
2182 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 12, DECEMBER 2006

Network Topology Inference Based on
End-to-End Measurements

Xing Jin, Student Member, IEEE, W.-P. Ken Yiu, Student Member, IEEE, S.-H. Gary Chan, Senior Member, IEEE,
and Yajun Wang

Abstract—We consider using traceroute-like end-to-end mea-
surement to infer the underlay topology for a group of hosts.
One major issue is the measurement cost. Given hosts in an
asymmetric network without anonymous routers, traditionally
full (1) traceroutes are needed to determine the underlay
topology. We investigate how to efficiently infer an underlay
topology with low measurement cost, and propose a heuristic
called Max-Delta. In the heuristic, a server selects appropriate
host-pairs to measure in each iteration so as to reveal the most
undiscovered information on the underlay.

We further observe that the presence of anonymous routers
significantly distorts and inflates the inferred topology. Previous
research has shown that obtaining both exact and approximate
topology in the presence of anonymous routers under certain
consistency constraints is intractable. We hence propose fast algo-
rithms on how to practically construct an approximate topology
by relaxing some constraints. We investigate and compare two
algorithms to merge anonymous routers. The first one uses
Isomap to map routers into a multidimensional space and merges
anonymous routers according to their interdistances. The second
algorithm is based on neighbor router information, which trades
off some accuracy with speed.

We evaluate our inference algorithms on Internet-like and real
Internet topologies. Our results show that almost full measurement
is needed to fully discover the underlay topology. However, sub-
stantial reduction in measurements can be achieved if a little accu-
racy, say 5%, can be compromised. Moreover, our merging algo-
rithms in the presence of anonymous routers can efficiently infer
an underlay topology with good accuracy.

Index Terms—Anonymous router, end-to-end measurement,
measurement cost, topology inference.

I. INTRODUCTION

WITH THE RAPID growth of the Internet, overlay net-
works have been increasingly used to deploy network

services. Examples include application-layer multicast (ALM),
peer-to-peer file sharing, and overlay path routing [1]–[3]. In
order to build an efficient overlay network, the knowledge of
underlay is essentially important. In fact, it has been shown that
topology-aware ALM can achieve substantially low end-to-end
delay, low physical link stress, and high tree bandwidth [4]–[6].

Manuscript received October 1, 2005; revised June 29, 2006. This work
was supported in part by the Competitive Earmarked Research Grant
HKUST6156/03E of the Research Grant Council in Hong Kong, and in part
by the Area of Excellence in Information Technology of the Hong Kong
University Grant Council under Grant AoE/E-01/99.

The authors are with the Department of Computer Science and Engi-
neering, Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong (e-mail: csvenus@cse.ust.hk; kenyiu@cse.ust.hk;
gchan@cse.ust.hk; yalding@cse.ust.hk).

Digital Object Identifier 10.1109/JSAC.2006.884016

We consider inferring the underlay network topology among
a group of hosts by means of end-to-end measurements. Such
techniques would be very important and useful to, for exam-
ples: 1) the construction of an efficient overlay network [2], [3],
[6]–[8]; 2) the design of application-layer multicast (ALM) pro-
tocols [4], [5]; and 3) tomography-based schemes which often
rely on the knowledge of underlay topologies to efficiently infer
the network properties [9].

To infer the underlay topology among a group of hosts
through end-to-end measurements, traceroute-like tools ex-
tracting the router-level path between a pair of hosts are often
used [10], [11]. However, such tools may take as long as min-
utes to identify a router-level path and generate many network
packets. Given a group of hosts, conducting full
measurements is hence costly and not scalable.

Furthermore, traceroute is implemented with Internet control
message protocol (ICMP). In traceroute, the source sends out
a series of IP datagrams with increasing time-to-live (TTL) to
the destination. From the returned ICMP error messages, it ob-
tains intermediate router information such as router name, ad-
dress and round-trip time (RTT). However, some routers process
ICMP messages differently.

1) It may not return ICMP error messages. Consequently, the
router appears as unknown as indicated by “ ” in traceroute
results.

2) It returns ICMP error messages only when its load is light.
As a result, the router appears as “ ” in some cases, while
as a normal router in others.

3) It simply discards ICMP messages. In this case, all the sub-
sequent routers in the path appear as “ ” in the traceroute
result.

Following the notations in [12], we call such unknown routers
anonymous routers, and others known routers. Measurement re-
sults containing anonymous routers substantially increase the
difficulty in topology inference.

In this paper, we address the following two important issues
in end-to-end topology inference.

