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WiFi received signal strength (RSS) environment evolves over time due to the movement of access points (APs), AP power 
adjustment, installation and removal of APs, etc. We study how to effectively update an existing database of fingerprints, 
defined as the RSS values of APs at designated locations, using a batch of newly collected unlabelled (possibly crowdsourced) 
WiFi signals. Prior art either estimates the locations of the new signals without updating the existing fingerprints or filters out 
the new APs without sufficiently embracing their features. To address that, we propose GUFU, a novel effective graph-based 
approach to update WiFi fingerprints using unlabelled signals with possibly new APs. Based on the observation that similar 
signal vectors likely imply physical proximity, GUFU employs a graph neural network (GNN) and a link prediction algorithm 
to retrain an incremental network given the new signals and APs. After the retraining, it then updates the signal vectors 
at the designated locations. Through extensive experiments in four large representative sites, GUFU is shown to achieve 
remarkably higher fingerprint adaptivity as compared with other state-of-the-art approaches, with error reduction of 21.4%
and 29.8% in RSS values and location prediction, respectively.

CCS Concepts: • Human-centered computing → Ubiquitous and mobile computing; • Computing methodologies → 
Machine learning.
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1 INTRODUCTION
A WiFi fingerprint is defined as the received signal strength (RSS) values of the WiFi access points (APs) at 
a location. With the proliferation of APs and WiFi-enabled mobile devices [25, 32, 45, 50], WiFi fingerprints
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Table 1. Number of APs over a two-month period in a campus.

Before After Overlapped/Shared APs
494 517 193

(a) Before. (b) After.

Fig. 1. Comparison of signal distributions from AP with SSID 34F8E7C0C583 over two months in a campus.

have found extensive applications in indoor navigation [7, 8, 12, 23, 30], WiFi service analysis [6, 27, 31, 36], 
geofencing [13, 16, 24, 26, 51], healthcare [11, 35, 49], etc.
A Wifi fingerprint database is often initially obtained with a full site survey where WiFi signals, given by 

AP IDs and their RSSs, are collected at designated locations (for example, over a grid size of a few meters). As 
WiFi environments evolve due to factors such as AP power adjustment, re-location, installation and removal, the 
existing fingerprint has to be updated over time to maintain service quality [10, 15, 20, 34, 37, 40]. Table 1 shows 
a WiFi environment on a campus that undergoes renovations, showcasing that the number of detected APs from 
multiple floors can significantly change over a two-month period. While some APs remain constant, numerous 
APs are removed, and a significant number of new APs are discovered. Figure 1 demonstrates an RSS heatmap of 
an AP that remains in the same area throughout this period, highlighting the notable differences in the spatial 
distribution of signals. These differences indicate that the AP power and/or location may have been changed.
In order to update an existing fingerprint database, traditionally new blanket site surveys are conducted 

regularly. As such surveys are labor-intensive and time-consuming, crowdsourcing approaches have been 
proposed, where new signals are collected spatially and randomly over time by mobile user devices in the venue 
without any location labels. These new unlabeled signal samples, sampled effortlessly at different locations, are 
processed periodically in batches, typically once every week or so, to update the existing fingerprints (RSS at 
existing designated locations).
In this work, we study the challenging problem of how to effectively update an existing fingerprint database 

given a batch of unlabelled (crowdsourced) signals that may consist of new APs. Our goal is to make full use of 
the signal features, including those of the new APs, to accurately update the signal vectors at the designated 
locations of the existing fingerprints.
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Previous works on fingerprint update often estimate the locations of the newly collected signal samples and 
add them as new fingerprints into the existing database [1, 22, 33, 47]. While the new signals are included, the 
existing, possibly outdated, fingerprints, however, remain unchanged in the database. These outdated fingerprints 
can contaminate the database rather quickly over time. To tackle that, some recent approaches update the existing 
fingerprints by merging the new signals into the existing ones [3, 9, 20, 37, 39]. These methods, however, consider 
only the common APs without the new APs in the crowdsourced samples. This adversely affects the update 
process, because the information or features of the new APs have not been embraced or exploited.
We propose GUFU, a novel effective graph-based approach to update WiFi fingerprints using unlabelled 

signals with possibly new APs. To the best of our knowledge, this is the first work on how to effectively update 
the existing (aged) fingerprints with a batch of newly collected unlabeled signals by considering all APs, including 
the shared and new ones.

GUFU consists of offline and online stages. In the offline stage, GUFU is initialized with a bootstrap site survey, 
where fingerprints are collected at designated grid locations, typically a few meters apart. Using the fingerprints, 
GUFU trains its two components, namely, a feature extractor and a graph neural network (GNN). The feature 
extractor extracts signal features from RSSs. The extracted features are then used to create a weighted graph 
formed by AP nodes and sample nodes, in which those features are fed as the initial sample node features. 
Subsequently, edges are created between the two types of nodes based on the signal strengths, while AP node 
features are initialized as the weighted average of the features from neighboring sample nodes. Additionally, 
observing that similar signal features likely indicate location proximity, extra virtual edges between sample nodes 
are added to the graph. The GNN is finally trained on this weighted graph, utilizing both node features and edge 
features, which are determined through weighted feature aggregation between the nodes.
After the offline stage, GUFU then enters into the online stage where the fingerprints evolve with the WiFi 

environment based on batches of unlabeled (crowdsourced) signals collected over time. New sample nodes for 
the graph are created using the shared APs between the existing fingerprints and each new batch of signals, 
along with nodes for any new APs that appear only in the new batch. The trained feature extractor and GNN are 
then applied to get those new nodes’ features. These features are subsequently used in two MLPs to update the 
existing node features. The updated features are finally used to amend the corresponding signal strengths in the 
existing fingerprints.
To effectively address the evolving features of both new and outdated APs, GUFU employs a novel edge 

prediction algorithm to update the edges in the graph. This algorithm establishes new edges between the new 
APs and the labelled samples while removing potentially outdated edges. With these updated edges, the GNN can 
be updated to have its node features better represent the signal dynamics. Then by utilizing the trained feature 
extraction and node feature aggregation, the features of the new APs can also be leveraged to update the RSS 
values of the existing fingerprints.

Our contributions are summarized as follows:

• We propose GUFU, a novel graph-based approach to update WiFi fingerprints using unlabeled (crowd-
sourced) signals with possibly new APs. GUFU effectively amends each of the RSS values in the existing
fingerprints at designated locations by embracing the features of the new APs.
• We propose a novel edge prediction module in GUFU to incorporate the features of the new APs. This
module establishes connections between the new APs and existing samples in GNN to greatly improve
the effectiveness of fingerprint updates. In addition to embracing new APs, this module can also remove
existing yet outdated APs and their associated edges via a forgetting mechanism.
• We conduct extensive experimental studies on GUFU in four different major sites, namely, a campus
building, a hospital and two shopping malls, over a long period of time (eight months). Our experimental
results demonstrate that the fingerprints are effectively updated over time as the WiFi environment evolves.
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GUFU outperforms state-of-the-art algorithms significantly, reducing 21.4% in RSS error and 29.8% in signal
location error.

The rest of this paper is organized as follows. After reviewing the related work in Section 2, we overview 
GUFU in Section 3. In Section 4 we discuss the offline training of GUFU given an initial bootstrapped fingerprints 
by a site survey. In Section 5 we present the batch update of fingerprints for existing APs, while in Section 6 
We present the fingerprint update with AP changes, i.e., addition and removal of APs. We discuss experimental 
results in Section 7 and conclude in Section 8.

