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Abstract—There has been much interest in offering multime-
dia location-based service (LBS) to indoor users (e.g., sending
video/audio streams according to user locations). Offering good
LBS largely depends on accurate indoor localization of mobile
stations (MSs). To achieve that, in this paper we first model
and analyze the error characteristics of important indoor
localization schemes, using Radio Frequency IDentification
(RFID) and Wi-Fi. Our models are simple to use, capturing
important system parameters and measurement noises, and
quantifying how they affect the accuracies of the localization.

Given that there have been many indoor localization tech-
niques deployed, an MS may receive simultaneously multiple
co-existing estimations on its location. Equipped with the
understanding of location errors, we then investigate how to
optimally combine, or fuse, all the co-existing estimations of
an MS’s location. We present computationally-efficient closed-
form expressions to fuse the outputs of the estimators. Simula-
tion and experimental results show that our fusion technique
achieves higher location accuracy in spite of location errors in
the estimators.

Keywords-Indoor localization, mobile users, multimedia
location-based service

I. INTRODUCTION

With the advancement of mobile device capabilities and
penetration of wireless access networks, many new types
of mobile multimedia services become viable. Among those
services, offering multimedia location-based service (LBS)
is one with high growth and commercial potential. We give
some examples below. 1) In large shopping malls, retailers
may want to push their promotion ads (videos, text and/or
images) to customers depending on the customer locations.
2) Standing in front of some masterpiece in a museum,
a tourist may want to request video instruction from her
mobile phones. 3) If we are able to track the location of
a mobile phone, many multimedia arts can be designed.
For instance, users can draw a picture or pattern based on
their locations. LBS relies largely on accurate localization of
mobile stations (MSs). Though Global Positioning System
(GPS) has already achieved high accuracy, it only works well
in outdoor open environment. Accurate indoor localization
still remains challenging.

Many indoor localization techniques have been proposed,
studied or deployed. Apart from those based on angle of ar-
rival (AOA), time of arrival (TOA), time difference of arrival
(TDOA) and received signal strength (RSS), two important

ones make use of RFID and Wi-Fi. There are many RFID
localization schemes, one of which is LANDMARC [1].
There are two components in LANDMARC: one is active
tag, which is used as reference or target, the other is radio
frequency reader. Locations of references near a target is
used to estimate the target’s position. However, there will
be some error in the measurement of signal strength.

Using Wi-Fi as fingerprint is another widely deployed
indoor localization scheme [2]. It consists of two phases, site
survey (or training phase) and location lookup. In site survey,
the signal strengths from different Wi-Fi access points (APs)
are measured and recorded. This creates a 2-D “heat” or
“fingerprint” map of signal strength for each AP. In the
lookup phase, an MS measures the signal strengths of the
APs. They are compared against those on the map, and
the location is computed accordingly. Fingerprinting is fast.
Its main source of error is that at the same location, site-
surveyed RSS may be different from that obtained by MS
in the lookup phase.

It is clear from above that indoor localization techniques
have their own errors. In order to achieve better localization
accuracy, we need to first understand how their errors depend
on system parameters and measurement noises. With this
understanding, we are able to configure and optimize the
system to achieve better accuracy.

Traditionally, indoor localization techniques are studied in
“isolation,” i.e., algorithms are studied and applied specifi-
cally for one localization scheme. In reality, many of these
localization techniques may exist at the same time, so an
MS may receive many estimations on its location from
different deployed techniques (such as Wi-Fi, RFID, INS,
Ultrasonic, etc). We hence need to consider how to properly
combine these estimations, the so-called estimation fusion,
to overcome their own estimation errors and achieve better
localization.

Estimation fusion is a technique on how to best utilize
information embedded in multiple sets of data (usually
obtained from multiple sources) to estimate an unknown
quantity [3]. When it is applied to localization, the output
of multiple estimators with different location errors are
combined, or “fused,” to produce an estimation which is
more accurate than any of the constituent estimators. The
problem is designing the optimal algorithm to fuse these
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estimations to achieve maximum accuracy.
Our contributions of this work are as follows:

• Modeling the estimation error of localization tech-
niques: We present analytic models on the localization
error of two major localization techniques using RFID
and Wi-Fi (Fingerprinting). Our models are realistic,
capturing important system parameters and measure-
ment noises, and quantifying how they affect the accu-
racies of the location of MS.

