaluate
segment caching schemes:

(1) Segment distance: It is the average distance be-
tween a peer and the closest segment supplier, defined by∑

i

∑
s p̂sD

(1)
is /N.

(2) Search latency: It represents the average time elapsed
between executing the search and returning a set of peers by

the search. We assume that the requestor will contact the
server if the search is not successful.

(3) Hit rate: It is the probability that a search is successful.
Since our system is dynamic with joins and leaves, segments
may not always be found.

We compare POPCA with traditional schemes given by
sliding window caching and random caching using static stor-
age, and centralized popularity-based caching as presented in
Section 2. They are denoted as Random, Sliding, and Central-
ized, respectively. The centralized popularity-based caching
is served as an optimum for performance comparison.

Besides the client-server approach, we compare POPCA
with two other reactive-based segment search approaches,
DHT-PNS and biased random walk, explained as follows:

(1) DHT-PNS: DHT-PNS is a locality-aware Chord-based
DHT implementation (by using Proximity Neighbor Selec-
tion). It applies more flexiable routing table construction in
which any close nodes whose identifier is in [s+2i−1, s+2i)
can be filled in the entry of i-th finger. In our simulation, a
(log S)-bit key is used in the DHT network (instead of a fixed-
length key, e.g. 160-bit key) to give a more optimistic result
for its search latency.

(2) Biased random walk: It is an unstructured P2P search.
In its overlay construction, high-capacity peers (in our simu-
lations, capacity refers to caching capacity) connects to more
neighbors. In search operation, biased random walk is per-
formed towards high-capacity peers. The maximum number
of neighbors is set to 30 and search scope is set to 10.

Unless otherwise stated, the following default settings are
used: the number of segments (S) is 128, the parameter for
caching capacity (p) is 0.4, the parameter for segment popu-
larity (θ) is 1, ε is 0.1, |W| is 10, the maximum number of
entries in a segment table row is 5, the segment table adver-
tising period is 60 seconds, the number of overlay neighbors
is 4, τ is 7, 200, and the average number of users (N or λτ) is
1, 024 (i.e. λ is 0.1422). Each peer runs the segment replace-
ment algorithm every 5 minutes.

In Figure 2, we show the segment distance versus λτ
given different segment caching strategies. When the num-
ber of peers increases, the segment distance decreases. This
is because there is a higher number of copies for each seg-
ment, so it is more likely that segments are cached in close
peers. POPCA achieves substantially lower segment distance
than random and sliding window caching, and is close to
centralized segment caching. This shows that POPCA pro-
vides efficient search and streaming for on-demand streaming
service. Due to heavier weights on popular segments and
minimization of segment distance, POPCA achieves close to
optimal performance.

We compare in Figure 3 the search latency of POPCA and
other schemes versus λτ . As the number of peers increases,
the search latency remains flat. This shows that the search
latency is independent of the number of peers. POPCA
has near-instant search latency because searches are only

812

64 128 256 512 1024 2048
50

60

70

80

90

100

110

120

130

average number of peers

se
gm

en
t d

is
ta

nc
e

(m
s)

Random
Sliding
POPCA
Centralized

Fig. 2. Segment distance against number of peers using dif-
ferent caching algorithms.

64 128 256 512 1024 2048
0

200

400

600

800

1000

1200

average number of peers

se
ar

ch
 la

te
nc

y
(m

s)

Biased random walk
DHT−PNS
Client−server
POPCA

Fig. 3. Search latency against number of peers using different
search algorithms.

achieved by a local segment table lookup. In client-server,
peers always contact the server to locate segments, account-
ing for a single round-trip search latency. The search latencies
of DHT-PNS and biased random walk are much higher as the
searches have to visit multiple intermediate peers.

Figure 4 shows the hit rate achieved by different schemes
versus λτ . When the number of segments increases, the num-
ber of copies for each segment decreases. Thus, the hit rate
drops. DHT-PNS has the highest hit rate since DHT is more
efficient in locating rare objects, while biased random walk
experiences substantially lower hit rate. POPCA achieves a
high hit rate, comparable to DHT-PNS. With high hit rate,
POPCA can significantly reduce the workload of the server.

5. CONCLUSION

In providing P2P on-demand streaming, various segments of
different popularity are continuously cached and accessed in
peers. A critical problem to address is which segments to
cache in order to achieve low segment distance. We study the
segment caching optimization problem and propose the dis-

4 8 16 32 64 128 256 512
0.7

0.75

0.8

0.85

0.9

0.95

1

number of segments

hi
t r

at
e

DHT−PNS
POPCA
Biased random walk

Fig. 4. Hit rate against number of segments using different
search algorithms.

tributed algorithm, POPCA, to solve the problem. Through
simulations, we show that POPCA has near-optimal per-
formance, and achieves, as compared with other caching
schemes, substantially lower segment distance and search
latency, while maintaining a high hit rate.

6. REFERENCES

[1] T. T. Do, K. A. Hua, and M. A. Tantaoui, “P2VoD:
Providing fault tolerant video-on-demand streaming in
peer-to-peer environment,” in Proceedings of IEEE In-
ternational Conference on Communications (ICC), Paris,
France, June 2004, pp. 1467–1472.

[2] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat,
“Bullet: High bandwidth data dissemination using an
overlay mesh,” in Proceedings of the 19th ACM Sym-
posium on Operating Systems Principles, The Sagamore,
Bolton Landing (Lake George), New York, Oct. 2003, pp.
282–297.

[3] Wai-Pun Ken Yiu, Xing Jin, and Shueng-Han Gary Chan,
“VMesh: Distributed segment storage for peer-to-peer in-
teractive video streaming,” IEEE Journal on Selected
Areas in Communications (JSAC) special issue on Ad-
vances in Peer-to-Peer Streaming Systems, vol. 25, no.
9, pp. 1717–31, Dec. 2007.

[4] Vijay Arya, Naveen Garg, Rohit Khandekar, Kamesh
Munagala, and Vinayaka Pandit, “Local search heuristic
for k-median and facility location problems,” in Proceed-
ings of ACM Symposium on Theory of Computing, 2001,
pp. 21–29.

[5] Mortada Mehyar, Demetri Spanos, John Pongsajapan,
Steven H. Low, and Richard M. Murray, “Asyn-
chronous distributed averaging on communication net-
works,” IEEE/ACM Transactions on Networking, vol. 15,
no. 3, pp. 512–520, June 2007.

813