2 RELATED WORK
Database update by appending new fingerprints: Many previous approaches predict locations for new signals 
and add them to the existing database. For the prediction task, earlier works [17, 38, 41] leverage additional 
information from IMU sensors or cameras in addition to WiFi signals. Other recent studies [1, 3, 4, 18, 28, 29, 
33, 42, 43, 47] focus on WiFi signals and aim to train a WiFi-based classifier to find the most similar fingerprint 
records in the database for each new signal. For example, CNNLoc [33] combines a one-dimensional CNN with a 
stacked autoencoder for classifying WiFi signals. WiDeep [1] utilizes a similar autoencoder model and combines 
it with a noise injector to better extract AP-invariant features. FIDo [3] uses WiFi channel state information and 
builds a variational autoencoder to classify WiFi signals. WiDAGCN [47] models APs and signal samples into a 
graph and utilizes graph attention to model similarities between existing and new signals. These approaches add 
new signals with their predicted locations into the database. However, the existing and possibly outdated records 
in the database remain unchanged, which deteriorates the quality of fingerprints over time. By contrast, GUFU 
updates the existing (aged) fingerprints by estimating the RSS values that have been possibly outdated for each 
designated location in the database so that every record in the database can be up to date.
Database update by fusing new signals with existing fingerprints: Aged signals for the existing fingerprints 
and newly crowdsourced ones obtained from close locations may follow similar distributions. Hence, recent 
approaches [2, 3, 20, 21, 34, 37, 39, 46] attempt to fuse similar signals collected at different t imes to update 
fingerprints. For example, TransLoc [34] and iToLoc [20] aim to extract temporal-invariant features to train a 
classification model such that similar signals can be merged. In addition, Fidora [39] reconstructs old and new 
signals together via semi-supervised learning and updates signals in the old fingerprints. Another recent work 
MTDAN [37] further utilizes multi-target domain adaptation for signal updates. These approaches, however, only 
consider the shared APs that appear in the existing fingerprints. As a result, they have not fully exploited the 
signal features of the new APs, which could take a significant share in the newly collected signals, as shown 
in Table 1. By contrast, we propose an edge prediction module in GUFU to associate the new APs with the 
existing fingerprints. This allows us to leverage the features from the new APs in the process of updating the 
aged fingerprints.
Graph-based radio frequency (RF) signal modeling: RF signals such as WiFi signals are traditionally processed 
in the form of fixed-length vectors or matrices. This approach, however, may suffer from the missing-value 
problem [53]. Specifically, not all the signals from the APs at a location may be fully scanned, thereby leaving 
several entries in the vectors or matrices empty. These missing entries are usually filled with arbitrarily small 
values, but they may introduce unintended artifacts in the feature learning process. To solve this problem, several 
recent studies [5, 44, 47, 48, 52, 53] utilize a graph to model the RF signals. Zhang et al. [48] propose to use a 
homogeneous graph to model the relationships among signal samples, while WiDAGCN [47] models APs and 
signal samples separately. Besides utilizing a bipartite graph model with APs (given by MAC addresses) and 
signal samples being two different types of nodes, GUFU creates virtual edges to better capture their similarity. 
With this novel design, GUFU is able to effectively propagate possible changes in RSS values via edges in the 
graph and in turn better update the fingerprints.
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Fig. 2. A system overview of GUFU.

3 SYSTEM OVERVIEW
We overview GUFU in Figure 2. GUFU is bootstrapped with an existing fingerprint database, obtained through
surveys at designated locations. This database is used for initialization, in which the RSS feature extractor is
trained (Section 4.1) and the GNN is constructed using the signal features obtained by the trained feature extractor
(Section 4.2). After that, given a newly collected batch of unlabeled signals, GUFU checks whether it has new
APs apart from those in the existing fingerprints. For those existing APs, their signal features are obtained via
inference through the GNN (Section 5.1), and new corresponding signal nodes are added to the GNN to infer
the locations of new samples and the updated feature vectors for the signals (Section 5.2). For the new APs, an
additional edge predictor is trained (Section 6.1) to create edges between those new APs and existing samples in
the GNN. At the same time, a forgetting mechanism is applied to remove edges connected to potentially outdated
APs as well as the nodes that correspond to the outdated APs (Section 6.2). These changes in AP nodes and edges
enable the feature extractor and the GNN to be updated, and the updated feature vectors can be obtained from the
updated GNN. Finally, those updated vectors are fed to the decoder for outputting the updated signal strengths
in the existing fingerprint. To help better understand the operations of GUFU, in Table 2, we collect all the key
notations used throughout the paper.

4 TRAINING WITH BOOTSTRAPPED FINGERPRINTS
In this section, we introduce the initialization of GUFU during the offline stage. GUFU is bootstrapped using
a set of fingerprints collected through a site survey. These fingerprints serve as the input for training the RSS
feature extractor (Section 4.1). After training, the extractor can generate the embeddings for any fingerprints. The
embeddings of the existing fingerprints are then used to train a GNN on a weighted graph, along with additional
virtual edges (Section 4.2).

4.1 Encoder and Decoder for Feature Extraction
The existing WiFi fingerprint database consists of signals and their corresponding location labels, typically
obtained through surveys at predetermined locations. Each signal sample is obtained from a WiFi scanning and
contains pairs of detected MAC addresses (MACs) along with their associated received signal strength (RSS)
values. Let 𝒀 ∈ R𝑁×2 represent the set of locations in the fingerprint database, where 𝑁 is the number of samples
with location labels. Additionally, let 𝑿 ∈ R𝑁×𝑛𝑠 denote the corresponding set of RSS values, where 𝑛𝑠 is the
total number of MACs detected at each location. If a particular MAC is not detected in a sample, we assign its
corresponding entry in 𝑿 a value of −120 dBm, which is the common practice in recent studies [47, 48, 52, 53].
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Table 2. Summary of notations.

𝑿 Set of RSS values in the fingerprint database
𝒀 Set of locations in the fingerprint database
𝑼 Set of RSS values in a new batch of signals

𝒁𝑿 Set of signal features for 𝑿
𝒁𝑼 Set of signal features for 𝑼
𝑽 Set of nodes in graph G
𝒗𝑥 A sample node in 𝑽 , with 𝑥 ∈ 𝑿
𝒗𝑚 An AP node in 𝑽
𝒛𝒙 Node feature for node 𝒗𝑥
𝒛𝒎 Node feature for node 𝒗𝑚
𝑬 Set of edges in graph G

𝑬𝑣𝑖𝑟𝑡𝑢𝑎𝑙 Set of virtual edges created in graph G
𝒛𝒙𝒎 Edge feature for edge 𝒆𝑥𝑚 ∈ 𝑬 ∪ 𝑬𝑣𝑖𝑟𝑡𝑢𝑎𝑙
𝑾 Set of edge weights in graph G

W0, W1, W2 Trainable weights in the GNN
𝑮 (𝒗) Goodness score for a node 𝑣 in graph G
𝑭 (𝒗) Fairness score for a node 𝑣 in graph G

To normalize the RSS values to [0, 1], we add an offset of 120 dBm to each entry in 𝑿 and divide the resulting
value by 120. We refer to 𝑿 as the set of normalized RSS values for the rest of this paper.

In addition to the initial fingerprint database, RSS values are continuously collected in a crowdsourced manner,
without accompanying location labels. A new batch of unlabeled samples becomes available at regular intervals,
e.g., once a week. Let 𝑼 ∈ R𝐾×𝑛𝑏 represent the set of RSS values for this new batch, where 𝐾 is the number
of new samples and 𝑛𝑏 is the total number of MACs detected in this batch. As done for the initial fingerprint
database, if a MAC is not detected in a new sample, its corresponding RSS value is filled with −120 dBm. To
ensure consistency, we also apply the same normalization process to each entry of 𝑼 .