• Estimation fusion and its optimal analytic closed-form
solutions: Given estimation errors of co-existing local-
ization techniques at an MS, we formulate the problem
of optimal fusion to achieve higher estimation accuracy.
We present closed-form and computationally-efficient
solutions. Our simulated and experimental results show
that our fusion approach can optimally combine the
output of different estimators to achieve much lower
estimation errors. It effectively attains high accuracies
even though the constituent estimators are noisy.

The paper is organized as follows. After reviewing pre-
vious work on indoor localization in Section II, we present
models on estimation errors for RFID and Wi-Fi in Sec-
tions III and IV, respectively. Given estimation errors, we
present our fusion algorithm in Section V. Numerical and
experimental results for fusion of RFID and Wi-Fi are shown
in Section VI. The conclusion is made in Section VII.

II. RELATED WORK

We briefly review related work here. Localization errors
for techniques such as AOA, TOA, TDOA and RSS have
been analyzed and discussed in [4], [5]. We present here
models for RFID and fingerprinting, which have not been
analyzed before.

Many localization techniques have been proposed and
studied (see, for examples, [1], [6], [7]). While these works
are impressive, the proposed schemes are studied in “iso-
lation.” We, on the other hand, study how to fuse different
techniques by optimally combining them to achieve better
accuracy.

Estimation fusion has traditionally been applied in signal
processing [3]. In the context of localization, the work in [8]
proposes a cooperative positioning system that combines
TDOA and RSS by means of non-linear least-squares fusion
algorithm. The work in [9] discusses “XINS” which com-
bines INS and any other technique “X.” All these works
are to fuse two estimations and the fusion algorithms are
mostly heuristic in nature. We consider the general case of
fusing any arbitrary number of estimations, and derive a
computationally-efficient closed-form solution to optimally
combine them.

III. MODELING LOCATION ERROR FOR RFID

In this section, we analyze location error of LANDMARC,
which is an indoor localization scheme using RFID tech-

: Reader : Reference
tag

: Mobile

Figure 1: Topology of LANDMARC localization scheme.

nique. As we have mentioned, there are readers and active
tags (as reference/target) in this system. The positions of
readers and reference tags are fixed. When MS (with tag
attached) stands at some position, readers obtain received
signal strength from reference tags and the MS simultane-
ously such that for MS and each reference tag, a signal
vector of readings from different readers can be constructed.
By comparing the similarity between signal vectors from the
MS and reference tags, position of the MS can be estimated
using a weighted sum of positions from reference tags.

Suppose we set up R readers labelled from 1 to
R, T reference tags, with positions at coordinates
(x1, y1), ..., (xT , yT ), and one MS (attached with an active
tag), with position coordinates X = (x, y) in an area. Denote
received signal strength of the tth reference tag at the rth
readers as Θtr and that of mobile as Sr. The system works
as follows. First, measurements of signal strength Θtr’s and
Sr’s are obtained. Let Dk be the Euclidean distance between
signal strengths from reference tag k and MS, which is
given by D2

k =
∑R

r=1(Θkr − Sr)
2. The position of MS is

then calculated as a weighted sum of positions of K nearest
reference tags (neighbors) in terms of signal vector distance,
i.e.,

(x̂, ŷ) = wTX =

K∑
k=1

wk(xk, yk), (1)

where wk is the weight given by

wk =
1/D2

k∑K
i=1 1/D

2
i

.

We consider that Dk has measurement noise. Given that
signal strength is usually expressed in dBm, we write
DdBm

k = μk + N(0, σ2/4), where μk is the mean of the
measurement in dBm and σ/2 is the measurement noise
in dBm. This simply means that Dk follows log-normal
distribution. Let zk = 1/D2

k, which is clearly log-normal
with mean −2μk and variance σ2. Given that, then wk can
be written as

wk =
zk∑K
i=1 zi

. (2)

For summation of log-normal distribution in the denomi-
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Figure 2: Location error versus number of neighbor in
LANDMARC.

nator of Equation (2), there is no closed-form distribution
to model it. Normally the sum is approximated by another
log-normal distribution. Here, we use Fenton-Wilkinson
method [10] to approximate it. This method is accurate for
dB spread less than 4, which corresponds to σ here in around
[0, 1]. We then have

