
OPTIMIZING VIDEO-ON-DEMAND WITH SOURCE CODING

S.-H. Gary Chan Zhuolin Xu

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology

Kowloon, Hong Kong
Email: {gchan, fanniexu}@cse.ust.hk

Ning Liu

School of Software
Sun Yat-sen University

Guangzhou, China, 510006
Email: liuning2@mail.sysu.edu.cn

ABSTRACT

In order to cost-effectively serve a large number of users,
video-on-demand (VoD) content providers often place dis-
tributed servers close to user pools. These servers have het-
erogeneous streaming and storage capacities, and collabora-
tively share contents with each other. A critical challenge is
how to optimize movie storage and retrieval so as to mini-
mize system deployment cost due to server streaming, server
storage, and network transmission between servers.

Using a general and comprehensive cost model, we pro-
pose a novel VoD architecture using linear source coding. All
the movies are source-encoded once at the repository, by cod-
ing k source symbols of movie m to n(m) source-coded sym-
bols. These coded symbols are then distributed to the servers.
We optimize n(m) and the number of symbols to retrieve from
each server for a request. Our solution approaches asymptoti-
cally to global optimum as k increases. We show that even
when k is low (say, 30), near optimality can be achieved.
Furthermore, the solutions on n(m), symbol distribution and
retrieval can be efficiently computed with a linear program
(LP). Through extensive simulation, our algorithm is shown
to achieve substantially the lowest cost, outperforming tradi-
tional and state-of-the-art heuristics by a significantly wide
margin (by multiple times in many cases).

Index Terms— Video-on-demand; Source coding; LP
optimization

1. INTRODUCTION

Distributed video-on-demand (VoD) has emerged as an im-
portant and lucrative cloud service. In order to provide such
service in a cost-effective manner scalable to large number
of users, a content provider often deploys distributed servers
close to user pools. These servers cooperatively store and re-
trieve movies depending on their popularity. In this work,

This work was supported, in part, by Microsoft Research Asia Academic
Program (MRA12EG01), HKUST (FSGRF12EG05 and FSGRF13EG15),
and the Fundamental Research Funds for the Central Universities (under
Grant no. 2010620003161035). Corresponding author is Ning Liu.

we aim to minimize the total deployment cost by optimizing
movie storage and retrieval in the servers.

We consider a distributed and cooperative VoD network
which consists of a central server (repository) storing all the
movies and proxy servers placed close to user pools.1 While
the central server stores all the movies, the proxy servers are
of limited (and possibly heterogeneous) storage which can
only locally store a fraction of the movies. Each user has a
home (or local) server to serve his movie request. If the re-
quest is a hit, the home server directly streams to the users
from its local storage. On the other hand, if it is a miss, the
home server searches for the content in the server network
and requests the content from a remote server (which is either
a proxy server or the central server) to serve the request. In
other words, the missed content is streamed “via” the home
server to the request. Therefore, the bandwidth of the central
and proxy servers is used to stream not only to its own home
users (if any), but also to remote servers requesting their con-
tents. In this paper, we use the term “servers” to collectively
refer to the central and proxy servers.

A critical challenge is to minimize the total system de-
ployment cost given by the sum of server and network costs
by optimizing movie storage and retrieval at the servers. We
consider server cost as a general function of its storage and
bandwidth (maximum or utilized). In addition, we consider
network cost as the bandwidth cost to stream symbols from a
server to another (a function of the data traffic). If two servers
cannot have direct connection, we may set the network cost
between them as infinite.

For efficient movie storage and retrieval, we propose in
this paper a novel VoD network making use of linear source
coding (SC) which achieves asymptotically optimal solution.
Even under the general and realistic case far from the asymp-
totic condition, the system performs closely optimal, signifi-
cantly better than the other state-of-the-arts heuristics (usually
by many times).