• Efficient inference of underlay information in the absence
of anonymous routers: We first consider the case with no
anonymous routers. We study the following problem: given

hosts in an overlay network, how to infer the router-
level topology with low number of path measurements? We
consider incrementally measuring the topology. A basic
principle is to discover as many new links and routers as
possible in each traceroute. However, the difficulty is that
we do not know the links and routers on a path, and hence
the new ones until a traceroute has been conducted.
We propose an inference heuristic called Max-Delta, where
hosts first utilize lightweight tools such as GNP or Vivaldi

0733-8716/$20.00 © 2006 IEEE

JIN et al.: NETWORK TOPOLOGY INFERENCE BASED ON END-TO-END MEASUREMENTS 2183

Fig. 1. An example of anonymous router inflation in the straightforwardly in-
ferred topology. a) Actual topology. b) Inferred topology from traceroute re-
sults.

to estimate their coordinates [13], [14]. A server then col-
lects host coordinates and chooses the best set of host-
pairs for measurements in each iteration. Our simulation
results show that although almost full traceroutes
are needed to discover the complete underlay topology,
Max-Delta can construct a highly accurate topology with
substantially fewer measurements.

• Efficient topology inference in the presence of anonymous
routers: For each known router in a traceroute result, its
RTT from the traceroute source as well as its name/IP ad-
dress is available. However, for an anonymous router, only
its presence in the router-level path is known. To infer the
underlay topology in the presence of anonymous routers,
we may consider that each occurrence of an anonymous
router is a unique one. However, this leads to high infla-
tion of anonymous routers in the resultant topology. We
illustrate this in Fig. 1, where the actual underlay topology
is shown in Fig. 1(a) with hosts labeled as 1, 2, 3, and 4.

is a known router, while , are two type-1 anony-
mous routers. With pairwise full traceroutes among the
four hosts, the inferred topology is shown in Fig. 1(b) (as-
suming paths are symmetric). Clearly, even a few anony-
mous routers lead to a highly inflated inferred topology.
Previous research has studied how to infer a topology by
minimizing the number of anonymous routers through
merging, while meeting the following consistency require-
ments: (a) trace preservation: the inferred topology should
agree with all the traceroute paths and (b) distance preser-
vation: the length of the shortest path between two nodes
(i.e., hosts or routers) in the inferred topology should
not be shorter than the traceroute result [12]. It has been
shown that this problem belongs to the hardest class of
NP-complete problems. Formally speaking, it is NP-hard
to construct a topology which is consistent with traceroute
results and the ratio of its total number of routers to that
in the optimal solution is within a factor , where is
the number of routers in the traceroute results and is a
constant. They have proposed an approximate heuristic to
merge anonymous routers, while keeping the consistency
constraints. However, the approach is still computationally

expensive (we will show the complexity of consistency
check in Section IV-A).
In this paper, we greatly reduce the problem complexity
by adopting a different approach to allow a small portion
of inconsistent merging. We propose two merging algo-
rithms. The first one uses Isomap [15] to map routers into
a multidimensional space according to the inter-router
distances. With the estimated router coordinates, we can
compute the distance between any pair of anonymous
routers and merge those close pairs. To further reduce the
complexity, we propose a neighbor matching algorithm,
where we merge the pair of anonymous routers which
share the same neighbor(s) of known routers or hosts. This
algorithm is of much lower complexity at the cost of some
accuracy. Our simulation results shows that the algorithms
incur low inconsistency in the inferred topology while
achieving a substantial speedup. Most overlay applications
are expected to be insensitive to such inference error.

Note that the Internet is not a symmetric network. The tracer-
oute path from host to host may not be the reverse of the
path from to . This does not affect our Max-Delta or router
merging algorithms. For ease of exposition and illustrative pur-
pose, however, we will in the following assume that the tracer-
oute path from to is the reverse of the path from to .

The rest of this paper is organized as follows. In Section II,
we review the related work. In Section III, we discuss how to
efficiently infer an underlay topology in the absence of anony-
mous routers. In Section IV, we describe the anonymous router
problem and propose our merging algorithms. In Section V, we
present simulation results based on Internet-like and real In-
ternet topologies. We finally conclude in Section VI.

II. RELATED WORK

There are many ways to infer a network topology. Network
tomography techniques periodically send probing traffic and ex-
ploit the performance in correlation to infer network topologies
[16], [17]. However, because the network properties measured
(e.g., loss rate or delay) are often unstable and inaccurate, it
is difficult to infer an accurate topology. Border gateway pro-
tocol (BGP) routing tables can provide AS-level information,
but they usually are not available to normal hosts in the Internet
[18], [19]. We hence adopt traceroute, which can obtain explicit
router-level information by end hosts. Traceroute-like tools have
been widely used in Internet measurements such as Skitter et al.
[20]–[22]. Skitter sends traceroute packets from different loca-
tions worldwide to actively measure the Internet topology. Mer-
cator utilizes a modified version of traceroute to reduce probing
time. Rocketfuel combines information from BGP tables, tracer-
outes, and DNS to infer Internet service provider (ISP) topolo-
gies. All these works focus on Internet- or ISP-level topology
inference and the major concern is how to discover a complete
network topology including all the routers and links. However,
in our study, we are only interested in the topology among a cer-
tain group of hosts that are arbitrarily distributed in the Internet.
Furthermore, we only need a highly accurate topology, because
most overlay applications are tolerant to small distortion of the
underlay topology. The key problems are hence how to reduce
the measurement cost and eliminate the measurement noises.

