
Three-Loop Temporal Interpolation for Error
Concealment of MDC

Mengyao Ma†, Oscar C. Au‡, S.-H. Gary Chan†, Liwei Guo‡ and Zhiqin Liang‡
† Dept. of Computer Science, ‡ Dept. of Electrical and Electronic Engineering

Hong Kong University of Science and Technology
{myma, eeau, gchan, eeglw, zhiqin}@ust.hk

Abstract— Multiple Description Coding (MDC) can be used as
an Error Resilience (ER) technique for video coding. In case of
transmission errors, Error Concealment can be combined with
MDC to reconstruct the lost frame, such that the propagated
error to the following frames is reduced. In this paper, we
propose a new temporal error concealment method named Three-
loop Temporal Interpolation (TLTI). TLTI can be well combined
with temporal sub-sampling ER methods, such as MDC and
Alternative Motion-Compensated Prediction. In the simulation, we
compare the performance of TLTI with Unidirectional Motion
Compensated Temporal Interpolation (UMCTI). Both visual and
quantitive results show that TLTI can achieve a better video
quality than UMCTI.

I. INTRODUCTION

Error Resilience (ER) and Error Concealment (EC) tech-
niques are very important for video transmission today, due
to the use of predictive coding and Variable Length Coding
(VLC) in video compression [1]. The conventional INTER
mode approach is illustrated in Figure 1(a), where each P-
frame is predicted from its immediate previous frame. Al-
though the compression efficiency of this approach is high, it is
vulnerable to errors in the transmission channel. If one frame is
lost or corrupted (for example: P4) during the transmission, the
error in the reconstructed frame at the decoder will propagate
to the remaining frames until the next I-frame (I11) is received.

Several ER methods have been developed for video com-
munication, such as Forward Error Correction (FEC) [2],
Layered Coding [3], and Multiple Description Coding (MDC)
[4]. Different from the traditional Single Description Coding
(SDC), MDC divides the video stream into equally impor-
tant streams (descriptions), which are sent to the destination
through different channels. One simple implementation is
the odd/even sub-sampling approach: an even (odd) frame is
predicted from the previous even (odd) frame, as illustrated
in Figure 1(b). Since the reference frames are farther in time,
the prediction of such approach is not as good as the con-
ventional codec and the compression efficiency is lower. On
the other hand, since each stream is encoded and transmitted
separately, the corruption of one stream will not affect the
other. As a result, the decoder can simply display the correct
video stream (P5P7P9 . . .) at half of the original frame rate,
or reconstruct the corrupted frame by some appropriate EC
methods, e.g. Temporal Interpolation. The objective of using
temporal interpolation is that it can be well combined with
temporal MDC methods. Recall that in Figure 1(c), when

13 12 11 10 9 8 7 6 5 4 3 2 1 0 PPIPPPPPPPPPPI
Single Stream

13 12 11 10 9 8 7 6 5 4 3 2 1 0 PPIPPPPPPPPPPI

Stream 1

Stream 2

13 12 11 10 9 8 7 6 5 4 3 2 1 0 PPIPPPPPPPPPPI

Stream 1

Stream 2

(a)

(b)

(c)

Fig. 1. Illustration of different approach for video coding (the arrow means
that the previous frame is used as the reference of the latter). (a) Conventional
video coding; (b) Odd/even sub-sampling MDC; (c) Error occurs in (b).

frame P4 is corrupted during the transmission, its surrounding
frames (P3 and P5) would be correct if stream 1 is error-
free. So we can utilize P3 and P5 to interpolate P4 with good
quality.

Temporal interpolation was originally used to generate one
or more frames between two received frames so as to improve
the effective frame rate, and make the object motions in
the video smoother. A Motion Compensated Temporal In-
terpolation (MCTI) method is proposed in [5], which uses
block-based motion estimation to track motions of the objects
between adjacent received frames. Improved methods are
proposed in [6] and [7], to remove the blocking artifact.
The common feature of these methods is that both forward
and backward motion estimation are performed to find the
motion vector, which lead to high computational require-
ment. In [8], Unidirectional Motion Compensated Temporal
Interpolation (UMCTI) is used, which performs only forward
motion estimation, and thus saves half of the computation
time. Motivated by UMCTI, we propose an error concealment
algorithm called Three-loop Temporal Interpolation (TLTI).
TLTI utilizes the preserved motion vector in the correct stream
for the concealment, and can be well combined with temporal
sub-sampling ER methods, such as MDC and Alternative
Motion-Compensated Prediction (AMCP) [9][10][11].