To reduce the dimensions of RSS values and extract fixed-length feature vectors for representing the samples
in the initial fingerprints as well as from new batches of samples, we employ an autoencoder as our feature
extractor. The autoencoder comprises an encoder E(·) and a decoder G(·), and its architecture is illustrated in
Figure 3. For the RSS-value set 𝑿 , we generate its corresponding feature set 𝒁𝑋 by passing it through the encoder
E(·). This operation can be expressed as

𝒁𝑋 = E(𝑿 ). (1)

The extracted feature set 𝒁𝑋 then goes through the decoder D(·) to generate the following recovered RSS set:

�̂� = D(𝒁𝑋 ). (2)

The autoencoder network is trained by minimizing the following loss of the feature extraction:

L𝐹 = ∥𝑿 − �̂� ∥𝐹 ,

where ∥ · ∥𝐹 is the Frobenius norm.
Once the autoencoder is trained, we obtain the output feature set 𝒁𝑋 , which represents the features of the 
signals in the fingerprint database. When a new batch of WiFi signals 𝑼 is collected, we can extract their features
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Fig. 3. Structure of the autoencoder.

by employing the same encoder. This operation can be expressed as

𝒁𝑈 = E(𝑼 ). (3)

4.2 Graph Formulation and GNN Training
Given the RSS-value set 𝑿 and its corresponding extracted feature set 𝒁𝑋 , we construct a graph G = (𝑽 , 𝑬 ,𝑾 ),
where 𝑽 represents the nodes, 𝑬 denotes the edges, and𝑾 contains the corresponding edge weights. For each
sample 𝒙 in 𝑿 , which is a row vector, we model it as a sample node 𝒗𝑥 in the graph. Additionally, we model
each detected MAC address in 𝑿 as an AP node. If an AP node 𝒗𝑚 is detected in the sample 𝒙 , its corresponding
node in the graph is the sample node 𝒗𝑥 . Consequently, an edge 𝒆𝑥𝑚 ∈ 𝑬 is established between 𝒗𝑥 and 𝒗𝑚 . Its
edge weight is defined as a non-negative function of the detected RSS value. Specifically, the edge weight𝒘𝑥𝑚
is calculated as 𝒙𝑚 + 𝑐 , with 𝑐 > max{|𝑿𝑖 𝑗 |,∀𝑖, 𝑗}, where 𝒙𝑚 represents the RSS value of AP𝑚 in 𝒙 , and 𝑿𝑖 𝑗
denotes the RSS value of AP 𝑗 in WiFi signal sample 𝑖 . We here set 𝑐 to 120, which is a common practice for
adding RSS values to graphs in [47, 48, 52, 53]. Note that if a MAC address is not detected in a WiFi sample 𝒙 , its
corresponding value is filled with −120 dBm. In such a case, no edge exists between the corresponding pair of
nodes in the graph.
Each sample node 𝒗𝑥 in the graph is initially associated with the feature vector of 𝒙 obtained by the feature

extractor in Section 4.1. Letting 𝒛𝑥 be the feature vector of 𝒙 , it is a row vector in 𝒁𝑋 . We augment this 𝒛𝑥 by
concatenating 𝒛𝑥 with its location label 𝒚. For simplicity, we continue to denote the augmented vector as 𝒛𝑥
throughout the rest of the paper. Then for any AP node 𝒗𝑚 , its node feature is initialized as the weighted average
of the node features in its immediate neighborhoodN(𝒗𝑚), which are all sample nodes. This initialization reflects
the spatial relationships among the nodes and is given by

𝒛𝑚 =
∑︁

𝑣𝑥 ∈N(𝒗𝑚 )

𝒘𝑚𝑥∑
𝑣𝑦 ∈N(𝒗𝑚 ) 𝒘𝑚𝑦

𝒛𝑥 .

This approach effectively aggregates information from all neighboring sample nodes of each AP node, incorpo-
rating that information into the AP nodes.
Thus far, edges have only been established between sample nodes and AP nodes. However, to update the

existing fingerprints, which consist of signal samples, it is important to emphasize the sample nodes that contain
features for these signals. To enable direct interactions between similar signal samples, we create virtual edges,
denoted as 𝑬𝑣𝑖𝑟𝑡𝑢𝑎𝑙 , connecting these sample nodes. The similarity between signal samples is determined by the
common AP neighbors that they share, as illustrated in Figure 4. This similarity can be quantified using cosine
similarity between each pair of sample nodes, which is calculated as the dot product of their respective node
feature vectors.

To enable direct connections between similar sample nodes, one potential approach is to identify the 𝑘 nearest
neighbors of each node based on their cosine similarity values. However, it remains a challenge how to determine
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the appropriate value of 𝑘 , as a neighboring node with low similarity could still appear in the top-𝑘 list regardless
of the choice of 𝑘 . This problem is illustrated in Figure 5, where the top five neighbors of a WiFi sample node are
identified, but two of them display notably low similarity. To mitigate this problem, GUFU creates virtual edges
using a thresholding method with a predefined threshold 𝜎 on the cosine similarity values. In this process, only
pairs of sample nodes with similarity values greater than 𝜎 can be connected by virtual edges.

To learn a node embedding (or an updated node feature vector) for each node in the constructed graph G, we
construct a GNN by employing its training process based on GraphSAGE [14]. The principle behind GraphSAGE
is that the embedding of each node is learned by aggregating information from its sampled one-hop neighborhood,
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e.g., calculating the mean value of the node embeddings within the neighborhood. By employing 𝐿 layers of
aggregation, the embedding of each node incorporates information from its 𝐿-hop neighbors. In GUFU, we adapt
and modify the aggregation process as follows.
We first introduce an edge feature vector as an additional input to the aggregation process. For each edge

𝒆𝑢𝑣 ∈ 𝑬 ∪ 𝑬𝑣𝑖𝑟𝑡𝑢𝑎𝑙 , we initialize its edge feature vector 𝒛𝑢𝑣 as the mean value of the node features of its connected
end nodes 𝑢 and 𝑣 , i.e., 𝒛𝑢𝑣 = (𝒛𝑢 + 𝒛𝑣)/2. The node-wise and edge-wise features are then fed into the aggregation
process. The aggregation process is summarized in Algorithm 1, where 𝐿 denotes the number of aggregation
layers, and 𝑣_𝑒𝑑𝑔𝑒 (·) represents the creation of virtual edges. Before the 𝐿 layers of aggregation, virtual edges
are constructed. The process at each layer can be divided into the following three steps:

Algorithm 1: GUFU: Training
Input: Graph 𝐺 (𝑉 , 𝐸,𝑊 ); initialized node embeddings 𝒛𝑣 , ∀𝑣 ∈ 𝑉 ; number of aggregation layers 𝐿.
Output: Node embeddings 𝒛𝑣,∀𝑣 ∈ 𝑉 .

1 𝐸𝑣𝑖𝑟𝑡𝑢𝑎𝑙 = 𝑣_𝑒𝑑𝑔𝑒 (𝐸,𝑉 , 𝜎). /* Create virtual edges between sample nodes. */

2 𝒛0𝑢𝑣 ←
𝒛𝑢+𝒛𝑣

2 , ∀𝑒𝑢𝑣 ∈ 𝐸 ∪ 𝐸𝑣𝑖𝑟𝑡𝑢𝑎𝑙 .
3 for 𝑙 = 1, 2, · · · , 𝐿 : do
4 for 𝑣 ∈ 𝑉 do

/* Aggregate node features using the features from the previous layer. */

5 𝒛𝑙
ℎ𝑣

= 𝐴𝐺𝐺

(
𝜙 (W𝑙

0 · CONCAT(𝒛
𝑙−1
𝑢𝑣 , 𝒛

𝑙−1
𝑢 )), ∀𝑒𝑢𝑣 ∈ 𝐸 ∪ 𝐸𝑣𝑖𝑟𝑡𝑢𝑎𝑙

)
,

/* Update node features. */

6 𝒛𝑙𝑣 = 𝜙
(
W𝑙

1 · CONCAT(𝒛
𝑙−1
𝑣 , 𝒛𝑙

ℎ𝑣
)
)

7 𝒛𝑙𝑣 =
𝒛𝑙𝑣
| |𝒛𝑙𝑣 | |2

end
8 for 𝑒𝑢𝑣 ∈ 𝐸 do

/* Update edge features. */

9 𝒛𝑙𝑢𝑣 = 𝜙
(
W𝑙

2 · CONCAT(𝒛
𝑙
𝑢 , 𝒛

𝑙−1
𝑢𝑣 , 𝒛

𝑙
𝑣)
)

10 𝒛𝑙𝑢𝑣 =
𝒛𝑙𝑢𝑣
| |𝒛𝑙𝑢𝑣 | |2

end
end

11 return 𝒛𝑣,∀𝑣 ∈ 𝑉 .