2184 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 12, DECEMBER 2006

Donnet et al. note that large-scale traceroute measurement
such as Skitter has high redundancy [23]. That is, the tracer-
outes from the same monitor (or traceroute source) towards
multiple destinations often overlap, and the traceroutes from
multiple sources to the same destinations also have overlap.
To reduce such redundancies, they propose a Doubletree algo-
rithm. Given a monitor and a destination, the traceroute starts
at some intermediate point between them. The probing then
proceeds towards the destination and backwards towards the
source with different stopping rules. In either case, the probing
stops whenever an already discovered router is met. Our work
reduces the measurement redundancy in another way. Given
a group of hosts, each host is a monitor and all the others are
its destinations. We note that a host cannot or does not need to
traceroute all its destinations (because of the requirement on
measurement cost or accuracy). We then design an algorithm
for destination selection to allow hosts to efficiently discover
the routers and links with a small number of traceroutes. On the
other hand, it is possible to integrate the Doubletree algorithm
into our work. Namely, after destination selection, a traceroute
can start and stop under Doubletree’s supervision. The mea-
surement redundancy and cost can hence be further reduced.
However, a potential problem in the integration is the sharing
of the global stopping set. The global stopping set contains
the discovered routers near the destinations, which is used as
one of the stopping rules in Doubletree and should be shared
among all the monitors. In the Doubletree study, the number
of monitors is small (e.g., 24 monitors in their experiments)
and the communication overhead for sharing is negligible. But
in our study, the global stopping set should be shared among
all the hosts (e.g., hundreds of hosts), which may lead to huge
communication overhead.

Barford et al. study the relationship between the measurement
accuracy and the number of traceroute sources in topology infer-
ence [24]. Given a list of destinations, they find that the marginal
utility of adding additional traceroute sources declines rapidly
after the second or third one. In other words, the first two or three
sources can discover the majority of the complete topology by
tracerouting the destinations. Here, the complete topology is ob-
tained by combining the traceroute results from all the sources
to the given destinations. In their experiments, the number of
sources is much less than the number of destinations (e.g., 8
sources and 1277 destinations, or 12 sources and 313,709 desti-
nations). But in our study, each host is a source as well as others’
destination. The number of sources is equal to the number of
destinations. Therefore, their conclusion may not hold in our
case. Furthermore, in order to reduce the measurement time, we
require hosts to conduct traceroutes in parallel. We do not use
two or three hosts as sources to traceroute all the others, even
though this can discover the majority of the underlay. Because
this takes a long measurement time and puts uneven measure-
ment loads on hosts.

In traceroute measurement, the presence of anonymous
routers is inevitable. Broido et al. report that nearly 1/3 of
probed paths contain anonymous, private or invalid routers
[25]. They propose two methods to address it. One is to
add arcs which bypass anonymous routers and connect the
known routers. This method, despite of its simplicity, hides

much topology information. Another method introduces place-
holders, where each anonymous router is represented by a
unique name. To reduce router inflation, a chain of anonymous
routers between two known routers is discarded from the in-
ferred topology if there exists another shorter path between the
two known routers. However, the resultant topology still suffers
huge router inflation. In our study, we consider how to reduce
router inflation and quickly construct an approximate topology.
Our simulation results show that our merging algorithms can
significantly reduce router inflation, and the inferred topology
is highly accurate.

Anonymous router problem is formally studied in [12].
Yao et al. study how to infer a topology given some traceroute
results, where the inferred topology should be consistent with
the traceroute results, while containing the minimum number of
anonymous routers. They show that producing either an exact
or an approximate solution is NP-hard. They then propose a
heuristic which in each step chooses an anonymous router
and merges all the anonymous routers that are mergeable to

(two anonymous routers are mergeable if the distance and
trace preservations are kept after merging). However, as we
will show later, it is of high computational complexity to check
whether two anonymous routers are mergeable. This heuristic
is, hence, time-consuming. In fact, their simulations were only
based on small-size topologies (the largest one contains 50
routers and 125 links). In this paper, we study faster approaches
with much lower computational complexity. A major difference
between our formulations and [12] is that there are two types
of nodes in our topologies (i.e., routers and hosts) and we are
only interested in end-to-end path consistency, while [12] is for
more general topologies with only routers.

III. TOPOLOGY INFERENCE IN THE ABSENCE OF

ANONYMOUS ROUTERS

In this section, we present heuristics on how to efficiently
infer a network topology in the absence of anonymous routers.
We first study in Section III-A how to infer the topology among
a group of given hosts, and then address the issue of group dy-
namics in Section III-B.