The rest of this paper is organized as follows. In Section 2,
we describe the proposed approach TLTI. The performances
of TLTI and UMCTI are compared in Section 3, in terms of
both PSNR and visual quality. Section 4 is conclusion.

694 ISCAS 20060-7803-9390-2/06/$20.00 ©2006 IEEE

bB

fB

(n+1)t h frame

(n-1)t h frame

interpola ted nt h frame

mB

m v
m v/2

Fig. 2. Illustration of temporal interpolation.

II. THREE-LOOP TEMPORAL INTERPOLATION

When the odd/even sub-sampling is used in temporal MDC,
an even frame is predicted from the previous even frame, and
an odd frame is predicted from the previous odd frame. Then
these two streams are sent to the decoder through different
channels. Suppose the failure probability of each channel
is independent. Then if the nth frame is lost during the
transmission, its neighboring frames may be correct, which
can be used to reconstruct it by temporal interpolation. In this
section, we will introduce the proposed method Three-loop
Temporal Interpolation (TLTI), which is motivated by UMCTI
in [8]. The advantage of introducing UMCTI to temporal MDC
is that the exhaustive motion estimation can be prevented,
since the motion vectors from blocks of the (n + 1)th frame
to the corresponding blocks in the (n−1)th frame are known.
In other words, the motion vector from P5 to P3 is conserved
in stream 1, as in the example of Figure 1(c).

Instead of dividing the lost frame into 16× 16 blocks as in
UMCTI, we use 4 × 4 block size, not only because smaller
block size can reduce the blocking artifact, but also it can
adapt to the multiple block sizes of H.264 [12]. Each 4 × 4
block has two motion vectors: one is the determined motion
vector for the final interpolation mvd, and the other one is the
candidate motion vector mvc; both of them are initialized to
be Undefined Number, e.g. ∞. The proposed method needs
three loops to fill the pixel values of the nth frame:

1) Determine mvd of possible blocks: As illustrated in
Figure 2, each 4 × 4 block (Bb) in the (n + 1)th frame has
a motion vector mv pointing to the (n − 1)th frame. If the
motion is linear translation, the corresponding block in the nth

frame should be Bm, shaded area indicated by 1
2mv. As Bm

may not align the gird, it can overlap more than one blocks.
We divide the blocks in the nth frame into two sets: set O
contains the blocks which overlap with the region, indicated
by 1

2mv of some block in the (n+1)th frame; set N contains
the remaining blocks. For any block Bn

i ∈ O, we want to
find its motion vector mvd

n
i to the (n − 1)th frame for the

interpolation.1 One way is to use the motion vector of the
block, which has the largest overlapped region with Bn

i :

mvd
n
i =

1
2
mvn+1

m , where sizei(m) = max
Bn+1

j
∈Pi

sizei(j). (1)

1For Bn
i , n indicates a block in the nth frame and i is its index in set O.

Here Pi is the set of blocks in the (n+1)th frame whose 1
2mv

pointing to an area overlapped with Bn
i ; the motion vector of

Bn+1
j is mvn+1

j , and sizei(j) is the overlapped region size
between Bn

i and the area indicated by 1
2mvn+1

j . However,
experimental result shows that it is not stable to only use the
overlapped region size to determine the motion vector. One
reason is that the maximum region size is sometimes too small
to be credible; another reason is the motion vector preserved
in the (n + 1)th frame is not reliable, due to the unknown
motion estimation method in the encoder side. So we change
the definition of Pi to be Pi∗ =