For every node 𝑣 , we first aggregate the embeddings (or feature vectors) from its sampled neighbors, where the
embedding of each neighbor is concatenated with the embedding of its connected edge (Line 5). Subsequently,
the aggregated embedding from the neighbors is concatenated with the node’s original embedding (Line 6). This
concatenated embedding is then normalized (Line 7) to yield a new node embedding. At the end of each layer, the
embedding of each edge is updated by concatenating the new embeddings of its end nodes with its existing edge
embedding (Line 9 and Line 10). The learnable weights W𝑙

0, W
𝑙
1, and W

𝑙
2 are trained by minimizing the difference

between nodes and their immediate neighbors in terms of their embeddings. In other words, the training loss is
given by

LG = −
∑︁

𝑒𝑢𝑣 ∈𝐸∪𝐸𝑣𝑖𝑟𝑡𝑢𝑎𝑙
log(𝜙 (𝒛𝑇𝑢 𝒛𝑣)), (4)

where 𝜙 (·) is an activation function. After the aggregation, to reduce the space required for maintaining the
graph G, the virtual edges are removed. This completes the initialization of GUFU.
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5 FINGERPRINT UPDATE FOR EXISTING APS
In this section, we present the batch update of GUFU during the online stage. This update process involves 
the existing APs that occur in the existing fingerprint database. These APs include the shared APs, which are 
common to both the new batch of signals and the existing fingerprint database, as well as those that are missing 
from the new batch. The trained GNN processes the new signals and generates their corresponding embeddings 
(Section 5.1). Using those embeddings, an MLP-based update module is utilized for location predictions and 
fingerprint updates (Section 5.2).

5.1 GNN Feature Aggregation
When a new batch of signals 𝑼 arrives, new sample nodes are created based only on the RSS values from the 
existing APs and added into G. The initial node features of these new sample nodes, obtained by the trained 
encoder in Section 4.1, are represented by 𝒁𝑈 . Each column vector in 𝒁𝑈 corresponds to the embedding of a 
new sample node, which is then concatenated with a randomly assigned two-dimensional location label. This 
concatenation is the same as what was done in Section 4.2.
Let 𝑉𝑈 represent the set of new sample nodes, and let 𝑉𝑋 denote the set of existing sample nodes. Following 

the process in Section 4.2, a new set of virtual edges is created between all sample nodes in 𝑉𝑈 ∪ 𝑉𝑋 using their 
current node features. Subsequently, GUFU retrieves the updated node features for all sample nodes and existing 
AP nodes by executing Algorithm 1. In other words, the embeddings of nodes in 𝑉𝑈 ∪ 𝑉𝑋 and all relevant edge 
features are updated via the aforementioned aggregation process. In particular, the embeddings of new sample 
nodes, i.e., 𝒁𝑈 , are used to update the existing fingerprint database.

5.2 Update Module
To iteratively predict the locations of new samples and obtain updated features for existing samples in the 
fingerprint database, we introduce an update module consisting of two sequential MLP networks. For a new batch 
of samples, the first MLP network takes their feature vectors 𝒁 𝑈 as input and predicts their corresponding location 
labels ˆ𝑈 . In addition, the second MLP network is responsible for taking the location labels of samples in the 
existing fingerprint database and producing their updated feature v ectors ˆ  . Here we u tilize ˆ  to recover their

𝑋 𝑋

corresponding updated RSS values ˆ . This process is achieved using the decoder as in Equation (2). The updated 
RSS values are then used to replace the old ones in the fingerprint database. After this update is completed, the 
new sample nodes, along with their connected edges, are removed from the graph. Consequently, the number of 
nodes of the graph G remains unchanged. In other words, each batch of new samples is utilized to update the 
fingerprint database without expanding its size.
The first MLP network is trained using the feature vectors of existing samples 𝒁 𝑋 and their corresponding 

location labels 𝒀𝑋 in the fingerprint database. Specifically, the network is trained to minimize the following loss 
function, which measures the discrepancy between the predicted location labels ˆ𝑋 and the true labels 𝒀𝑋 :

LP = | |𝒀𝑋 − �̂�𝑋 | |𝐹 . (5)

Similarly, the second MLP network is designed to minimize the following loss function, which measures the
discrepancy between the updated feature vectors �̂�𝑈 (the output of the MLP network) and their corresponding
ground truth vectors 𝒁𝑈 :

LU = | |𝒁𝑈 − �̂�𝑈 | |𝐹 . (6)

It is worth noting that the two MLP networks are similar to an autoencoder. The first MLP network serves 
as the encoder, which is responsible for the location prediction. The second MLP network acts as the decoder, 
which is for the fingerprint update.
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In addition to LP and LU , we define a consistency loss among neighboring nodes in the graph to train the
MLP networks with higher accuracy. The rationale behind this consistency loss is that the newly predicted
location or updated feature vector of each node should not differ too much from its neighborhood. It has two
parts. The first one is for the location prediction. The predicted locations of new sample nodes should have similar
location labels to those of old sample nodes in their virtual neighborhoods. Thus, we define the following loss
function:

L𝐶𝑃 = | |𝒀𝑋𝑨 − 𝒀𝑈 | |𝐹 , (7)
where 𝑨 is a matrix with elements 𝑨𝑖 𝑗 being 𝑨𝑖 𝑗 = 1 for all 𝑒𝑢𝑣 ∈ 𝐸𝑣𝑖𝑟𝑡𝑢𝑎𝑙 and 𝑨𝑖 𝑗 = 0 otherwise. The second part
is for the feature-vector update. Similar to the first part, the updated feature vectors of (old) sample nodes in the
database should be similar to the features of new sample nodes in their virtual neighborhoods, leading to the
following loss function:

L𝐶𝑈 = | |𝒁𝑋𝑨 − 𝒁𝑈 | |𝐹 . (8)
To summarize, considering all four loss functions, we have the final loss function to train the update module

for each batch of new samples, which is given by

L = 𝛼 (LP + LU) + (1 − 𝛼) (L𝐶𝑃 + L𝐶𝑈 ), (9)

where 𝛼 is the regularization parameter.
After applying the MLPs for signal and location updates, we remove the virtual edges created for this batch of

new signals to minimize the storage requirements for the graph G, similar to the approach described in Section 4.2.
Additionally, for every batch update, we update the trainable weights of the GNN by minimizing the loss function
in Equation (4). This loss function captures the differences between the embeddings of recently created nodes and
their neighbors, including both direct neighbors and those connected through virtual edges. Furthermore, since
𝑿 ’s feature vectors 𝒁𝑋 are updated for each new batch and the corresponding APs may changed, the original
autoencoder should also be updated to ensure that 𝒁𝑋 can be extracted from 𝑿 . To resolve this, we retrain it
using the following training loss:

L𝐹 = ∥𝑿 − �̂� ∥𝐹 +
1
2
(∥E(𝑿) − 𝒁𝑋 ∥𝐹 + ∥D(𝒁𝑋 ) − �̂� ∥𝐹 ). (10)

6 FINGERPRINT UPDATE WITH AP CHANGES
In this section, we explain how GUFU updates the edges in the graph G according to AP changes, including the 
addition of new APs and the removal of existing ones. For a new batch of signals, GUFU first assesses 
whether any new AP nodes need to be created. If so, it creates the new AP nodes and utilizes the node features 
from the graph whose AP nodes only consist of the existing APs to determine where new edges should be 
established between the new AP nodes and existing sample nodes (Section 6.1). GUFU also evaluates whether 
any existing edges should be removed from the graph, regardless of the presence of new APs (Section 6.2). 
Throughout this process, the node features remain unchanged.