A. Inference Based on Hosts

Traceroute-like tools often consume much time and network
resources. Hosts should then conduct traceroutes efficiently so
that each traceroute reveals the most undiscovered information
on the underlay. We assume that the path between a pair of hosts
is unique and stable, namely, a path does not fluctuate in the
measurement session. This is reasonable because previous study
has shown that end-to-end Internet paths tend to be stable for
significant lengths of time, such as a day [26]. As mentioned,
we consider that paths are symmetric in our discussion.

The problem is how to infer the router-level topology among
a given group of hosts with low number of traceroutes. As the
Internet is a relatively sparse graph (i.e., the number of links is
on the same order of the number of routers), we expect that full

traceroutes are not necessary [27]. Fig. 2 shows
an example, where 1, 2, 3, and 4 are hosts and , , , and
are routers. The dashed lines indicate the overlay paths among
hosts. As shown, paths 1-2, 2-3, and 4-1 reveal all the underlay

JIN et al.: NETWORK TOPOLOGY INFERENCE BASED ON END-TO-END MEASUREMENTS 2185

Fig. 2. An example of an underlay network. The dashed lines indicate the
overlay paths among hosts.

links and routers, and therefore we only need to measure three,
instead of all the possible six paths.

If we do not need to know the underlay topology with full ac-
curacy (discovering the links with, for example, 95% accuracy),
the number of measurements per host can be further reduced.
The issue is then how to choose the most representative paths
to traceroute so as to reveal as much undiscovered information
on the underlay as possible. However, the difficulty is that we
are not aware of the links or routers on a path until we have
conducted traceroute on it. We hence turn to a simpler metric
characterizing a path, namely, the path distance. The distance
between two hosts on the discovered topology can be computed
by the shortest-path algorithm, while the distance between them
in the real network can be approximately estimated by a coordi-
nate system. If the gap between the two values is large, it is with
high probability that some links between the hosts (leading to a
shorter path) have not been discovered.

We consider that each host reports to a central server its net-
work coordinates, which can be estimated by low-cost tools
such as GNP or Vivaldi [13], [14]. The server uses host co-
ordinates to select a target to traceroute for each host in each
round/iteration. In order to maximize the parallelism of tracer-
outes among the hosts in each iteration (and hence reduce the
time to infer the topology), the server assigns one traceroute
target to each host if possible. The hosts then traceroute their
own targets and report the results to the server. The server com-
bines all these results and based on that, starts the next iteration
on target assignment. Such process is repeated until the server
achieves a certain inference accuracy. Note that in an iteration,
it is possible that a host is not assigned any target to traceroute.
This is the case when the paths from the host to all the other
hosts have been measured.

We study the following target selection mechanisms at the
server.

• Random Probing (Random): Given a host, the server as-
signs to it a target which is randomly chosen from all its
unmeasured hosts. This is the simplest approach.

• Longest Path Probing (Longest): Usually a longer path in
the network contains more hops (or routers); therefore,
among all the unmeasured paths, a longer one may contain
more undiscovered links/routers. In Longest Path Probing,
the server in each iteration chooses the farthest (in the co-

ordinate space) unmeasured host from a given host as the
target.
A concern of this mechanism is that if a host is far from
many others in the group (i.e., an outlier), this host would
be susceptible to many traceroutes from the others at the
beginning. These traceroutes likely share much common
underlay information towards the outlier, thereby defeating
the purpose of revealing more undiscovered information.
Furthermore, due to the exhaustive traceroutes from the
other hosts, there may not be any target left for the outlier
to measure in the later iterations. This leads to a reduction
in parallelism, and hence inefficiency in measurements.

• Max-Delta Probing (Max-Delta): Denote the distance
between two hosts and in the coordinate space as

, and the length of the shortest path be-
tween them on the discovered topology as . Let

For each host, the server computes for all its unmeasured
pairs and chooses the one with the maximal as its target.
In the first iteration, each host is assigned a target so that
all the traceroute paths form a connected graph (one way to
achieve it is to form a ring where host 1 traceroutes host 2,
host 2 traceroutes host 3, and so on).

B. Group Dynamics

So far, our discussion is in the context of given hosts. In
fact, our algorithms can be straightforwardly extended to handle
group dynamics where hosts may join or leave at any time.
Clearly, the issue of host leaving is trivial and we only need to
consider host joining.

For Random Probing and Longest Path Probing, when a new
host joins the group, it contacts the server, which, based on the
current group members, chooses targets for the host to tracer-
oute. For Max-Delta Probing, the new host contacts the server
which first randomly selects a host as its target. In the subse-
quent iterations, the server computes for all the unmeasured
pairs of the new host and selects the one with the maximal as
the target.