{Bn+1
j |Bn+1

j ∈ Pi & ‖mvn+1
j ‖ ≤ MVt & sizei(j) ≥ SIZEt},

where SIZEt and MVt are two thresholds. mvd
n
i is still

determined by (1), with Pi replaced by Pi∗.
After the modification of Pi, the mvds of some blocks

in set O may not be defined in the first loop, due to an
empty Pi∗. For these blocks, we can save their candidate
motion vectors. In stead of using the overlapped region size
to decide mvc, we use the smoothness of the motion vectors
of neighboring blocks (top, down, left, right) as the selection
criterion. Suppose Bn

i ∈ O; its candidate motion vector is
determined by

mvc
n
i =

1
2
mvn+1

l , where MDi(l) = min
Bn+1

j
∈Pi

MDi(j). (2)

Here MDi(j) is the minimum Euclidean Distance between
1
2mvn+1

j and the mvds of the four neighbors of Bn
i . If

one neighbor does not exist, or its mvd is not defined, the
Euclidean Difference is defined to be ∞.

In the implementation of this algorithm, one way to deter-
mine the motion vectors of the blocks in O is maintaining two
lists for each block: one for mvd and the other one for mvc.
Then the values of mvd are determined first using (1), followed
by the determination of mvc using (2). The disadvantage of
this approach is that large memory is needed to save all the
possible motion vectors. So we propose to use another method
requiring less memory: each block only needs one more buffer
(sz) to save the overlapped region size. The algorithm works
as follows: visit all the blocks in the (n+1)th frame, from top
to bottom and from left to right. For any block Bb, we can find
its corresponding blocks in the nth frame using 1

2mv, as in
Figure 2. For each of these blocks (at most 4), we can update
its mvd using the criteria in (1). Since only one mvd is saved,
buffer sz is needed to save the largest overlapped region size.
If mvd can not be determined, i.e. Pi∗ is empty, criteria in
(2) can be used to update mvc. Although this implementation
needs less memory, the value of mvc of some blocks may
be incorrect after the first loop. Take mvc

n
i as an example,

its value is related to the mvds of the four neighbors of Bn
i ,

which may be changed after the updating of mvc
n
i . As a result,

mvc
n
i is different from the one got from (2). We will solve

this problem in the third loop.
2) Fill blocks with defined mvd: After the first loop, some

blocks in set O have defined mvd, we can fill the pixel values

695

 exist?cmv

 c redible?

Boundary
M atching

Yes No

cmv

Use (3) to
fill pixe ls

Yes No

Fig. 3. Illustration of the third loop of TLTI.

of such blocks using:

pn(i, j) =
1
2
[pn−1(i+dx, j+dy)+pn+1(i−dx, j−dy)], (3)

where pn(i, j) is the pixel value of the nth frame at position
(i, j), and (dx, dy) is the vector representation of mvd. These
filled blocks can help the Boundary Matching in the next loop
[13].

3) Fill other blocks: For the remaining unfilled blocks after
the previous loop, there are two ways for the concealment,
depending on whether mvc is available. Figure 3 is the
illustration. As noted previously, the mvcs of some blocks may
not be correct after the first loop. So for each block with mvc,
we first test whether its mvc is Credible, i.e. the smoothness of
the motion vectors between the current block and its neighbors
still holds:

min
i∈{u,d,l,r}

‖mvc − mvdi‖ ≤ ∆t, (4)

where u, d, l, r are the indexes of the four neighbors, and
mvdi represents their determined motion vectors used in filling
pixels; ∆t is a threshold. In case one neighbor does not exist,
or it has not been filled, the Euclidean Difference is defined to
be ∞. After the smoothness testing, if mvc is Credible, (3) can
be used to fill the pixel values, with (dx, dy) = mvd = mvc;
otherwise, Boundary Matching can be used.

Boundary Matching (BM) was first proposed in [13], which
estimates the lost motion vector using minimum boundary
variance as the criteria. We use both the forward and the
backward frames as the references, and the average boundary
variance of the four neighboring blocks (top, down, left, right)
are calculated, if available. The motion search is preformed
within a search range (16 × 16), using the median motion
vector of the neighboring blocks (up, left, up-left) as the initial
value. After the motion search, the average of the target blocks
in the two references are used to fill the pixel values. Note
that BM does not perform well when the block boundary is a
horizontal/vertical edge. In the implementation, we first check
whether the adjacent blocks have such edges. For example, if
the upper block has a horizontal line at the bottom, it is not
used in the calculation of boundary variance. Sobel operator
is used to check the horizontal/vertical line in the area of the
reference frame, indicated by the motion vector of the checked
block.