6.1 Edge Prediction for New APs
After updating the node features for the existing and new sample nodes 𝑉𝑈 ∪ 𝑉𝑋 using only the existing APs, 
GUFU checks for any APs, identified by their MAC addresses, that are detected in 𝑼 but not present in 𝑿 . If 
such APs are identified, new corresponding AP nodes are created in the graph G for those MAC addresses. Then, 
similar to the initial training process in Section 4.2, the initial feature vector for each newly added AP node is 
calculated as the weighted average of the node feature vectors of its immediate neighbors.
To effectively utilize incoming new samples for updating the signals in the existing fingerprint database—especially 
the RSS values from new APs—we introduce an edge prediction algorithm. This algorithm identifies potential
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Exist?

Sample node 𝑢 Sample node 𝑣

Shared AP nodes

Fig. 6. Edge prediction.

missing connections between AP nodes and sample nodes, making it particularly useful for newly detected AP
nodes and existing sample nodes.
As depicted in Figure 6, our edge prediction algorithm aims to predict missing edges between pairs of AP

nodes and sample nodes that are not currently connected but are both present in the neighborhood of another
sample node. As mentioned in Section 4.2, virtual edges are established between similar sample nodes. Hence, we
search for node pairs consisting of an AP node and a sample node within the neighborhood of sample nodes that
serve as endpoints of virtual edges. This edge prediction process allows us to discover potentially close AP nodes
and sample nodes that are not yet connected in the graph.

In the algorithm, we adapt two metrics proposed in [19], namely, goodness and fairness, to assess edge weights
in the graph and decide whether an AP node and a sample node should be connected. The goodness metric
indicates how much a node is trusted by its neighbors as a similar node, while the fairness metric measures how
reliable a node is in evaluating the goodness of its neighbors. It is important to note that goodness and fairness
are interdependent. Specifically, if a node exhibits high goodness and high fairness, nearby nodes are more likely
to connect with it.

To define the two metrics explicitly in our scenario, we define the goodness 𝑮 (𝑣) of node 𝑣 as the normalized
weighted average of its neighbors’ fairness values. The higher the value, the better the goodness. We also define the
fairness 𝑭 (𝑣) of node 𝑣 as the normalized difference between the weights of its connected edges and the goodness
values of its neighbors. The larger the difference is, the lower its fairness. We provide an illustrative example of
goodness and fairness in Figure 7, where in our case the goodness and fairness are quite close to the edge weights.
As illustrated in the figure, node 𝑢 is considered good as the weighted average fairness of its neighboring nodes
is close to 1. Node 𝑣 is considered fair as the average difference in edge weights between it and its neighboring
nodes is close to 0. As each node is associated with its 𝑑-dimensional embedding (feature vector), we define
the goodness and fairness along each dimension, i.e., 𝑮 (𝑣) = [𝒈1 (𝑣), · · · ,𝒈𝑑 (𝑣)], and 𝑭 (𝑣) = [𝒇1 (𝑣), · · · ,𝒇𝑑 (𝑣)].
Specifically, for each dimension 𝑖 , we define 𝒈𝑖 (𝑣) and 𝒇𝑖 (𝑣) as

𝒈𝑖 (𝑣) =
1

|𝑁 (𝑣) |
∑︁

𝑢∈𝑁 (𝑣)
𝒇𝑖 (𝑢)𝑤𝑢𝑣, (11)

𝒇𝑖 (𝑣) = 1 − 1
2|𝑁 (𝑣) |

∑︁
𝑢∈𝑁 (𝑣)

|𝑤𝑢𝑣 − 𝒈𝑖 (𝑢) |, (12)

respectively, where 𝑤𝑢𝑣 is the normalized weight of edge 𝑒𝑢𝑣 , which is defined as 𝑤𝑢𝑣 = 𝑤𝑢𝑣/𝑤max, with
𝑤max = max{𝑤𝑖 𝑗 ,∀𝑖, 𝑗}.

Our edge prediction algorithm is summarized in Algorithm 2. We first normalize the edge weights by the
maximum edge weight in the graph (Line 1). The goodness and fairness vectors are both initialized as the updated
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Fig. 7. An illustrative example of goodness 𝑔 and fairness 𝑓 .

node features (Line 2). We then iteratively update the goodness and fairness values for each node (Lines 5–9) until
they converge. We next compute the predicted edge weights for potential edges, i.e., edges between AP nodes
and sample nodes that are not connected but are both present in the neighborhood of another sample node (Line
12). If the predicted edge weight is greater than a (predetermined) threshold, then a new edge is added to the
graph with the corresponding edge weight (Lines 13–15). The threshold is given by 𝛿 = 120 −max{|𝑿𝑖 𝑗 |,∀𝑖, 𝑗}.
By setting this threshold, we can ensure that edges would only be created when the predicted weights are greater
than 120 − 𝑐 , which equals 0 as we follow the common practice in [47, 48, 53] and set 𝑐 = 120. Specifically, edges
will only be created for those predicted to have non-negative edge weights, guaranteeing that all created edges
possess valid, positive weights.

6.2 Forgetting Mechanism for Existing APs
In the process of updating fingerprints, it is important to consider not only the installation of new APs but also the
removal of existing ones from a site. When an AP is removed, its signals will no longer be recorded, necessitating
their removal from the fingerprint database. To tackle this issue, we introduce an edge removal process in our
edge prediction algorithm, as outlined in Algorithm 2. During this process, GUFU identifies predicted edge
weights that fall below the threshold for edge existence, which is the same threshold used for adding edges. If an
edge’s predicted weight is below this threshold, it is removed from the graph (Lines 16–18). Furthermore, if any
AP node becomes disconnected from the rest of the graph as a result of the edge removal process, it indicates
that the corresponding AP has been removed. In such cases, the AP node is deleted from the graph, effectively
removing its presence from the fingerprint database.
After the APs changes are recorded by edge changes in the graph, using the new edges and the new node

features, we retrain the feature extractor according to the same procedure as mentioned before (Section 4.1). The
feature vectors are again fed to the GNN for inference (Section 5.1). The output embeddings are then used by the
decoder in the feature extractor to obtain the updated RSS values (Section 5.2).

7 EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate GUFU. We first present our experiment settings in Section 7.1 and
then compare the performance of GUFU with state-of-the-art algorithms in Section 7.2. We further demonstrate
the effectiveness of each system component of GUFU and the impact of the system parameters in Section 7.3.

7.1 Experimental Setup
Data collection: We conduct experiments on four different sites, including one campus building (Campus), two
shopping malls (Malls A and B), and one hospital (Hospital), as shown in Figure 8. The campus building has
three floors, and each of the other sites has four floors. For each floor in the buildings, we construct an initial
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Algorithm 2: GUFU: Edge Modification
Input: Graph G(𝑉 , 𝐸 ∪ 𝐸𝑣𝑖𝑟𝑡𝑢𝑎𝑙 ,𝑊 ); extracted node feature z𝑣 , ∀𝑣 ∈ 𝑉 .
Output: New edges 𝐸𝑛 and corresponding edge weights𝑊𝑛 .