IV. INFERENCE WITH ANONYMOUS ROUTERS

In this section, we study topology inference in the presence
of anonymous routers. In Section IV-A, we show that traditional
approaches that keep the distance and trace consistencies have
high computational complexity and are not practical for even
a medium-sized network with hundreds of routers. To reduce
the complexity, we relax these constraints and propose two fast
algorithms in Sections IV-B and IV-C, respectively.

A. The Complexity With Anonymous Routers

As anonymous routers greatly inflate the topology, we con-
sider the following problem: given a group of hosts and a set
of traceroute results among them, how to construct an inferred
topology by reducing the number of anonymous routers?

As we have described in Section I, there exist three types of
anonymous routers. We deal with them separately. First of all,

2186 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 12, DECEMBER 2006

we use the arc method in [25] to deal with routers which discard
ICMP messages (i.e., type-3). Suppose a traceroute path from
host to host contains a type-3 router . All the routers fol-
lowing in the traceroute path must be “ .” Denote the router
directly before as . We first check whether traceroute from

to has been conducted. If not, we add an arc to directly
connect and . Otherwise, the traceroute path from to
must also contain a type-3 router . Similarly, denote the router
directly before as . We add an arc to connect and .

After introducing the arcs, the anonymous routers in the re-
sultant topology are of either type-1 or type-2. We will work
on this topology in the following. If we assume that each of
the remaining anonymous routers is a unique one, we will get
a topology which is consistent with traceroutes but suffers high
inflation of routers and links. We hence need to merge the anony-
mous routers.

To keep the distance and trace consistencies as in [12], we
need to check whether two anonymous routers are mergeable.
To do that, we compute all the interhost shortest paths in
the topology after merging and compare them with tracer-
oute results one by one. Suppose is the number of hosts,

is the number of known routers, and is the number
of anonymous routers in the initially inferred topology.
Computing single-source shortest paths in a graph with
vertices by the Dijkstra algorithm takes time [28], i.e.,

in our topology. To compute all the inter-
host shortest paths, the complexity is .
There are a total of paths to be compared, thus the
total complexity of checking one pair of anonymous routers
is .
Furthermore, it has been shown that the mergeable relationship
is not transitive. That is, if is mergeable with , and is
mergeable with , it does not mean that is mergeable with

. An additional check between and is necessary [12].
In summary, given anonymous routers in the topology, at
least pairs of anonymous routers need to be compared
(in the worst case pairs), leading to a total of at least

complexity.
Simulations and Internet measurements indicate that and
are usually much larger than , leading to a high check

complexity. We hence relax the consistency constraints by al-
lowing some inconsistent merging. We propose two algorithms
to merge anonymous routers in the following sections.

B. Isomap Merging Algorithm

Isomap estimates point coordinates in a multidimensional
space given the distances between them [15]. We can use
Isomap to estimate router coordinates based on traceroute re-
sults. In this way, multiple occurrences of the same anonymous
router may result in similar coordinates and can then be merged.

In the following, we first review Isomap and then present
router merging algorithms based on the delays or hops in tracer-
outes. At last, we analyze the algorithm complexity.

Multidimensional scaling (MDS) and principal component
analysis (PCA) have been widely applied to capture the inter-
correlation of high-dimensional data in low-dimensional space.

PCA finds a low-dimensional embedding of data points that best
preserves their variance as measured in the high-dimensional
input space. Classical MDS finds an embedding that preserves
the interpoint distances, which is equivalent to PCA when the
distances are Euclidean. However, MDS requires the distances
between all pairs of points as input. If the missing distances are
simply replaced by infinity values, the accuracy of results would
be seriously affected. Note that it is impossible to obtain pair-
wise router distances from traceroutes, therefore MDS is not so
useful here.

In this paper, we turn to Isomap, which allows an incom-
plete distance matrix as input to estimate point coordinates in a
multidimensional space. Isomap is, in fact, a generalized MDS
method. It views the problem of high dimensionality to low di-
mensionality transformation as a graph problem. The Isomap
algorithm consists of three steps.

1) Given a distance matrix, Isomap first constructs a neighbor-
hood graph on top of the points. Namely, each point needs
to select some points as its neighbors and adds edges to
them. The neighbors can be the points within a certain dis-
tance range or a certain number of closest points. All the
points, hence, form a connected graph.

2) Isomap then computes pairwise shortest-path distances in
the neighborhood graph by the Floyd–Warshall algorithm
or Dijkstra algorithm. The distance between any two points
(in the neighborhood graph) is then known and a complete
distance matrix is available.

3) In the final step, Isomap applies MDS to the complete dis-
tance matrix to estimate point coordinates.