In the network, movie m is source-encoded only once
at the repository by taking k source symbols to generate

1In this paper, we use “client” and “user” interchangeably. We also use
“movie,” “video” and “content” interchangeably.

n(m) ≥ k coded symbols (using a general linear source
coding technique such as Reed-Solomon code, Maximum-
Distance-Separable (MDS) systematic erasure code, etc.),
where n(m) is the optimizing parameter depending on the
movie popularity, and k is a network-wide parameter depend-
ing on how much coding complexity and decoding delay one
is willing to accept. So long as k out of the n(m) symbols are
collected, the original source symbols can be recovered.

The repository stores k of these n(m) coded symbols, so
that contents are always available in the network. The remain-
ing symbols are stored at the other servers without duplica-
tion. A proxy server hence stores any number (obviously no
more than k) of the coded symbols.

To serve a local request for a movie, one hence may imag-
ine that the request carries a “bucket” of size k symbols to be
filled by any of the servers in the network. Once k symbols
are collected, the source symbols can then be recovered and
played back. The bucket is first filled by the coded symbols
at its home server. If this does not fully fill up the bucket, the
home server collects by pulling the remainder of the symbols
from the other servers (including the repository).

The major issues are hence, given k, what the optimal
n(m) is for movie m, how many symbols should be stored
at a server and how much to retrieve from other servers to
serve a request in order to minimize system cost.

Our contributions are three-folds:

• General and comprehensive consideration of bandwidth
and storage for video-on-demand: Previous work in VoD
seldom considers the inter-dependency among server band-
width, server storage and network traffic in cost optimiza-
tion. We present the optimization of a VoD network cap-
turing all these parameters. Our cost model is hence more
general and comprehensive.

• Bucket-filling: A novel movie distribution and retrieval al-
gorithm with source coding: We propose a novel video-
on-demand network using linear source coding. A request
for a movie can be satisfied by filling a bucket of size k
symbols. Our scheme, termed bucket-filling, is remarkably
simple and effective for movie distribution and retrieval.

• Asymptotically optimal performance for distributed video-
on-demand: By optimizing n(m) for movie m, bucket-
filling is able to make the best use of limited server storage,
efficiently utilize server bandwidth, and greatly reduce net-
work access cost. With Bucket-filling, we can use an effi-
cient linear program (LP) to optimize symbol distribution
and retrieval. The performance can be arbitrarily close to
the exact optimum as k increases (i.e., asymptotically op-
timal in terms of k). We show that even under the most
general and realistic condition of low values of k, the sys-
tem performs closely optimal.

We conduct extensive simulation and comparison study
of bucket-filling with other traditional and state-of-the-art

schemes. Our results show that bucket-filling outperforms
them by a significantly wide margin (by multiple times in
most cases). Our results show that the performance of many
previously proposed heuristics are still far from optimal, and
bucket-filling can achieve performance arbitrarily close to the
optimum.

We briefly discuss previous work as follows. Many
heuristics have been proposed for movie replication and re-
trieval [1–6]. These algorithms are generally sub-optimal and
their performance bounds are not easy to analyze or derive. In
contrast, bucket-filling achieves asymptotically optimal per-
formance by increasing the parameter k. For the work study-
ing the cost issue of VoD [1,4,7–9], they often have not suffi-
ciently considered the more general case with network access
cost, storage constraint and streaming cost of the servers. Our
model captures all these elements, leading to a more com-
plete, realistic and practical formulation.

This paper is organized as follows. We describe bucket-
filling algorithm in Section 2, in terms of its operation with
source coding, problem formulation as a linear program, and
its solutions for movie storage and retrieval. In Section 3, we
present illustrative simulation results. We conclude in Sec-
tion 4.

2. BUCKET-FILLING ALGORITHM

2.1. System description

A movie m is source-coded only once at the repository by
taking k source symbols to generate n(m) ≥ k equal-sized
coded ones. As a user has to collect k symbols in order to
decode the video, k is a tunable system parameter depending
on the level of coding delay and complexity the provider is
willing to tolerate. Out of the n(m) coded symbols, the repos-
itory stores any of the k coded symbols, and distributes the
remainder without replication to the proxy servers.