1 𝑤𝑢𝑣 =
𝑤𝑢𝑣

𝑤max
,∀𝑒𝑢𝑣 ∈ 𝐸 ∪ 𝐸𝑣𝑖𝑟𝑡𝑢𝑎𝑙 .

2 𝑮 (0) (𝑣) = 𝑭 (0) (𝑣) = 𝒛𝑣 , ∀𝑣 ∈ 𝑉 .
3 𝐸𝑛 =𝑊𝑛 = {}
4 𝑡 = 0.
5 do

/* Iteratively update 𝑮 and 𝑭. */

6 for 𝑣 ∈ 𝑉 do
for 𝑖 ∈ [1, 𝑑] do

7 𝒈 (𝑡+1)
𝑖

(𝑣) = 1
|𝑁 (𝑣) |

∑
𝑢∈𝑁 (𝑣) 𝒇

(𝑡 )
𝑖
(𝑢)𝑤𝑢𝑣

8 𝒇 (𝑡+1)
𝑖

(𝑣) = 1 − 1
2 |𝑁 (𝑣) |

∑
𝑢∈𝑁 (𝑣) |𝑤𝑢𝑣 − 𝒈

(𝑡+1)
𝑖

(𝑢) |
end

end
9 𝑡 = 𝑡 + 1.
while

∑
𝑣∈𝑉 ∥𝑭 (𝑡 ) (𝑣) − F(𝑡−1) (𝑣)∥2 > 𝜖 and

∑
𝑣∈𝑉 ∥𝑮 (𝑡 ) (𝑣) − G(𝑡−1) (𝑣)∥2 > 𝜖 ;

10 for 𝑠,𝑢, 𝑣 ∈ 𝑉 : 𝑒𝑠𝑢 ∈ 𝐸, 𝑒𝑢𝑣 ∈ 𝐸𝑣𝑖𝑟𝑡𝑢𝑎𝑙 do
/* 𝑠 is connected to 𝑢 but not necessarily 𝑣. 𝑢 and 𝑣 are virtual neighbors. */

11 if 𝑣 ∉ 𝑁 (𝑠) then
12 �̂�𝑠𝑣 =

1
2𝑤max (𝑮 (𝑠) · 𝑭 (𝑣) + 𝑭 (𝑠) · 𝑮 (𝑣))

13 if �̂�𝑠𝑣 ≥ 𝛿 and 𝑒𝑠𝑣 ∉ 𝐸 then
/* Add an edge between 𝑠 and 𝑣. */

14 𝐸𝑛 = 𝐸𝑛 ∪ {𝑒𝑠𝑣}
15 𝑊𝑛 =𝑊𝑛 ∪ {�̂�𝑠𝑣}

end
16 if �̂�𝑠𝑣 < 𝛿 and 𝑒𝑠𝑣 ∈ 𝐸 then

/* Remove the edge between 𝑠 and 𝑣. */

17 𝐸𝑛 = 𝐸𝑛 ∖ {𝑒𝑠𝑣}
18 𝑊𝑛 =𝑊𝑛 ∖ {𝑤𝑠𝑣}

end
end

end
19 return 𝐸𝑛 ,𝑊𝑛 .

fingerprint database by dividing the site into grids and collecting WiFi signals from the center of each grid. After 
that, WiFi signals are crowdsourced periodically for updates. For Campus and Mall A, we collect data once per 
week and once every two weeks, respectively, for eight weeks. For Mall B and Hospital, the data are collected 
every week for four weeks. For reliable performance evaluation, the measurement locations of the collected 
signals are also recorded. As a result, those locations can be used as ground truth, yet only for measuring the 
prediction error. In Table 3, we provide the details of the data collection process for fingerprint updates in four 
buildings. Additionally, to provide a clearer overview of the number of signal samples collected and the changes 
in the number of APs within each batch of new data, we present relevant statistics in Table 4 and Table 5.
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Table 3. Data collection details in different sites.

Site Area Grid size Duration Frequency
(m2) (m2) (weeks) (/week)

Campus 255 × 95 2.5 × 2.5 8 1
Mall A 180 × 105 2.5 × 2.5 8 0.5
Mall B 650 × 280 2.0 × 2.0 4 1
Hospital 200 × 120 2.0 × 2.0 4 1

Table 4. Number of samples collected on each floor for all sites.

Site Floor Init Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8

Campus
GF 11284 4029 4236 4661 4264 4342 4515 4509 4190
1F 10037 3589 3498 3981 3821 3445 3781 3448 3968
2F 11256 3733 3680 3667 3873 4110 3947 3899 3665

Mall A

B1F 6284 - 2544 - 1788 - 2056 - 2272
GF 7619 - 2487 - 2338 - 2843 - 2755
1F 3326 - 449 - 621 - 1054 - 965
2F 4158 - 1642 - 1153 - 1609 - 1629

Mall B

1F 131586 45417 46146 48439 46392 - - - -
MF 49453 16820 16394 16635 15660 - - - -
2F 62882 21286 20567 20396 19944 - - - -
3F 57194 52427 50251 53389 54803 - - - -

Hospital

GF 6154 2078 1733 1745 3936 - - - -
1F 4318 258 419 419 1448 - - - -
2F 2202 422 731 732 2305 - - - -
4F 1931 194 194 118 263 - - - -

Table 5. Summary of AP changes on each floor for all sites. +/- stands for addition/removal.

Site Floor Init Week1 Week2 Week3 Week4 Week5 Week6 Week7 Week8 Total
+/- +/- +/- +/- +/- +/- +/- +/- +/-

Campus
GF 391 53/46 33/26 29/22 3/2 41/6 17/28 25/23 3/4 204/136
1F 306 55/32 21/4 15/13 6/2 41/8 20/16 20/19 3/6 180/100
2F 253 10/7 19/5 12/9 0/4 27/3 5/8 11/7 6/13 90/56

Mall A

B1F 927 - 17/10 - 43/27 - 58/43 - 55/21 140/68
GF 1328 - 57/48 - 31/77 - 29/53 - 41/61 104/184
1F 434 - 18/24 - 37/38 - 24/37 - 11/34 47/90
2F 385 - 14/21 - 30/33 - 35/31 - 24/28 140/68

Mall B

1F 494 63/41 18/52 15/27 6/4 - - - - 82/104
MF 199 3/1 5/4 2/2 0/3 - - - - 8/8
2F 323 54/20 29/39 37/22 16/20 - - - - 121/90
3F 304 18/30 33/62 50/39 14/13 - - - - 64/93

Hospital

GF 673 8/4 5/8 5/0 4/1 - - - - 17/8
1F 317 0/0 3/10 7/6 10/1 - - - - 18/15
2F 266 0/0 11/7 2/0 3/0 - - - - 15/6
4F 164 0/0 1/1 3/2 0/0 - - - - 4/3
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Fig. 8. Floor plans of one floor from different sites. (a) Campus. (b) Hospital. (c) Mall A. (d) Mall B.

Implementation details: In GUFU, for the autoencoder in feature extraction, we use a dropout rate of 0.5. The 
encoder has its input dimension as the number of MACs detected in the initial fingerprint database and its output 
dimension of 32. For the GNN in GUFU, we apply a learning rate of 0.01 and a dropout of 0.5. The model is 
trained for 50 epochs. We use ReLU as the activation function 𝜙 . We set 𝜎 = 0.95 for the threshold value for 
creating virtual edges, 𝛼 = 0.5 in Equation (9), and 𝜖 = 0.1 for the link prediction threshold. The code is available 
anonymously online.1

State-of-the-art algorithms: To evaluate the performance of GUFU on the fingerprint updates, we com-
pare its performance with four state-of-the-art algorithms, namely, Fidora [39], iToLoc [20], MTDAN [37] and 
WiDAGCN [47]. Each algorithm is briefly summarized as follows:
• Fidora [39]: It uses a classification neural network and a reconstruction neural network to infer location labels
for new signals and update RSS values in the original fingerprints via semi-supervised learning. It is designed
based on the assumption that the signal characteristics, e.g., RSS values and detected APs, are different over
different areas, which are grids in our experiments.