Frame 2 Frame 4

(a)
Frame 3 Frame 3

(b) (c)

Fig. 4. The visual result of applying UMCTI and TLTI on Carphone, for
one frame loss (frame 3). (a) The original encoded frames without loss; (b)
Concealed frame using UMCTI (PSNR=29.79dB); (c) Concealed frame using
TLTI (PSNR=30.33dB). For (b) and (c), the bottom pictures are the enlarged
right parts of the corresponding upper pictures.

III. SIMULATION RESULTS

In the simulation, we compare the performance of TLTI
with UMCTI, by both visual and quantitive results. We use
the JVT reference software version 8.2 (baseline profile) for
the simulations [14]. The first 300 frames of video sequences
Carphone and Sales (QCIF) are encoded at 15fps, and only
the first frame is I frame. At the encoder side, ref idx l0
is specified for each P frame to simulate the odd/even sub-
sampling MDC. For the I frame, we just send it twice to
the decoder side, since the main focus of the simulation is
to compare the performance of temporal interpolation, instead
of the compression efficiency of MDC. To further improve
the coding of I frame, method in [15] can be employed.
During the concealment, constant thresholds are used for
TLTI: SIZEt = 8, MVt = 3

√
2 and ∆t = 3

√
2. For UMCTI,

we also use the preserved motion vector in the correct stream
for the interpolation, thus reducing the computation time.

Figure 4 illustrates the visual quality after applying UMCTI
and TLTI on Carphone, for one frame loss (frame 3). Fixed
QP is used for the encoding, 27 for I frame and 29 for P
frame. The first row lists the correctly received frames, and
the second row is the reconstructed frames by UMCTI and
TLTI, respectively. The bottom two pictures are the enlarged

696

Carphone

0.1

0.2

0.3

0.4
0.5

0.6

0.7

0.8

60 70 80 90 100 110

Bit rate (kbps)

D
e
l
t
a
-
P
S
N
R

(
d
B
)

P=1% P=3% P=5%

Sales

0

0.1

0.2

0.3
0.4

0.5

0.6

0.7

25 30 35 40 45 50

Bit rate (kbps)

D
e
l
t
a
-
P
S
N
R

(
d
B
)

P=1% P=3% P=5%

(a) (b)

Fig. 5. The average delta-PSNR between TLTI and UMCTI for different packet loss rate (P = 1%, P = 3% or P = 5%).

right parts of the corresponding upper pictures. From these
figures we can see that the concealed frame using TLTI looks
much better than that using UMCTI, especially around object
boundaries. Less blocking artifacts are introduced.

We also compare the performance of UMCTI and TLTI,
under random packet loss condition. Suppose the failure
probability of each channel is independent and identically
distributed with probability P ; P = 1%, 3% and 5% are used.
One packet contains the information of one frame, and the
loss of one packet will lead to the loss of one entire frame.
Five different bit rates are selected for the compression of
each sequence. For each combination of loss rate (P) and bit
rate, we transmit the video sequence 40 times. At the decoder
side, UMCTI or TLTI is used to reconstruct the lost frames,
and the average PSNR is computed by comparing with the
original encoded one. Note that these two algorithms work
for the condition of one frame loss, i.e., the surrounding two
frames are received from the other channel and reconstructed
with/without error. For continuous losses at the decoder side,
as far as we know, there is no good error concealment
method in the literature. In such cases, copying previous frame
(Freeze) can be used to reconstruct the video. I addition, if
the lost frame is the last one of a GOP, Freeze is applied. The
delta-PSNR between TLTI and UMCTI is obtained for the 40
transmissions, and its average value is plotted in Figure 5. We
can see that in all the testing cases, TLTI can obtain a higher
average PSNR than UMCTI, especially when the loss rate is
higher.