Z =

K∑
k=1

zk ∼ log-N (μZ , σZ) , (3)

σ2
Z = log

⎡
⎢⎣
∑K

k=1 e
2μk+σ2

(
eσ

2 − 1
)

(∑K
k=1 e

μk+σ2/2
)2 + 1

⎤
⎥⎦ , (4)

and μZ = log

[
K∑

k=1

eμk+σ2/2

]
− σ2

Z

2
. (5)

Thus wk = zk/Z is also a log-normal distribution with

μwk
= −μZ + μk, (6)

σ2
wk

= σ2
Z + σ2, (7)

E(wk) = eμwk
+σ2

wk , (8)

and V ar(wk) =
(
eσ

2
wk − 1

)
e2μwk

+σ2
wk . (9)

Finally, the square of location error is

MSE = V ar(x̂) + (E(x̂ − x))2 (10)

=

K∑
k=1

[
x2
kV ar (wk)

]
+

[(
K∑

k=1

xkE(wk)

)
− x

]2
.

We have done simulations to study our model. The
simulation is implemented in an area of g × g grids
with reference tags s meters apart, as shown in Figure 1.
Readers are placed at the circumference centered at the
grid center (0, 0) with radius r. Location of Reader i
is (r cos(i2π/NR), r sin(i2π/NR)). Unless stated other-
wise, we use the default parameters (R,K, σi, g, s, r) =
(4, 4, 0.05, 5, 5, 12.5

√
2 + 5). Here we are interested in two

important system parameters, R and K .
We show in Figure 2 location error versus number of

neighbors. Clearly, as number of neighbors increases, loca-
tion error decreases. It is because new neighbors can “pull”
the estimation towards the right direction. There is some
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Figure 3: Location error versus number of readers in LAND-
MARC.

fluctuation at the tail part. The reason is neighbors farther
away may bring more error than correction to the estimation
if weight is not correctly assigned. Thus, in real deployment,
a few neighbors is enough. Having too many neighbors may
not be good. From the plot, we can also see that the analytic
curve fits simulation results closely.

In Figure 3, we show location error versus number of
readers. As number of readers increases, location error de-
creases. This is because weight calculation is more accurate
with more readers placed. There is a strong threshold in the
number of readers. It is due to great increment in the weight
of the nearest neighbors. Where it happens depends on the
method of placing readers. As we can see, the estimation has
not improved much later, thus, in practice, we may want to
find the number of readers whose marginal benefit is still
high.

IV. MODELING LOCATION ERROR FOR FINGERPRINTING

In this section, we analyze location error of Fingerprint-
ing. There are two phases in this system: site survey and
location lookup. After finishing site survey, when the signal
strengths of APs are obtained by MS, we look up locations
from the “heat” map, one location for each AP. All these
locations are then combined to locate the MS (e.g., using
trilateration). We would like to minimize the least square
error in trilateration formulation. Suppose there are m Wi-
Fi sources covering an indoor area, and a MS is located at
X = (x, y)T within the area. For the MS, it will obtain a
signal profile (r1, ..., rm) through measurement. Based on
this profile, without loss of generality, we assume m Wi-Fi
sources will give n location estimations (X̂1, ..., X̂n) for the
MS, with X̂i = (x̂i, ŷi). Thus the distance d̂i between the
ith Wi-Fi source and the estimated MS location X̂i can be
obtained. Denote the positions of the ith Wi-Fi source as
(ai, bi), we have d̂2i = (x̂i − ai)

2 + (ŷi − bi)
2, and Δd̂2i =

d̂21− d̂2i+1. The system of equations can be written succinctly
as

HX̂ = B̂, (11)
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Figure 4: Location error versus distance measurement noise
for Fingerprinting.

where H is an (n− 1)× 2 matrix and B̂ is an (n− 1)× 1
matrix, whose ith row are given by

Hi = [ai+1 − a1, bi+1 − b1],

and B̂i =
(
Δd̂2i + (a2i+1 + b2i+1)− (a21 + b21)

)
/2.