• iToLoc [20]: It is based on the assumption that there are temporal features of WiFi signals that are consistent
over time. Hence, it first models WiFi signals as a 2D image and extracts time-invariant features from the
signals at different times using a convolutional time discriminator. It then predicts the locations of new signals
using another convolutional neural network. Both networks are trained from the fingerprint database and
the first batch of crowdsourced signals.

• MTDAN [37]: Similar to our GUFU, MTDAN’s update is also done with the assumption that there are AP
differences in signal samples from different times. Utilizing multi-target domain adaptation to extract time-
invariant signal features from stable APs (shared APs in our context), MTDAN is able to predict location
labels for new signal samples.

• WiDAGCN [47]: It is one of the state-of-the-art graph modeling for signal fingerprint update. By modeling
APs and signal samples as different nodes in the graph and using graph attention, WiDAGCN can match
graphs constructed from new signals to subgraphs from the existing graphs, and thus get its signal and
location predictions.
Note that iToLoc [20] does not update the RSS values in the fingerprint database. For a fair comparison, we

use our thresholding method (for creating virtual edges) in GUFU to do so, along with iToLoc. Specifically, for 
each signal record/sample in the database, which appears as a sample node in the graph, we first find its closest 
neighbors, which are also sample nodes in the graph, with their feature cosine similarity higher than 𝜎 = 0.95. 
Then, whenever the location of a new signal sample is predicted by iToLoc, its corresponding signal record/sample

1Code implementation: https://github.com/khchiuac/GUFU
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Fig. 9. Summary of RSS error on different floors of the four sites.

Table 6. Summary of the mean (standard deviation) for location prediction errors in different sites.

Site GUFU Fidora WiDAGCN MTDAN iToLoc
Campus 4.92m (0.815m) 5.48m (0.781m) 5.67m (0.919m) 6.22m (0.738m) 6.53m (0.833m)
Mall A 4.44m (0.974m) 4.88m (1.010m) 5.06m (1.071m) 5.21m (1.268m) 5.49m (1.541m)
Mall B 4.39m (1.252m) 5.46m (1.872m) 5.39m (1.997m) 5.77m (1.825m) 5.94m (1.808m)
Hospital 3.06m (0.603m) 3.72m (0.466m) 4.03m (0.704m) 3.99m (0.840m) 4.18m (0.597m)

is found in the database, and each RSS value in the record is updated as the weighted average of the RSS values
from its neighboring records/samples (i.e., its neighbors in the graph).
Evaluation metrics: To measure the accuracy of location prediction, we use the ‘location error’ that is defined
as the average Euclidean distance between the predicted locations and their ground-truth locations, as widely
used in the literature. In addition, to measure how accurately the fingerprint database has been updated, we use
the ‘RSS error’ that is defined as the average difference between updated RSS values and actually measured RSS
values of APs. All the experiments are done on a machine with an Intel(R) Core(TM) i9-9900X CPU @ 3.50GHz,
64G RAM and two graphic cards of Nvidia GeForce RTX 2080 Ti.

7.2 Overall Performance
Fingerprint updates: We first evaluate the performance of GUFU and other baseline algorithms for updating
aged fingerprints, which is measured in the RSS error. As shown in Figure 9, GUFU outperforms the other
algorithms substantially over all four sites.2 It indicates the effectiveness of our representation learning for WiFi
signal samples and the fingerprint-updating MLP networks built upon the representations. Fidora, however,
does not perform well because signal characteristics in neighboring areas can be similar to each other, which
is in contrast to the rationale behind its design. The performance of iToLoc, MTDAN, and WiDAGCN is also
not satisfactory. While they update RSS values based on the predicted locations of new signals, their location
predictions are not as accurate as GUFU. See Figures 10–13 for more details on the location prediction accuracy,
which shall be explained below. Furthermore, all the baseline algorithms do not consider newly introduced APs
in the new signals, thereby negatively affecting the location prediction accuracy and the quality of fingerprint
updates.
Location prediction accuracy: We summarize the average location prediction errors of GUFU and other state-
of-the-art algorithms in Table 6. GUFU outperforms other algorithms significantly, with up to 82% improvement

2A decrease of 3dB in signal strength indicates that the signal power reduces by half.
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Fig. 10. Location error over eight weeks on three floors in the campus.
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Fig. 11. Location error over eight weeks on four floors in mall A.

in the location error. This is because GUFU accurately updates fingerprints over time thanks to our novel graph-
based representation learning for WiFi signals along with effective link predictions. However, iToLoc and MTDAN
do not perform well as their signal features may vary over time, which affects the performance of their time 
discriminators. Fidora is also not able to correctly classify new signals (or infer their locations) since possibly 
similar signal characteristics over the neighboring areas may hinder its discriminative power. WiDAGCN does not 
perform well because its subgraph matching and prediction may be based on outdated fingerprint information. 
Moreover, they do not include newly added APs in the fingerprints, which affects their performance over time.
We further evaluate the accuracy of location prediction week by week for newly collected signals in all sites 

and present the results in Figures 10–13. GUFU’s performance varies at different floors as different floors may 
exhibit different RF signal environments due to diverse factors such as distinct floor designs, different densities 
of APs, and their different power levels. Nonetheless, GUFU consistently outperforms other algorithms over 
the whole time period. The improvement of GUFU over the other ones becomes more and more significant as 
time goes by. This indicates that using GUFU, the fingerprints can be valid for a longer period of time, and a 
recollection of signals for fingerprint database construction can be done less often. In addition, we show the 
CDF of location prediction errors for four sites in Figure 14. While the prediction errors of GUFU are mostly 
within 6–8m, the others lead to larger errors. For example, the 90-th percentile accuracy of GUFU outperforms 
WiDAGCN, Fidora, MTDAN, and iToLoc by up to 31.6%, 38.7%, 39.6%, and 40.4%, respectively. All these results 
validate the effectiveness of GUFU in location prediction and demonstrate its superior performance to the other 
baseline algorithms.
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Fig. 12. Location error over eight weeks on four floors in mall B.
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Fig. 13. Location error over eight weeks on four floors in the hospital.
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Fig. 14. Comparison of CDF on location error for four different sites.

7.3 Ablation Study
Time required for each update:We recorded the time required for each update and report the results in Table 7.
The results show that GUFU’s update time for each batch of new data is similar to the existing models like iToLoc
and MTDAN, while being significantly faster than Fidora and WiDAGCN.
Impact of RSS-feature extractor: We use an autoencoder as the feature extractor to learn the information
carried by the fingerprints. The rationale behind our choice of the autoencoder is that it has the capability
to “reconstruct” signals from the extracted signal features using its decoder. This structure aligns well with
our system design, where the extracted signal features are intended to predict the signal strengths needed for
fingerprint updates. To show the benefits of using such a feature extractor, we quantitatively compare the location
error and RSS error with and without this module in Figure 15(a)–(b). For GUFU without feature extraction, we
directly use the normalized RSS values as the node features on the graph, i.e., adding an offset of 120dBm and
then dividing the obtained value by 120. As shown in the plots, GUFU achieves a substantial improvement over
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Table 7. Time needed (in seconds) for each update over eight weeks on the campus.

Method Init Update1 Update2 Update3 Update4 Update5 Update6 Update7 Update8
GUFU 561.64 94.19 96.63 99.11 91.24 94.68 92.65 98.84 95.10
Fidora 692.81 102.18 109.49 115.39 106.16 108.97 102.56 102.28 99.30
iToLoc 464.49 86.36 81.93 85.05 88.62 76.79 75.40 74.72 89.08
MTDAN 537.78 92.28 93.32 96.83 93.64 97.43 92.46 95.22 93.29

WiDAGCN 987.30 149.70 152.65 169.33 158.86 161.31 165.36 163.81 156.94
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Fig. 15. Ablation study of GUFU. (a) and (b) GUFU (without feature extraction); (c) and (d) GUFU (without virtual edges).