In a traceroute result, the network distance between the
source and an intermediate known router is available. It can
be in terms of delays (RTT) or hops. Delay-based embedding
[13], [14], [29]–[31] is often more accurate than hop-based
embedding [30], leading to more accurate merging. This is
because the RTT between two hosts often correlates with their
geographic distance, which is approximately in a two-dimen-
sional Euclidean space. However, delay-based embedding has
the following drawbacks. (a) The link delay may not be accurate
and stable, especially in heavy-loaded networks. (b) The delays
associated with anonymous routers are not available from
traceroutes. Therefore, their estimated coordinates are inaccu-
rate even if the embedding of known routers and hosts is fully
accurate.

In the following, we call the delay-based Isomap merging al-
gorithm the Isomap-delay algorithm, and the hop-based Isomap
merging algorithm the Isomap-hop algorithm. In real applica-
tions, users may choose either one of them. We describe the
merging algorithms as follows.

1) Initial pruning: Check the neighbors of anonymous
routers. If two anonymous routers or one anonymous
router and one known router share the same neighbors
(known routers or hosts), merge them directly. (To check
whether an anonymous router is mergeable to some known
router, we only need to compare the anonymous router
with its neighbors’ neighbors.) For example, in Fig. 1(b),

and lie between host 1 and router . We can merge
them into one router. The reason of such pruning is that
these merging preserves both the distance and the trace

JIN et al.: NETWORK TOPOLOGY INFERENCE BASED ON END-TO-END MEASUREMENTS 2187

TABLE I
DELAY INFORMATION FROM TRACEROUTE RESULTS (UNIT: ms)

consistencies. Furthermore, in the Internet, the path seg-
ment between a pair of routers two hops away is usually
stable. Therefore, this pruning works in most cases.

2) Construction of distance matrix: We need to distinguish
here the operations in Isomap-delay and Isomap-hop
algorithms.

a) Isomap-delay algorithm: Collect and analyze
round-trip delays from traceroute results. In a tracer-
oute path, the delay between any two known nodes
(known routers or hosts) either is directly available
or can be computed. However, the delays associated
with anonymous routers are not available. Suppose

and are two valid IP addresses in a tracer-
oute, sandwiched by a list of anonymous routers

, in that order. We assume that these
anonymous routers are evenly distributed between

and , and accordingly compute as
, where

is the delay between and .
Suppose the total number of nodes in the inferred
topology (including known and anonymous routers,
and hosts) is . We build a distance matrix

as

if
if both and

exist
if only exists
if only exists
otherwise

where is the minimum delay from to in
traceroute results.

b) Isomap-hop algorithm: Collect network connectivity
information from traceroute results, and build a sym-
metric distance matrix as

if
if and are directly connected

in at least one path
otherwise.

3) Coordinate estimation: Apply Isomap to or to com-
pute the coordinates of routers and hosts. It has been shown
that Internet coordinates can be approximately modeled by
multidimensional Euclidean space [13], [14], [29], [30].
We hence use five-dimensional (5-D) Euclidean space in
our study.

Fig. 3. An example of topology inference. (a) Actual topology. (b) Initially
inferred topology.

4) Router merging: Compute the distance between any pair of
anonymous routers according to their coordinates. Merge
anonymous routers as follows.

a) Merge two anonymous routers within distance .
b) Merge two anonymous routers which share one same

neighbor (known routers or hosts) and are within
distance .

c) Do not merge two anonymous routers which appear
in the same path.

and are two predefined thresholds. Clearly, a
large threshold increases incorrect merging, while a
small one decreases correct merging.

Let us illustrate a merging example in Fig. 3. Fig. 3(a) shows
the actual underlay topology, which contains three hosts labeled
as 1, 2, and 3, three known routers labeled as , and , and
one type-1 anonymous router. The labels along lines indicate the
delays of links in the unit of milliseconds (ms). With pairwise
traceroutes (i.e., path , , and), we obtain an
inferred topology, as shown in Fig. 3(b).

In the Isomap-delay algorithm, we get the delay informa-
tion as Table I shows. The third column “delay measured in
traceroute” shows the delays directly returned by traceroutes.
The fourth column shows the delays among known routers and
hosts which are computed according to router sequences in
paths and the directly measured delays. The fifth column shows
the delays associated with anonymous routers by assuming
these anonymous routers are evenly distributed between their
known neighbors.

We then construct the distance matrix as Table II shows.
Isomap takes this distance matrix as input and estimates the co-
ordinates of , and in 5-D space as (2.36, 2.02, 0, 0, 0),
(3.58, 1.20, 0, 0, 0), and (0.75, 2.19, 0, 0, 0), respectively. As

2188 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 12, DECEMBER 2006

TABLE II
DISTANCE MATRIX G

TABLE III
DISTANCE MATRIX G

a result, the distances between and , and , and and
are computed as 6.00, 4.51 and 5.50 ms, respectively. If

is set to 10 ms, we can merge all the three anonymous routers.
In the Isomap-hop algorithm, we construct a distance matrix
as in Table III. Applying Isomap to , we obtain the coor-

dinates of , , and as (0.65, 1.53, 0.75, 0.05, 0.10),
(0.90, 1.02, 0.75, 0.05, 0.06), and (1.55, 0.51, 0.75, 0.10,

0.04), respectively. The distances between and , and
, and and are 2.74, 2.64, and 2.74, respectively. With

proper and , we may merge two or three of them.
We finally discuss the complexity of the algorithms, given

that the time and space complexities of Isomap are and
, respectively, where is the number of input points.

