
PATTERN-PUSH: A LOW-DELAY MESH-PUSH SCHEDULING
FOR LIVE PEER-TO-PEER STREAMING

Guifeng Zheng∗ S.-H. Gary Chan† Xiaonan Luo‡ Ali C. Begen§

∗School of Software, Sun Yat-Sen University
Key Laboratory of Digital Life (Sun Yat-sen University), Ministry of Education, China

†Department of Computer Science & Engineering
The Hong Kong University of Science & Technology, Hong Kong China

‡Institute of Computer Application, Sun Yat-Sen University
Key Laboratory of Digital Life (Sun Yat-sen University), Ministry of Education, China

§Video & Content Platforms Research & Advanced Development
Cisco Systems, Inc., San Jose, CA 95134 USA

ABSTRACT

In live peer-to-peer (P2P) streaming, each peer (child) has a num-
ber of supplying parents whose packets have to be scheduled and
delivered in time for continuous playback at the child. It is chal-
lenging to develop a scheduling algorithm that achieves low delay
given heterogeneous bandwidth, propagation delays and available
content in all the parents. This paper proposes a novel, simple and
effective scheduling scheme called Pattern-Push. As compared to
the traditional mesh-pull, pattern-push does not require continuous
buffermap advertisements from the parents, and operates on the
packet level instead of the larger segment level. In pattern-push,
each parent pushes its packets according to a pattern as indicated
by a starting packet ID and a cycle bitmap. Pattern-push requires
only minimal feedback from the child, as the pattern only needs
to be changed when the child detects a marked change in network
conditions or its parents. Simulation results show that pattern-push
achieves a significantly lower delay and overhead as compared with
both traditional and recent scheduling algorithms proposed in the
literature.

Index Terms— Live peer-to-peer streaming, mesh-based over-
lay, packet scheduling

1. INTRODUCTION

In recent years, there have been many live peer-to-peer (P2P)
streaming systems implemented and deployed in the Internet. In
order to improve the robustness against node churns and meet a
certain streaming bandwidth requirement, P2P streaming networks
are usually built on a mesh [1–4]. In a mesh overlay, each peer
connects to some other peers as its neighbors known as supply
parents. By retrieving packets from its parents given the mutual
end-to-end bandwidth, a child can aggregate and assemble these

This work was supported, in part, by the Cisco University Research
Program Fund, a corporate advised fund of Silicon Valley Community
Foundation (SVCF08/09.EG01), the Hong Kong Innovation Technology
Fund (ITS/013/08), and the National Science Fund of China (60525213,
U0735001), the 863 Program of China (2007AA01Z236), the Start Plan for
Young Teachers of Project 985 of China (3171910), the National Project of
Scientific and Technical Supporting Programs (2007BAH13B01).

Corresponding author: Xiaonan Luo (lnslxn@mail.sysu.edu.cn).

packets in a timely and orderly manner to achieve stream continuity.
The mechanism that determines which parents should deliver which
packets is called a scheduling algorithm.

For live applications such as P2P live TV, the overall delay from
the source to the peer is an important consideration. Such delay
depends on scheduling (scheduling delay) due to the heterogeneous
bandwidth, available content and propagation delays between the
parents and the child. We will focus in this paper on reducing such
delay through the design of scheduling algorithm.

Given a mesh overlay and a set of parents, the scheduling
problem is how to schedule the packets in each parent to minimize
the playback delay of the child with stream continuity, given the
heterogeneous bandwidth, propagation delay and contents of the
parents. Traditionally, scheduling algorithm is pull-based, where
parents first send their buffer contents in bitmap to the child. Based
on that, a child makes decision on which particular packets to “pull”
from the parents according to, for example, the rarest-first algorithm.
Such an algorithm may not guarantee in-order delivery (and hence
continuity). Furthermore, to reduce control overhead in exchanging
buffer bitmaps, the parents usually advertise their contents only
when their bitmap is reasonably large. This increases the scheduling
delay.

We propose and study in this paper a novel, simple and effective
packet scheduling algorithm called Pattern-Push, where parents push
packets according to a pattern as indicated by a starting packet ID
and a cycle bit pattern. The pattern is designed so as to achieve a
smooth playback with low delay. As long as the network conditions
do not change much, such pattern does not need to be adjusted,
which helps reduce the feedback overhead. To calculate the pattern
in pattern-push (such as upon peer arrival or a significant change in
network conditions), the parents first push their latest packets to the
child. Based on the information, the child computes new patterns
and feeds back to its parents. With the child feedback, a parent starts
from the new starting packet and pushes packets according to the
new bitmap cycle by cycle to the child.