In the network, movies are distributed and retrieved ac-
cording to the following:

• Coded Symbol Distribution: The repository encodes the
movies once and then distributes the coded symbols of the
movies to each server. The symbol distribution needs to be
done only upon major system changes, e.g., upon the intro-
duction and removal of movies or change in movie popu-
larity which affect movie storage in a major way.

• Coded Symbol Retrieval: A movie request carries a
“bucket” of size k symbols. If its home server has not
stored, and hence cannot supply, enough k symbols to serve
the request, it “pulls” the missing ones from the other prox-
ies or central servers. Through this bucket-filling mecha-
nism, the servers cooperatively store and supply symbols
on-demand with each other to fulfill requests.

2.2. Cost optimization as a linear program

In this section, we present the cost-optimization problem of
our VoD network as an LP, which can be efficiently solved
at the central server. The overlay network is modeled as a
directed graph G = (V,E), where V is the set of central and
proxy servers and E = V × V is the set of overlay edges
connecting nodes in V (may not be complete). Let M be
the set of movies and L(m) be the movie length in seconds
(i.e., movie length before network coding). Let p(m) be the
popularity of movie m, which is the probability that a user
requests movie m, where

∑
m∈M p(m) = 1.

Each movie is network-coded to different length (obvi-
ously no less than L(m)). Let I(m)

v (seconds) be the amount
of coded movie m that server v stores. Obviously, we require

0 ≤ I(m)
v ≤ L(m), ∀v ∈ V,m ∈M. (1)

Note that for the repository (i.e., central server), we require
I
(m)
v = L(m), ∀m ∈M .

Server v has a certain storage capacity Bv (seconds). To
meet storage requirement, we require∑

m∈M

I(m)
v ≤ Bv, ∀v ∈ V. (2)

Let λv be the total movie request rate at server v (requests
per second); the request rate for movie m at the server is
hence p(m)λv . Further let α(m)L(m) be the average holding
(or viewing) time for movie m, where α(m) ≥ 0.

Each user retrieves data from the servers (including his
home server) proportional to his holding time. Let r(m)

uv (sec-
onds) be the amount of movie m supplied from server u to
server v for a user holding time of L(m). In order to playback
the movie, the supply of the coded symbols must satisfy∑

u∈V

r(m)
uv ≥ L(m), ∀v ∈ V,m ∈M. (3)

The actual amount of streamed data is given by α(m)r
(m)
uv . As

the server cannot supply more than that it stores, we need

0 ≤ r(m)
uv ≤ I(m)

u , ∀u, v ∈ V,m ∈M, (4)

and, by definition,
r(m)
vv = I(m)

v . (5)

Let Γuv (bits/s) be the total network bandwidth used for
symbol transmission from server u to v, which can be ob-
tained as Γuv =

∑
m∈M p(m)λvα

(m)r
(m)
uv s,∀u, v ∈ V. By

definition, Γuu = 0, for u 6= v.
Let CN

uv be the network cost due to the traffic from server
u to v. It is a monotonically non-decreasing piece-wise linear
function in Γuv . Γuv , i.e., CN

uv = CN
uv(Γuv),∀u, v ∈ V,

with CN
uu = 0. The total network cost CN is hence CN =∑

u,v∈V C
N
uv.

The servers help each other using “cache and stream”
mechanism, i.e., a remote server streams to a user through
his home server. In other words, the home server is an in-
termediate node between the remote server and users. For
any remote server v ∈ V , the data rate the server u “pulls”
from server v for movie m is p(m)λu(α(m)r

(m)
vu s). The to-

tal rate (bits/s) that server v serves other servers is hence
Rv =

∑
m∈M

∑
u∈V,u6=v Γvu,∀v ∈ V.