We first analyze the time complexity. In the pruning proce-
dure, we compare all pairs of anonymous routers. Each
anonymous router has only two neighbors since each anony-
mous router is assumed to be a unique one. Therefore, the com-
parison of one pair takes time. To handle type-2 routers,
we compare each anonymous router with its neighbors’ neigh-
bors. In the worst case, we need to compare pairs of
routers. Each comparison takes time since each anony-
mous router has two neighbors (if a known router has multiple
neighbors, a hashing function can be used to organize its neigh-
bors). As a result, the whole pruning procedure takes

time. The construction of the distance matrix needs to
process a total of paths. We assume that the number of
routers in a path does not exceed a certain constant, therefore
the complexity of constructing the distance matrix is .
The Isomap step takes time. Afterwards,
it takes time to compute the distances between anony-
mous routers and merge them. In total, the overall complexity is

The space complexity is analyzed as follows. The initially
inferred topology contains nodes. The links
among known routers and hosts take up at most
storage space. The links associated with anonymous routers can

be stored in space, because each anonymous router has
two neighbors and two adjacent links. So the initially inferred
topology can be stored in space. The dis-
tance matrix, Isomap, and the coordinates need at most

, and spaces,
respectively. Therefore, the total space complexity is

.

C. Neighbor Matching Algorithm

We now present a simpler algorithm, the neighbor matching
algorithm, which trades off some accuracy for lower com-
plexity. We merge the pairs of anonymous routers which share
at least one neighbor (known router or host) and do not appear
in the same traceroute path. We keep comparing all the anony-
mous router pairs and repeat this procedure until no more pairs
can be merged. For example, in Fig. 3(b), we merge and

because they have the same neighbor . Denote this new
router as , which keeps all the links previously adjacent to

or . We proceed to merge and since they share the
same neighbors: and . In this way, we finally merge all
the anonymous routers together. Clearly, this approach may
over-merge anonymous routers.

The time complexity of the neighbor matching algorithm is
roughly analyzed in terms of the total number of router pairs
compared. In the first iteration, we compare all anony-
mous router pairs and possibly merge some of them. Suppose we
merge pairs of routers in this iteration. In the second iteration,
we only need to compare these newly generated routers with
each other and with other routers, i.e.,

pairs. Suppose there are a total of iterations
before the algorithm stops, and in each iteration,
pairs are merged, in that sequence. The total number of pairs
that need to compare is then

Regarding the space complexity, observe that each merging
decreases the number of routers in the topology by one and also
decreases the number of links. The maximum storage space
is then required for the initially inferred topology, which is

.

V. ILLUSTRATIVE SIMULATION RESULTS

In this section, we present the simulation results on Internet-
like and real Internet topologies. The results and conclusions on
different topologies are qualitatively the same. We hence focus
on one topology (i.e., the PlanetLab topology) and only selec-
tively present some results on other topologies.

We conduct traceroute measurement on PlanetLab [32]. We
randomly select 79 nodes from PlanetLab and conduct pairwise
traceroutes to obtain the underlay topology among them. Due to
network and node dynamics (some nodes unexpectedly failed
during our measurements), a small portion of the traceroutes
cannot be completed. The resultant topology contains 5589

JIN et al.: NETWORK TOPOLOGY INFERENCE BASED ON END-TO-END MEASUREMENTS 2189

overlay paths (out of total ones), around 1950
links and 946 known routers. In addition, the number of occur-
rences of the three types of anonymous routers are 82, 184, and
208, respectively. To evaluate our algorithms, we select around
60 nodes from the topology and neglect traceroutes among
them that contain anonymous routers. We assume that paths are
symmetric by only using one path between a pair of nodes. By
careful selection of the nodes, the remaining topology consists
of around 96% of the pairwise paths. We use this topology as
the complete underlay topology among the nodes.

We also evaluate our algorithms on a real router-level Internet
topology. This topology is obtained by the Mercator project and
Lucent Bell Laboratories in November 1999 [21]. It contains
284,805 routers and 860,683 links. A weakness of this topology
is that it only keeps connectivity information but not router-
level delay, and therefore, it is not so useful to the study without
anonymous routers.

Finally, we generate five Transit-Stub topologies with
Georgia Tech’s network topology generator [33]. The topolo-
gies are a two-layer hierarchy of transit networks (with 8 transit
domains, each with 16 randomly-distributed routers) and stub
networks (with 256 domains, each with 12 randomly distributed
routers). Each topology contains 3200 routers and about 20,000
links. A host is connected to a stub router with 1 ms delay, while
the delays of core links are given by the topology generator. On
the Mercator and Transit-Stub topologies, we use shortest-path
routing to identify a path between a pair of hosts and assume
that paths are symmetric.