Solving for least-squared error, we then have

X̂ = (HTH)†HTB̂. (12)

Thus,
Cov(X̂) = (HTH)†HTΣH(HTH)†, (13)

where
Σij = E

((
Δd̂2i − (Ed̂2i − Ed̂2i+1)

)
×

(
Δd̂2j − (Ed̂21 − Ed̂2j+1)

))
. (14)

We study location error by considering normal noise on di,
with d̂i ∼ N(di, σ

2). Wi-Fi sources are equally spaced on
the circumference of a circle with radius r (meters). Without
otherwise stated, (r, n, σ) = (30, 5, 6).

In Figure 4, we plot location error (given by Equation
(13)) versus σ. The error increases quite fast as σ increases,
so it has a major influence on the system’s performance. This
can also show the intuition to design fingerprinting systems,
since the map will greatly reduce σ and improve accuracy
in localization.

We plot in Figure 5 location error versus number of Wi-Fi
sources. It is obvious that with the increase in n, the estima-
tion error for x0 will be reduced. However, as n increases,
the marginal benefit of Wi-Fi sources is diminishing because
there is correlation in estimation among different sources.
This is a factor that needs to be carefully considered in real
deployment, since in designing a system, we would like to
optimize the cost of resources.

V. OPTIMAL ESTIMATION FUSION

We study in the following section how to combine, or fuse
estimations from multiple localization schemes to achieve
better accuracy, provided their variance is known. A closed
form optimal solution is derived and the scheme’s perfor-
mance is shown. The major difference between the work
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Figure 5: Location error versus number of Wi-Fi sources for
Fingerprinting.

here and Kalman Filter is that the process we study is not
necessarily stationary, thus we do not need the assumption
that the measurement noise follows Gaussian or any other
distribution.

Though we consider 1D case here, the arguments can be
easily extended to higher dimension. Suppose the MS is lo-
cated at x0. Denote estimations from n different schemes on
MS position as (X̂1, . . . , X̂n), where X̂i’s are independent
random variables due to uncertainties in location estimation.
We model X̂i to follow some distribution with mean x0 and
standard deviation σi for i ∈ {1, . . . , n}. It is reasonable to
assume the fused estimator X̂ is in the convex hull formed
by (X̂1, . . . , X̂n), i.e.,

X̂ =

n∑
i=1

βiX̂i, (15)

where
∑n

i=1 βi = 1. Thus, X̂ is also an unbiased estimator,
which means E(X̂) = x0. Then, we would like to make the
estimation more accurate by minimizing its output distance
from x0 every time, i.e., the variance of X̂ . Note that our
analysis is not based on any assumption of the distribution
type. Let β = (β1, . . . , βn)

T . By previous analysis, we
formulate our problem as minimizing the variance of X̂ with

V ar(X̂) = V ar

(
n∑

i=1

βiX̂i

)
= βT diag(σ2

i )β, (16)

where diag(σ2
i ) is an n × n diagonal matrix with diagonal

entries being σ2
i . Thus, we seek to find the optimal β to

solve the following minimization problem:

minimize
β

βT diag(σ2
i )β

subject to ||β||1 = 1,

β ≥ 0,

(17)

where ||β||1 is the l1− norm of β. This problem is convex
and the closed-form optimal solution is

β�
i =

⎛
⎝σ2

i

n∑
j=1

1

σ2
j

⎞
⎠

−1

, (18)
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Figure 6: Location error versus number of estimators.

which can be obtained by using Lagrange multiplier. This
optimal solution is quite intuitive since for accurate esti-
mators, we would always like to weigh it more. Thus, the
optimal variance is

V ar�(X̂) =

n∑
i=1

⎛
⎝σi

n∑
j=1

1

σ2
j

⎞
⎠

−2

. (19)

VI. NUMERICAL AND EXPERIMENTAL RESULTS

In this section, we present illustrative numerical and
experimental results for our fusion algorithm.

A. Numerical Results

We present below illustrative simulation results on eval-
uating our fusion algorithm. In our simulation, there are n
estimators labelled i = 1, 2, . . . , n. Without loss of general-
ity, we consider their estimation variance in increasing order
as

σ2
i = αi−1σ2

0 , (20)

for some σ0 (meters) and α ≥ 1.
We compare our algorithm with the traditional mean

estimator (ME), where the mean of estimations from dif-
ferent estimators is used as its estimation, i.e., X̂ME =∑n

i=1 X̂i/n. Therefore, its variance V ar(X̂ME) is

V ar(X̂ME) =
1

n2

n∑
i=1

V ar(X̂i)

=
1

n2

n∑
i=1

σ2
i . (21)

Clearly, individual estimations X̂i for all i plays an equally
important role, and estimation X̂i with large σi greatly
increases V ar(X̂ME).