We address how to derive the pattern for packet scheduling in
pattern-push, which achieves the following:

• In-order and maximal packet arrival: The pattern is designed
so that packets can arrive contiguously at the child, despite the
heterogeneous bandwidth, propagation delay and available
contents at the parents, as long as each parent starts at the

1158978-1-4244-4291-1/09/$25.00 ©2009 IEEE ICME 2009

specified packet and pushes according to the pattern in a
cycle (assuming no loss). A child would not get out-of-order
packets, and if there is no loss, there would be no holes in the
buffer, resulting in a maximal delivery.

• Absence of packet redundancy: The pattern is designed so
that each packet is pushed by only one parent, even though
the parents push packets in a distributed manner. Therefore,
bandwidth is used efficiently.

• Hole recovery at child: Due to occasional packet loss or
fluctuating network conditions, packets may not arrive at a
child by the playback deadline, i.e., the child experiences
holes. Pattern-push fixes the holes with backup bandwidth
from some parents (which may be the child’s streaming
parents).

In this work, we present how to design the pattern. Through NS-
2 simulations, we show that pattern-push achieves a substantially
lower delay than other traditional or recent schemes. Pattern-push
is simple to implement. Our study shows that pattern-push achieves
low overhead, and efficiently utilizes the end-to-end bandwidth.

We briefly discuss related work below. Content scheduling may
be roughly divided into four categories: tree-push, mesh-pull, hybrid
pull-push, and mesh-push.

In tree-based push (such as SplitStream [4]), the peers form
one or more application-layer multicast trees. Pattern-push is not
based on this multi-tree approach, and hence each peer may have
different number of parents depending on the end-to-end bandwidth.
It also does not require a certain minimum end-to-end bandwidth,
and the pattern can be optimized (as opposed to be fixed in tree-
push) according to the end-to-end bandwidth between a child and
its parents. Its mesh construction is separated from the scheduling,
making it more flexible in overlay construction and optimization.
The pattern can also be locally and dynamically adapted in a child
according to the network conditions.

There has been much work on mesh-pull, which basically
emulates BitTorrent with additional timing deadlines [3, 5]. In
terms of scheduling algorithms, Chainsaw [5] uses a purely random
strategy to decide what to request from neighbors, while DONet [3]
employ a rarest-first strategy by first scheduling the parents with the
most surplus bandwidth and available time. As compared with mesh-
pull, pattern-push does not require buffer bitmap or explicit pull
requests on per-packet basis. A parent actively pushes its packets
to child, and feedback is required only when network conditions
have substantially changed. Therefore, it achieves a lower delay and
control overhead.

Recently, pull-push has been proposed, which makes use of
tree-push for data delivery and mesh-pull for missing packets [6].
Though it is more robust to node dynamics, the approach shares
similar weaknesses with the tree-push approach as discussed before.
Due to the exchange of buffer bitmap and pull mechanism, it has
higher delay than the tree-push approach. As compared with this
approach, pattern-push pushes packets according to some calculated
pattern that is adaptive to heterogeneous and dynamic bandwidth.
There is no bitmap exchange and minimal feedback, resulting in
lower delay and better bandwidth utilization.

In mesh-push, packets are pushed without explicit request from a
child. A nice example is R2, which uses network coding to randomly
code segments and push downstream [7]. A child can decode all its
packets after collecting a sufficient number of independently coded
blocks. R2 is shown to achieve lower delay than mesh-pull. As
compared with R2, pattern-push is much simpler to implement and

has lower processing overhead. Due to its smaller scheduling block,
pattern-push has a lower packet waiting time, and hence, delay.

The remainder of this paper is organized as follows. We present
in Section 2 our pattern-based scheduling algorithm and an example
on how to derive the pattern. In Section 3, we describe our
simulation environments and evaluate pattern-push by comparing it
with other schemes. We conclude in Section 4.

2. PATTERN-PUSH SCHEDULING

Given the bandwidth and propagation delay between a child and its
parents, a good scheduling should efficiently utilize the bandwidth
and balance the propagation delay so that packets arrive in-order
for smooth playback. Consequently, minimal scheduling delay is
achieved. This is the design principle of pattern-push.