LetCS
v be the cost of operating server v, which is a mono-

tonically non-decreasing piece-wise linear function inBv and
Rv , i.e., CS

v = CS
v(Bv, Rv),∀v ∈ V. In other words, the

server cost consists of storage cost and streaming cost. The
aggregated server cost CS , therefore, is CS =

∑
v∈V C

S
v .

Finally, the total system deployment cost C is

C = CS + CN . (6)

We state our cost-optimization problem as follows:
Optimal Movie Distribution and Retrieval Problem to Min-
imize Deployment Cost: Given topology G, user demand
{λv}, storage capacity {Bv}, movie popularity {p(m)} and
cost functions CN

uv and CS
v , we seek to minimize the total

cost given by Equation (6), subject to Equations (1) to (5).
The output is the optimal solution of the amount of the movie
stored in each server (i.e., {I(m)

v }) and the retrieval amount
between servers (i.e., {r(m)

uv }).
Note that, for any arbitrary piece-wise linear functions of

CS
v and CN

uv , the above problem becomes a linear program-
ming (LP) problem which can be solved efficiently.

2.3. Parameter discretization

The LP yields optimal solution for system parameters {I(m)
v }

and {r(m)
uv } for movie m. Given these parameters, the movie

can then be encoded, distributed and retrieved according to
the following:

• Movie encoding: To obtain the encoding parameter n(m),
observe that the network-coded and raw movie lengths
must satisfy the following equation:∑

v∈V I
(m)
v

L(m)
=
n(m)

k
, ∀m ∈M,

i.e.,

n(m) =

∑
v∈V I

(m)
v

L(m)
k, ∀m ∈M. (7)

• Symbol distribution (storage): The number of symbols that
server v stores is given by

n(m)
v =

I
(m)
v

L(m)
k, ∀m ∈M. (8)

• Symbol retrieval (collection): The number of symbols for
server u to stream to server v is

n(m)
uv =

r
(m)
uv

L(m)
k, ∀m ∈M. (9)

Note that {n(m)}, {n(m)
v } and {n(m)

uv } in Equations (7)–
(9) are the asymptotic optimal solutions when k is large. For
finite k, they should be discretized to integral values. We
present below a simple discretization approach which con-
verges to the asymptotic optimum as k increases. The basic
idea is that each proxy tries to match the optimal LP solution
as much as possible through integer rounding. In symbol re-
trieval by filling a ”bucket,” the shortfall in symbols due to
rounding can be obtained from the repository:

• Discretize {n(m)
v }: We first round down the result {n(m)

v }
as obtained in Equation (8) to its closest integers. For each
server v, it first stores according to these integers for all
the movies. This clearly does not violate its storage con-
straint (given in Equation (2)). For the residual storage it
then stores a symbol of each movie in decreasing popular-
ity until its total storage is fully used up.

After this, the new {n(m)
v } are of integral values. The cod-

ing information n(m) for movie m is then given by

n(m) =
∑
v∈V

n(m)
v , ∀m ∈M. (10)

• Discretize {n(m)
uv }: This is similar to the discretization of

{n(m)
v }. First we write {n(m)

uv } in Equation (9) as the sum
of an integral part and a positive fractional part. Clearly,
the integral part does not violate the supply constraint as
given in Equation (4).

To recover the source packet (Equation (3)), we first rank
the movies according to decreasing popularity. We then
conditionally round up the fractional parts to 1 of the
movies until Equation (3) is satisfied, and the remaining
fraction is rounded down to 0. If Equation (3) is still vio-
lated after all the rounding, the remaining symbols are as-
signed to the repository.

It is clear from above that the system performance can
be arbitrarily close to the exact optimum as k increases (i.e.,
asymptotically optimal). The discretization steps guarantee
that all the movies can be recovered at each server. In Sec-
tion 3, we can see from the experiments that the performance
penalty due to rounding is very low.

3. ILLUSTRATIVE SIMULATION RESULTS

3.1. Simulation environment and performance metrics

In this section, we present our simulation environment and
performance metrics to study the performance of bucket-
filling.