There are two parameters of interest, namely (n, α).
Without otherwise stated, (n, σ0, α) = (5, 5, 2). Variance of
our fusion scheme, single estimator and ME are generated
based on Equation (19), (20) and (21), respectively.

The location error with respect to n is plotted in Figure 6.
With more estimators employed, location error of ME gets
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Figure 7: Location error versus α.

larger since individual estimations get more inaccurate ac-
cording to Equation (20). However, the location error of our
fusion algorithm drops in the same situation. This indicates
that, as long as the estimator has correct mean value, even
if its variance is extremely large, with our algorithm, it can
still help to improve the localization accuracy by shifting
more weights to more accurate estimators, which is quite
promising.

Figure 7 shows the location error with respect to α. As
α increases, the estimation error of ME grows faster and
faster, and clearly unbounded above. Our fusion algorithm,
although still growing, converges to the smallest σ. It shows
that the fusion is effective, provided the error of location is
estimated correctly.

B. Experimental Results

We have conducted a set of experiments in our lab to
compare the results from Fingerprinting (FP), RFID and
fusion. Algorithms used are according to previous sections.
The room map, together with placement of RFID readers,
reference tags and targets, is shown in Figure 8. We use
RFID devices from RF code, including two identical M220
readers and 14 identical active tags (ten as references and
four as targets) operating at 433M Hz. We also have four
access points installed for FP. Four Android Nexus phones
are placed at the same positions as target tags to collect Wi-
Fi signals for FP. Table I shows the location information.

Target 1Target 2

Target 4Target 3

: Reader : Reference tag
X

Y

(0,0)

Figure 8: Experiment setup.
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Table I: Location information of devices.

AP/Reader/Reference Location
AP 1 (10.25, 0.25) Reference 3 (5.75, 4.5)
AP 2 (0.25, 2.75) Reference 4 (8.25, 4.5)
AP 3 (6.25, 11.25) Reference 5 (3, 2.25)
AP 4 (9.25, 12.25) Reference 6 (6.75, 3)

Reader 1 (8.75, 3.75) Reference 7 (0.75, 0)
Reader 2 (0.25, 3.25) Reference 8 (3.25, 0)

Reference 1 (0.75, 4.5) Reference 9 (5.75, 0)
Reference 2 (3.25, 4.5) Reference 10 (8.25, 0)

In the experiment, we collect RSS data from APs and
RFID readers at the same time for ten seconds. Estimations
of targets’ positions are made every two seconds. For RFID,
number of neighbors used is three in Equation (2). After
obtaining all five estimations from a single scheme, we
calculate the variance of them and use the variance to
calculate the weight for each scheme by Equation (19), then
get an estimation for fusion by x̂fusion = weightFP × x̂FP +
weightRFID × x̂RFID.

The experiment is repeated numerous times un-
til the statistics are stable. We define MSE =∑n

i=1

(
(x̂i − x)

2
+ (ŷi − y)

2
)
/n, where (x, y) is the true

location. We use
√
MSE as a metric for accuracy. Figure 9

shows the experiment results. We can tell from the results
that fusion tends to place more weight on more accurate
scheme and achieves better estimation. For Target 3 and
Target 4, the error is quite high, this is because the cubical
environment in the lab blocks line of sight transmission for
both RFID and Wi-Fi signals.

VII. CONCLUSION

Indoor multimedia LBS is drawing much attention in
industry due to its strong growth and commercial potential.
Its success largely depends on accurate indoor localization.
In this paper we first analyze the estimation error of two
important indoor localization techniques using RFID and
Wi-Fi. Our models are realistic, capturing various important
system parameters and measurement noises, and quantifying
how they affect the accuracies of the techniques. We have
also proposed an estimation fusion scheme to better estimate
mobile device position in indoor environment. We have
derived a closed-form solution to optimally combine estima-
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Figure 9: Experiment results.

tions from different techniques and analyzed its sensitivity
on the accuracy of individual estimators. Both numerical
and experimental results show that our algorithm achieves
lower estimation error than traditional mean or individual
estimators.
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