There are several features of pattern-push to achieve low delay:

• Active push: In pattern-push, once a parent receives a packet,
it actively forwards the packet to its child according to a
preset pattern of its child. Therefore, as compared with other
pull-based approaches with bitmap exchange, the buffering
delay, and hence the overall packet delay, is significantly
reduced.

• Pattern-based: In order to indicate which packets are needed
from a particular parent with minimal control traffic, pattern-
push uses a pattern, which is simply a short bitmap (of a cy-
cle) and a starting packet ID. With the parents following the
pattern, duplicate packets are eliminated. The pattern is de-
signed in such a way that the packets arrive contiguously (in
order), so that smooth playback is guaranteed and reassembly
delay is minimized.

• Recovery parents: Packet loss is inevitable due to fluctuating
network conditions and node dynamics. To recover the lost
packets, a child needs backup parents (which may or may
not be its streaming parents). Upon detecting holes (packets
that are late for their arrival or miss their playback deadlines),
the child requests them from the backup parents. To know
which backup parent has the missing packets, a backup
parent piggybacks its buffer bitmap on its normally delivered
packets. Note that due to our low delay, the buffer bitmap is
small (several bits) as it only needs to indicate a short range
of available packets.

The main procedures of pattern-push are shown in Fig. 1, which are
elaborated as follows:

1. Start up: Each parent pushes its latest received packet, say z,
to the child (at time X). The child receives the packet at time
A(z).

2. Schedule point: A new pattern is generated whenever there
is a major change in the network conditions, e.g., when the
parents or the end-to-end bandwidths have changed. At the
scheduling point (at time T), the scheduling algorithm is
calculated.

3. Packet delivery: After a new pattern (in terms of cycle bitmap
and starting packet ID) is generated, the child feeds it back to
the respective parent. Upon receiving the pattern (at time Y),
the parent pushes its packets according to it.

4. Hole fixing/recovery: A child keeps some backup parents,
which are the nodes with high bandwidth and newer content.
Note that backup parents may also be streaming parents with
some of their bandwidths reserved for packet recovery. They

1159

Fig. 1. Procedure of pattern-push for a child.

piggyback their pushed packets with several bits to indicate
their packet availability. Upon detecting a hole, the child
sends requests to its backup parents for recovery.

We discuss now how to derive the bit pattern. Consider that the
end-to-end bandwidth is quantized to some unit of bitrate (say, 10
kbps), so that all parent bandwidths are quantized into some integral
units. As mentioned, the scheduling pattern of a parent run at the
scheduling point is to ensure timely and contiguous packet arrival
at the child given the bandwidth and delay. This pattern consists
of a starting packet ID and cycle bitmap. For example, if a parent
receives a pattern with the starting packet 7 and bit pattern 101, it
will push packets 7, 9, 10, 12, and so on.

The length of cycle bitmap is the same for all parents, and
indicates the total number of packets the child receives in a cycle.
Due to its limited upstream bandwidth, a parent can only push a
certain limited number of packets in a cycle. This is given by the
number of assigned bits in the cycle for the parent. To save space,
the bit patterns may be encoded using run-length encoding.

There are some important symbols used in our derivations. The
video is of bandwidth R bits/s, and the packet size is S bits. The
normalization bit rate is u bits/s, and hence, R = mu, for some
m ∈ Z

+. For a child, let P be the set of parents that push source
packets to it. For each parent j ∈ P , let its propagation delay to the
child be Dj seconds, and its end-to-end bandwidth to serve the child
be Bj bits/s.

To ensure timely and contiguous packet delivery, there are two
steps to generate the cycle bitmap for each parent:

1. Calculation of the cycle length L:
We first calculate the cycle length of a pattern denoted as

L. For a child, let bBj be the normalized bandwidth of its

parent j (j ∈ P) given by bBj = �Bj/u�. Naturally, for

stream continuity, we need
P

j∈P bBj ≥ m. Further, let
n be the gcd (greatest common divisor) for all the parent

bandwidths of the child, as given by n = gcdj∈P bBj . Let bj

(j ∈ P) be some integer proportional to the parent bandwidth

as given by bj = bBj/n. The cycle length is then obtained
as L =

P
j∈P bj , and bj is the number of packets parent j

pushes in the cycle.

2. Pattern assignment:
Given L, the child then assigns bitmap to each parent. Under
normal stable network conditions and low packet loss, the
parents receive their packets continuously. A child may,
therefore, estimate the arrival time of a certain packet as
shown Fig. 1. It can then sort the arrival times of the
packets and assign the starting packet ID and bitmap to them
accordingly.