The VoD network consists of a number of distributed
proxy servers. All our results are obtained at steady state.
Unless otherwise stated, we use the default values as follows
for our system parameters (the baseline case): k = 30, 20
proxy servers, 200 movies, skewness of movie popularity is
0.6, movie length is 90 minutes, movie streaming rate is 1
Mbits/s, total request rate in the network is 0.6 requests/s
(equally distributed to the proxies), average movie holding
time is movie length (i.e., α(m) = 1), cuv between central
and proxy server is 0.01 unit/second, cuv between proxies is
Zipf with skewness 0.6 and mean 0.005 unit/s, average server
storage is 20 movies, skewness of server storage is 0.4, aver-
age proxy server bandwidth capacity is 160 Mbits/s, skewness
of server bandwidth is 0 (i.e., same bandwidth).

Movie popularity follows the Zipf distribution with skew-
ness parameter s, i.e., the request probability of the ith movie,
denoted as f(i), is given by f(i) ∝ 1/is. Requests arrive
at each proxy server according to a Poisson process with
total rate λ (req./second). The central server has no home
users. The proxy servers have heterogeneous storage space
and bandwidth following a Zipf distribution (independent of
each other). The repository stores all the movies with a
streaming capacity twice of the average streaming capacity
of the proxy servers.

We consider the network cost function from server u to
server v proportional to the bandwidth between them, i.e.,
CN

uv(Γuv) = cuvΓuv,∀u, v ∈ V, where cuv is some constant
(by definition, cvv = 0).

The server cost is a function of its storage and its total
bandwidth used to serve the remote servers, modeled asCS

v =
σBBv +Cv(Rv),∀v ∈ V,where σB is a constant (σB = 0.02
in our simulation), andCv(Rv) is a piece-wise linear function
monotonically increasing in Rv .

We show in Figure 1 Cv(Rv) versus Rv/Uv in our sim-
ulation, where Uv is the streaming capacity of the server
and hence Rv/Uv is the bandwidth utilization of the server.
There are three linear segments formed by points (0, 0),
(0.8, 0.125), (0.93, 0.4375) and (0.99, 1.925) (these coordi-
nates are obtained from the queuing model σS/Uv − Rv ,
where σS is some constant). The cost increases with the
bandwidth utilization. As the consumed bandwidth Rv ap-
proaches the bandwidth capacity Uv , the server cost increases
more sharply.

We compare bucket-filling with the following traditional
and recent movie replication schemes:

• Random, where each server randomly stores movies with-
out considering their popularity. This is a simple storage
strategy.

• MPF (Most Popular First), where each server stores the
most popular movies. This is a greedy strategy, but does
not take advantage of cooperative replication.

• Local Greedy [1], which divides the movies into three cat-
egories, those popular ones which all servers store (full

 0 0.8 0.93 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
v
 / U

v

S
te

a
m

in
g
 c

o
s
t

Fig. 1. Streaming cost model at proxy
server.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

50

100

150

200

250

300

350

400

450

Total request rate (# req. per second)

T
o

ta
l
c
o

s
t

Bucket−filling (k=10)

Bucket−filling (k=30)

Bucket−filling (k=100)

Bucket−filling (k=∞)

Fig. 2. Total cost versus request rate given
k.

1 20 40 60 80 100 120 140 160 180 200
0

90

180

270

360

450

540

630

Movie index

n(m
) (

of

 s
ym

bo
ls

)

1 20 40 60 80 100 120 140 160 180 200
 0

0.0076

0.0151

0.0227

0.0303

0.0378

0.0454

0.053

M
ov

ie
 p

op
ul

ar
ity

n(m) (# of symbols)
Movie popularity

Fig. 3. Optimal n(m) versus movie index.

replication), those medium popular ones which only one
proxy server store (single copy), and those unpopular ones
which only the repository stores (no copy). By formulat-
ing an LP problem, it seeks to minimize network cost. As
Local Greedy assumes homogeneous access cost, we set its
access cost to be equal to the average access cost between
servers in our network.