IV. CONCLUSION

In this paper, we propose a new error concealment method
for the odd/even sub-sampling MDC, named Three-loop Tem-
poral Interpolation (TLTI). The good feature of TLTI is that
it can be well combined with temporal sub-sampling ER
methods, such as MDC and AMCP [9][10][11]. Simulation
results show that TLTI can reconstruct the lost frame with
a better quality than UMCTI. Note that in the current work,
constant thresholds are used for TLTI. In the future, we will
investigate a set of variable thresholds, which may adaptively

change the values according to the statistics of each block,
and thus improve the interpolated video quality.

ACKNOWLEDGMENT

This work has been supported in part by the Innovation
and Technology Commission (projects no. ITS/122/03
and GHP/033/05) and the Research Grant Council
(DAG04/05.EG34) of the Hong Kong Special Administrative
Region, China.

REFERENCES

[1] Y. Wang and Q. F. Zhu, “Error control and concealment for video
communication: a review,” in Proc. IEEE, May 1998, pp. 974 – 997.

[2] Y. Mei, W. Lynch, and L. N. Tho, “Joint forward error correction and
error concealment for compressed video,” in Proc. IEEE ITCC, Apr.
2002, pp. 410 – 415.

[3] C.-M. Fu, W.-L. Hwang, and C.-L. Huang, “Efficient post-compression
error-resilient 3D-scalable video transmission for packet erasure chan-
nels,” in Proc. IEEE ICASSP, Mar. 2005, pp. 305 – 308.

[4] Y. Wang, A. Reibman, and S. Lin, “Multiple description coding for
video delivery,” in Proc. IEEE, Jan. 2005, pp. 57 – 70.

[5] C.-K. Wong and O. Au, “Fast motion compensated temporal interpola-
tion for video,” in Proc. SPIE VCIP, May 1995, pp. 1108 – 1118.

[6] C.-K. Wong, O. Au, and C.-W. Tang, “Motion compensated temporal
interpolation with overlapping,” in Proc. IEEE ISCAS, May 1996, pp.
608 – 611.

[7] T. Chen, “Adaptive temporal interpolation using bidirectional motion
estimation and compensation,” in Proc. IEEE ICIP, Sept. 2002, pp. 313
– 316.

[8] C.-W. Tang and O. Au, “Unidirectional motion compensated temporal
interpolation,” in Proc. IEEE ISCAS, June 1997, pp. 1444 – 1447.

[9] J. Apostolopoulos, “Reliable video communication over lossy packet
networks using multiple state encoding and path diversity,” in Proc.
SPIE VCIP, Jan. 2001, pp. 392 – 409.

[10] S. Wenger, “Video redundancy coding in h.263+,” in Proc. Audio- Visual
Services over Packet Networks, Sept. 1997.

[11] M. Ma, O. C. Au, and S.-H. G. Chan, “A new motion compensation
approach for error resilient video coding,” in Proc. IEEE ICIP, Sept.
2005, pp. I–773–776.

[12] G. Sullivan and T. Wiegand, “Video compression - from concepts to the
H.264/AVC standard,” Proc. IEEE, vol. 93, pp. 18 – 31, Jan. 2005.

[13] W. Lam, A. Reibman, and B. Liu, “Recovery of lost or erroneously
received motion vectors,” in Proc. IEEE ICASSP, Apr. 1993, pp. 27–30.

[14] Jvt reference software, version 8.2. [Online]. Available:
http://iphome.hhi.de/suehring/tml/download/

[15] Y. Wang, M. Orchard, and A. Reibman, “Multiple description image
coding for noisy channels by pairing transform coefficients,” in IEEE
MMSP, June 1997, pp. 419 – 424.

697

	Main
	Welcome Messages
	Committees
	Table of Contents
	Technical Program
	Tutorials
	Keynote Talks
	Conference at a Glance
	Technical Program at a Glance
	Author Index
	Session Chair Index
	Reviewers
	CD-ROM Help
	Search
	Zoom In
	Zoom Out
	View Full Page
	Go to Previous Document