By referring to Fig. 1, the complete procedure of the pattern
assignment to a parent is detailed as follows:

(a) Estimation of packet arrival time for parent j:

For each parent j ∈ P , the child first estimates the
latest packet ID l received by the parent at point A
(See Fig. 1). Noting the time between X and Y is
T − A(z) + 2Dj + S/Bj , the latest packet index the
parent should have received at point Y is

l = z +

—
(T − A(z) + 2Dj +

S

Bj
)
R

S

�
. (1)

Starting from l, the child chooses bj packets, with the
arrival time of the kth packet at the child estimated as
(k = 0, 1, . . . , bj − 1)

A(l + k) = T + 2Dj + (k + 1)
S

Bj
. (2)

(b) Ordering of arrival time and sequence adjustment:

After computing the arrival times of the packets from
all the parents (a total of L packets), the child sorts
them in increasing order. Label the sorted packet
sequence q(i) and the corresponding parent sequence
f(i), i = 0, 1, . . . , L − 1. The sequence q(i) is
the possible packet order that can be pushed from
respective parent.

The child then adjusts packet sequence q(i) to elimi-
nate overlaps and gaps while guaranteeing arrival con-
tinuity and low delay. By observing that the entries of
q(i) are the latest packets from the parents, it achieves
that by adjusting some packet ID to be lower than the
entries as they are cached packets, and hence, available.

To adjust q(i), simply define H = mini(q(i)− i), and
update q(i) to q̄(i) = i + H ≤ q(i).

(c) Bitmap generation:

For the cycle bitmap, set (q̄(i) − q̄(0))th bit for parent
f(i) to 1, 0 ≤ i ≤ L − 1, with the starting packet
ID for all the parents q̄(0). Note that the first non-zero
bit of the bitmaps are different, so that the first packets
to push for all parents are different even they have the
same starting packet ID.

The algorithm can be applied to all peers in the overlay. For
example, the first hop peers get stream from the source node directly.
The pattern cycle bitmaps for these peers are all 1, i.e., the source
continuously pushes packets to them.

To take into account of delay jitter and peer churn, one may use
some averaging mechanism (e.g., the exponential averaging) on the
historical packet arrival statistics to calculate the propagation delay
and bandwidth. The patterns would be updated when the network
change exceeds a certain threshold, e.g., 20%.

3. ILLUSTRATIVE SIMULATION RESULTS

In this section, we present illustrative simulation results on pattern-
push and its comparisons with some recently studied scheduling
algorithms. We use NS-2 to evaluate the performance of our
system, and compare it with two recent schemes, DONet [3] and
Chainsaw [5]. They are both mesh-pull, which dynamically chooses
neighbors, exchange buffermap and request packet periodically. We

1160

 0

 0.5

 1

 1.5

 2

 40 60 80 100 120 140 160A
ve

ra
ge

 P
ac

ke
t D

el
ay

 (s
)

Number of Peers

Chainsaw
DONet

Pattern-push

 0
 10
 20
 30
 40
 50
 60
 70
 80

 40 60 80 100 120 140 160A
ve

ra
ge

 O
ve

rh
ea

d
(k

bp
s)

Number of Peers

Chainsaw
DONet

Pattern-push

(a) Average packet delay. (b) Control message overhead.

Fig. 2. Performance comparison with respect to the number of peers.

first discuss the simulation environment and metrics, followed by
some illustrative results.

In NS-2, we randomly attach a certain number of agents to the
BRITE nodes, and set one of them as the media source. We use 1000
nodes as the underlying topologies. Peers have an outbound band-
width of 1000-2500 kbps, and the streaming rate is 500 kbps with
packet size of 1000 bytes. The time intervals for buffermap exchange
or packet request (for mesh-pull only) are chosen according to [6],
which are shown to achieve a low delay. Unless otherwise stated,
the baseline parameters are 100 peers, 5 parents and 8% packet loss
rate.

The performance metrics we are interested in are:

• Packet arrival delay: Let Tp be the arrival time of a packet
at its corresponding parent according to the delivery pattern,
and Tc be the arrival time of the packet at the child including
retransmission from the backup parent. The packet arrival
delay is defined as Tc − Tp. Obviously, a good scheduling
should achieve low packet arrival delay. We are interested in
its average value for all peers in our study.