Table 8. Average training time (in seconds) for GUFU to converge using different initialization schemes.

Initialization Campus Mall A Mall B Hospital
Weighted Average 561.64 193.41 1205.36 104.29
Zero Initialization 813.72 269.73 1807.44 130.16
One Initialization 801.231 295.72 1755.39 128.51

Random Initialization 603.20 199.64 1373.89 105.59

its version without the feature extractor in RSS error and location error, by up to 26.6% and 18.9%, respectively. 
This demonstrates that the initialization of node features with the feature extractor indeed helps to better capture 
similarities between WiFi signal samples and thus improves the location prediction and fingerprint updating 
results.

We also observe that the autoencoder extracts signal features that most effectively represent the original signal 
strengths, as shown in Figure 16. We compare the autoencoder against other popular methods for obtaining 
fixed-size, lower-dimensional features from a  longer l ist of input signal strengths. Specifically, we  consider 
statistical methods such as principal component analysis (PCA), t-distributed stochastic neighbor embedding 
(t-SNE), and uniform manifold approximation and projection (UMAP), and learning-based ones such as multilayer 
perceptrons (MLPs) and convolutional neural networks (CNNs). Here we do not consider more complex models 
such as generative adversarial networks and vision transformers, because our model needs to be retrained to 
adapt to changes in the dimensions of input signal strengths resulting from modifications in APs. As shown in 
Figure 16, GUFU having the autoencoder as the feature extractor achieves the best performance.
Choice of initialization schemes for node features: For graph initialization, our purpose is to initialize the 
node features of both sampled nodes and AP nodes in a way that reflects their proximity relationships in physical
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Fig. 16. Summary of RSS error on different floors of the four sites using different feature extractors.
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Fig. 17. Thresholding (𝜎 = 0.95) versus top-𝑘 (𝑘=10) neighbors in virtual edge creation.

space. Thus, for the sample nodes, we initialize their feature vectors using the output from the feature extractor,
which takes their normalized RSS values from the APs as input. For each AP node, we initialize its feature
vector as a weighted average of the feature vectors of its connected sample nodes (i.e., those in its immediate
neighborhood), with weights being proportional to the edge weights that are (shifted) RSS values from the AP.
That is, the feature vector of each AP is initialized as the result of an information aggregation from its connected
sample nodes while also reflecting their proximity relationships in physical space (according to the RSS values).

We have also examined the impact of different initializations on the training time of our GNNmodel. Specifically,
in addition to our weighted averaging, we consider (1) zero-initialization, where each entry is set to 0, (2) one-
initialization, where each entry is set to 1, and (3) random initialization, where each entry is assigned a value that
is chosen uniformly at random from [0, 1]. As shown in Table 8, our weighted averaging achieves the fastest
training time, which supports the rationale behind our weighted averaging.
Impact of virtual edges: The virtual edges enable direct interaction between sample nodes with similar signal
features. To validate the effectiveness of this design, we compare GUFU’s performance with and without virtual
edges in Figure 15(c)–(d). Including the virtual edges reduces the RSS error and the location error by 11.8% and
15.2%, respectively. The results indicate that virtual edges help to propagate useful information between similar
sample nodes such that node embeddings can be better learned for location prediction and signal updates.
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Fig. 18. Location errors on different floors of the four sites using different threshold values of 𝜎 in virtual edge creation.
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Fig. 19. Location error versus the ratio of MACs removed in four sites.

In addition, our virtual edges are created based on the thresholding of cosine similarity values between signal 
features of two sample nodes. We compare it with creating virtual edges using top-𝑘 (𝑘=10) nearest neighbors, 
and show the performance of the two schemes in Figure 17. Our thresholding-based method outperforms top-𝑘 
nearest neighbors substantially, by 16.2% in RSS error and 22.1% in location error, respectively. This is because, 
in top-𝑘 nearest neighbors, there may be sample nodes with low feature similarities selected, as illustrated in 
Figure 5, which degrades the performance of location prediction and signal updates. With thresholding, the 
high feature similarity between sample nodes with virtual edges can be guaranteed, leading to high accuracy in 
location prediction and signal updates.
In GUFU, the value of threshold 𝜎 was determined by a hyper-parameter tuning process. We examined the 

performance of GUFU with varying threshold values and now present the results in Figure 18. We observed that 
threshold values between 0.90 and 0.97 yield good performance for GUFU’s location prediction. For simplicity, 
we set 𝜎 = 0.95 for all sites.
Impact of link prediction: Link prediction enriches the fingerprint database with new connections between 
AP nodes and sample nodes. To show how much it improves GUFU’s performance, we intentionally remove AP 
nodes at random in the original fingerprint database. As a result, these MACs will become the newly detected 
ones in the updating phase. We compare the performance of GUFU and GUFU without link prediction (GUFU 
w/o LP) in Figure 19. With more MACs removed from the original fingerprint database, the performance of both 
schemes degrades. However, compared to GUFU without link prediction, the errors of GUFU increase slowly. 
This is because GUFU can retain more AP information over time with the link prediction capability. In particular, 
with up to 90% of randomly selected MAC addresses removed, GUFU still has an average location error of 15.36m, 
which is 46.2% better than that of GUFU without link prediction.
Impact of the proportion of evolved APs: GUFU is designed to handle both the addition and removal of APs. 
To further demonstrate the model’s robustness against varying proportions of new and removed APs, we sampled 
these APs from the campus site, which experienced the most significant AP changes among the four sites in
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Fig. 20. GUFU’s performance over different AP settings. (a) and (b) new APs. (c) and (d) removed APs.

our experiment. In Figure 20, we show GUFU’s performance with varying proportions of added and removed
APs. Figure 20(a) and Figure 20(b) show GUFU’s performance considering all removed APs alongside different
proportions of new APs, while Figure 20(c) and Figure 20(d) depict the model’s performance with all new APs and
varying proportions of removed APs. The results indicate that GUFU’s performance remains relatively consistent
across different proportions of evolved APs.
It is noteworthy that while GUFU’s performance remains relatively stable across varying proportions of

new and removed APs, it tends to perform better with smaller proportions of evolved APs. Consequently, we
anticipate that GUFUmay reach a limit where the signal prediction error exceeds a certain threshold, necessitating
periodic signal recollections. Nonetheless, as shown in Section 7.2, the fingerprint database updated using GUFU
deteriorates more slowly than those maintained by other state-of-the-art methods. As a result, the time interval
between consecutive collections can be longer compared to fingerprints managed by those methods, potentially
extending beyond several years. We leave the determination of the exact time interval needed between these
consecutive recollections as a future work.

8 CONCLUSION
In this paper, we propose GUFU, an effective graph-based approach for crowdsourced WiFi fingerprint updates
using unlabeled WiFi signals. Our approach relies solely on RSS values from ambient access points (APs) on the
site, without requiring any additional information. When a batch of newly collected, yet unlabeled WiFi signals
becomes available, GUFU leverages this data to update the existing fingerprints. It is designed to adapt to changes
in RSS values, the presence of new APs, and the potential removal of APs in the environment over time. To validate
the effectiveness of GUFU, we developed a prototype and conducted extensive evaluations across four different
sites over a significant period, ranging from one month to eight months. The experimental results demonstrate
that GUFU surpasses other state-of-the-art algorithms in both location prediction and fingerprint updates. Overall,
our findings showcase the potential of GUFU in enabling the long-term deployment of a fingerprint database and
its automatic enhancement over time, leading to improved fingerprinting-based services.
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