For all the comparison schemes, upon a miss request, the
home server v chooses an available server u which has the
requested content with probability proportional to 1/cuv . It is
a reasonable, simple and effective strategy because the server
with lower access cost has higher chance to be chosen. With
this probabilistic approach, a server with low access cost is
not always selected so as to avoid congestion, and hence high
network cost, at the server.

3.2. Illustrative results

We plot in Figure 2 the total cost versus request rate given
k. The total cost increases with the request rate mainly be-
cause of the increase in network load. As k increases, the
network approaches the exact optimum (corresponding to the
case k = ∞). However, for humble value of k (say 30), the
performance is already very close to the optimum (less than
6% deviation in this). This shows that our network is highly
efficient, with closely optimal performance even for all the
practical (finite) value of k.

We show in Figure 3 the optimal n(m) versus movie in-
dex. Also shown is the corresponding movie popularity (de-
fault setting). We see that the movie popularity exhibits some
skewness with a tail (with s = 0.6 and M = 200, the top
30% of the movies account for close to 60% of the total traf-
fic). The optimal n(m) decreases with movie popularity. This
is reasonable because the servers tend to locally store more of
those popular movies to reduce transmission cost in the net-
work. For the unpopular ones, fewer symbols are generated
and stored in the whole network. We see that no matter how
unpopular the movie is, the number of symbols is higher than

k, meaning that some symbols are stored in the network be-
sides those at the repository.

We compare in Figure 4 the total cost versus the request
rate for different schemes. Total cost increases with request
rate mainly due to the increase in network traffic. Bucket-
filling clearly achieves much lower total cost among all the
schemes, beating them by multiple times. In other words,
given the same deployment budget, bucket-filling can support
much higher request rate (i.e., more concurrent users in the
system). MPF does not perform well because it mainly relies
on the central server to serve the requests for the unpopular
movies. Random, due to its popularity-blind nature, stores in-
sufficient copy of the popular movies, leading to considerable
cost. Local Greedy has lower cost due to its cost optimization.
Bucket-filling achieves by far the best performance because it
achieves near optimality by taking into account of not only
the network transmission cost but also the server storage and
streaming cost.

We plot in Figure 5 individual server cost for different
schemes. We sort the proxy servers according to their storage
in ascending order (as their streaming capacity is the same in
the default setting), and the last one refers to the repository.
As the storage of a proxy increases, its cost increases because
it needs to server more remote requests. Bucket-filling utilizes
very well the finite storage and bandwidth resources of proxy
servers, leading to significantly lower repository streaming
cost. It has strong server cooperation to achieve nearly op-
timal system performance. As MPF only stores the most pop-
ular movies at the proxy servers, it has lower proxy cost at
the steep sacrifice of repository cost. The proxies barely con-
tribute their bandwidth and storage to cooperatively help each
others. Local Greedy, with network cost optimization, outper-
forms Random in both proxy server cost and repository cost.

We show in Figure 6 the cost of each movie for differ-
ent schemes. The movies are sorted according to their pop-
ularity in descending order. The popularity-based schemes
(i.e., bucket-filling, Local Greedy and MPF) tend to locally
store the popular movies, and hence those popular ones enjoy
lower cost at much sacrifice of those not-so-popular movies.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

100

200

300

400

500

600

700

800

Total request rate (# req. per second)

T
o

ta
l
c
o

s
t

MPF

Random

Local Greedy

Bucket−filling

Fig. 4. Total cost versus request rate given
different schemes.

 1 3 5 7 9 11 13 15 17 19 21
0.37

0.61

1

1.65

2.72

4.48

7.39

12.18

20.09

33.12

54.6

90.02

148.41

244.69

Server index

S
e

rv
e

r
c
o

s
t

MPF

Random

Local Greedy

Bucket−filling

Fig. 5. Server cost distribution given dif-
ferent schemes.