• Control overhead: The overhead is the total bandwidth used
for control messaging. We are interested in its average value
for all peers.

We show in Fig. 2(a) the average packet delay versus number
of peers for Chainsaw, DONet and pattern-push methods. Clearly,
the average packet delay is not affected by on-line peers, because
we measure the one-hop delay only. The average packet delay
for pattern-push is substantially lower, with about half of those for
mesh-pull when the number of peers increases. This is because
in mesh-pull, round-trip time is continuously incurred to exchange
buffermap and request packets. In mesh-pull, when a packet arrives,
it stays in buffer until buffer map containing it is sent out and request
on it is received. In contrast, in pattern-push, the packets are actively
pushed out as they arrive.

We plot in Fig. 2(b) the control overhead versus the number of
peers. The control overhead does not increase as the number of peers
increases, showing that the overhead is independent of the number
of peers. From the plot we see the scalability of our scheme. In
addition, pattern-push achieves a significantly lower control message
overhead than pull-based ones, because it does not require periodic
exchange of buffermap and packet requests.

We show in Fig. 3(a) the average packet delay versus the packet
loss rate. As the loss rate increases, delays increase, because the
recovery process makes the buffering delay higher. Pattern-push
achieves much lower delay than the pull-based methods, especially
when the loss rate is low.

We show in Fig. 3(b) the control overhead versus the packet loss
rate. In all schemes, the overhead does not depend sensitively on
loss rate. We can see that pattern-push achieves significantly lower
overhead because it does not require periodic message exchange.

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10 12 14 16A
ve

ra
ge

 P
ac

ke
t D

el
ay

 (s
)

Loss Rate (%)

Chainsaw
DONet

Pattern-push

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 2 4 6 8 10 12 14 16A
ve

ra
ge

 O
ve

rh
ea

d
(k

bp
s)

Loss Rate (%)

Chainsaw
DONet

Pattern-push

(a) Average packet delay. (b) Control message overhead.

Fig. 3. Performance comparison with respect to loss rate.

4. CONCLUSIONS

We present a pattern-push scheme that achieves low-delay schedul-
ing for live P2P streaming. Each parent pushes its packets according
to a pattern as indicated by a starting packet ID and a cycle bitmap.
As the pattern only needs to be changed when there is a marked
change in network conditions or its parents, its overhead is low. The
pattern can be computed efficiently so that packets arrive at a child
in a timely manner. Backup parents are used to recover the miss-
ing packets. We have conducted simulation study on pattern-push
with NS-2. The results show that pattern-push achieves much better
performance as compared to mesh-pull schemes, in terms of packet
arrival delay and control message overhead.

5. REFERENCES

[1] Dongni Ren, Y.-T. Hillman Li, and S.-H. Gary Chan, “On
reducing mesh delay for peer-to-peer live streaming,” in IEEE
INFOCOM, Phoenix, Arizona, Apr. 2008, IEEE.

[2] Xing Jin, Kan-Leung Cheng, and S.-H. Gary Chan, “SIM:
Scalable island multicast for peer-to-peer media streaming,”
in Proc. IEEE International Conference on Multimedia Expo
(ICME), Toronto, Canada, July 2006, pp. 913–916.

[3] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “CoolStream-
ing/DONet: A data-driven overlay network for live media
streaming,” in Proceedings of IEEE INFOCOM, Miami, FL,
USA, Mar. 2005, pp. 2102–2111.

[4] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Row-
stron, and A. Singh, “SplitStream: High-bandwidth multicast in
cooperative environments,” in Proceedings of the 19th ACM
Symposium on Operating Systems Principles, The Sagamore,
Bolton Landing (Lake George), New York, Oct. 2003, pp. 298–
313.

[5] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. Mohr,
“Chainsaw: Eliminating trees from overlay multicast,” in The
Fourth International Workshop on Peer-to-Peer Systems, Feb.
2005.

[6] Meng Zhang, Qian Zhang, Lifeng Sun, and Shiqiang Yang,
“Understanding the power of pull-based streaming protocol:
Can we do better?,” Selected Areas in Communications, IEEE
Journal on, vol. 25, no. 9, pp. 1678–1694, December 2007.

[7] Mea Wang and Baochun Li, “R2: Random push with random
network coding in live peer-to-peer streaming,” Selected Areas
in Communications, IEEE Journal on, vol. 25, no. 9, pp. 1655–
1666, December 2007.

1161