1 20 40 60 80 100 120 140 160 180 200
 0.04

 0.37

 2.71

 20.1

 148

Movie index

C
o

s
t

1.1 × 103

8.1 × 103

6.0 × 104

4.4 × 105

3.3 × 106

MPF

Random

Local Greedy

Bucket−filling

Fig. 6. Cost of each movie given different
schemes.

Bucket-filling makes much better movie storage and retrieval
decisions by cooperatively storing the movies. While having
slightly higher cost for popular movies, most of the movies
in bucket-filling have quite uniform and low access cost.
Bucket-filling accomplishes much better optimality with the
cost of not-so-popular movies strikingly much lower by or-
ders of magnitude than the other schemes. This is the main
factor of its success. For MPF, its high cost mainly comes
from the less popular movies. Random treats each movie
equally and thus has the most uniform cost distribution.

4. CONCLUSION

In this work, we have studied optimal movie distribution and
retrieval to minimize deployment cost for video-on-demand
(VoD) with distributed servers. The deployment cost cap-
tures the costs of server streaming, server storage and net-
work transmission cost. We have studied a VoD network
using source coding which asymptotically achieves exactly
optimum depending on a coding parameter. Movies are dis-
tributed and retrieved efficiently using our proposed “bucket-
filling” algorithm.

We have formulated the optimization problem as a linear
program which can be solved efficiently. We have conducted
extensive simulation to compare the performance of bucket-
filling with other traditional and state-of-the-art schemes. Our
results show that bucket-filling achieves its close optimality
with substantially much lower cost, and outperforms the other
schemes by a wide margin (multiple times in many cases, and
more than 100% in most cases).

5. REFERENCES

[1] S. Borst, V. Gupta, and A. Walid, “Distributed caching al-
gorithms for content distribution networks,” in Proceed-
ings IEEE INFOCOM 2010, Mar. 2010, pp. 1–9.

[2] S. Zaman and D. Grosu, “A distributed algorithm for the
replica placement problem,” IEEE Transactions on Par-

allel and Distributed Systems, vol. 22, no. 9, pp. 1455–
1468, Sept. 2011.

[3] Le Chang and Jianping Pan, “Reducing the overhead of
view-upload decoupling in peer-to-peer video on-demand
systems,” in IEEE International Conference on Commu-
nications (ICC ’11), June 2011, pp. 1–5.

[4] A. Nimkar, C. Mandal, and C. Reade, “Video placement
and disk load balancing algorithm for VoD proxy server,”
in IEEE International Conference on Internet Multime-
dia Services Architecture and Applications (IMSAA ’09),
Dec. 2009, pp. 1–6.

[5] M. Hefeeda and B. Noorizadeh, “On the benefits of co-
operative proxy caching for peer-to-peer traffic,” IEEE
Transactions on Parallel and Distributed Systems, vol.
21, no. 7, pp. 998–1010, July 2010.

[6] Wai-Pun Ken Yiu, Xing Jin, and S.-H. Gary Chan,
“VMesh: Distributed segment storage for peer-to-peer
interactive video streaming,” IEEE Journal on Selected
Areas in Communications Special Issue on Advances in
Peer-to-Peer Streaming Systems, vol. 25, no. 9, pp. 1717–
31, Dec. 2007.

[7] Weijie Wu and J. C. S. Lui, “Exploring the optimal
replication strategy in P2P-VoD systems: Characteriza-
tion and evaluation,” in Proceedings of IEEE INFOCOM
2011, Apr. 2011, pp. 1206–1214.

[8] S.-H. Gary Chan, “Operation and cost optimization of a
distributed servers architecture for on-demand video ser-
vices,” IEEE Communications Letters, vol. 5, no. 9, pp.
384–386, Sept. 2001.

[9] Yung R. Choe, Derek L. Schuff, Jagadeesh M. Dyaberi,
and Vijay S. Pai, “Improving VoD server efficiency with
bittorrent,” in Proceedings of conference on Multime-
dia (MULTIMEDIA ’07), New York, NY, USA, 2007, pp.
117–126, ACM.