A. Results in the Absence of Anonymous Routers

We first evaluate the topology inference algorithms in the ab-
sence of anonymous routers. We use GNP to estimates host co-
ordinates. We select 20 landmarks based on -cluster-median
criterion, as in [13]. We define the following evaluation metrics
in our study.

• Link ratio , defined as the ratio of the number of links in
the inferred topology to the total number of links in the ac-
tual underlay topology. Note that in the absence of anony-
mous routers, every link appearing in the inferred topology
is an actual link on the underlay. Therefore, the inferred
topology is exact if and only if .

• Router ratio , defined as the ratio of the number of
routers in the inferred topology to the total number of
routers in the actual underlay topology. In the absence of
anonymous routers, every occurrence of a router in the
inferred topology corresponds to an actual router on the
underlay, and exact match in all the routers happens if and
only if .

• Measurement load , defined as the number of tracer-
outes performed to achieve a certain level of link or router
ratio. In the absence of anonymous routers,
is enough to infer a topology with full accuracy. This is the
upper bound of the number of traceroutes required.

We also evaluate the theoretically minimum number of tracer-
outes to reconstruct an underlay topology. This minimum can
be obtained by solving a set-covering problem. An instance

Fig. 4. Link ratio versus average measurement load per host (N = 60).

of the set-covering problem consists of a finite set
and a family of subsets of . Every element of belongs
to at least one subset in . The target is to find a minimum-size
subset whose members cover all the elements of [28].
In our inference problem, is the set of all routers or links
among the hosts. A subset in represents routers or links in a
traceroute path. We would like to select the minimum number
of traceroutes to reconstruct the underlay topology, in terms
of either routers or links. Note that we are only interested in
the total number of traceroutes while not considering measure-
ment parallelism among hosts. As well known, the set-covering
problem is NP-hard. We use the traditional greedy approxima-
tion to address it, which has been proven to be polynomial-time

-approximable [28]. In the following figures, this re-
sult is denoted as “Greedy.” Note that this result is based on the
assumption that we have complete knowledge of the underlay
before traceroutes, and is hence not achievable in practice.

We do not present the results on the Mercator topology since it
does not contain delays and we cannot test Longest Path Probing
and Max-Delta Probing on it.

PlanetLab Topology: Fig. 4 plots the link ratio versus ,
where the group size is 60. Given a certain measurement load,
the greedy algorithm can reveal the most links. Max-Delta’s per-
formance is close to that of Greedy. To discover a completely
accurate topology with , Greedy, Max-Delta, Random,
and Longest require the measurement loads of 15, 29.5, 29.5,
and 29.5 at each host, respectively. Except Greedy, all the other
three algorithms require full measurements to discover all the
underlay links. However, if some accuracy, say 5% links, can be
compromised, substantial reduction in measurement load can be
achieved, which is 53% in Greedy, 70% in Max-Delta, 53% in
Random, and 19% in Longest. As shown, although most links
can be discovered in the first several iterations, there exist a few
ones that are difficult to be discovered. If we neglect these links,
the measurement load can be substantially reduced.

2190 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 12, DECEMBER 2006

Fig. 5. Router ratio versus average measurement load per host (N = 60).

Fig. 6. Average measurement load per host to achieve � = 0:95.

Fig. 5 shows the router ratio versus . Similar to Fig. 4,
Greedy performs the best, Max-Delta the next, and then
Random and Longest. By comparing Figs. 4 and 5, we see
that routers are much easier to be discovered than links. A
low number of traceroutes can lead to a high router ratio but
a relatively lower link ratio. This is because a router is often
adjacent to multiple links and can be discovered once one of
these links is discovered.

Fig. 6 shows the average measurement load per host versus
to achieve . As mentioned, the line

indicates the number of traceroutes in the worst case to
discover the network with full accuracy. Max-Delta outper-
forms Random, Longest, and the full measurement method
by achieving averagely 20%, 36%, and 47% reductions in the
measurement load, respectively. Its result is around 22% higher
than Greedy. Longest does not perform well. We find that in

Fig. 7. Performance of Max-Delta and Random in the presence of distance
estimation error (N = 60).

Longest there are always some outliers being tracerouted by
many other hosts. This leads to inefficiency in discovering new
links. As the group size increases, the measurement loads of all
the algorithms increase. Max-Delta increases much slower than
Random, Longest, and the full measurement method, which
means that it is more scalable to large groups.

Fig. 7 shows the performance of Max-Delta and Random with
different estimation errors in network distance. We assume that
the relative error in RTT estimation is uniformly distributed
within , . We see that their performance
does not sensitively depend on the error, even with as high
as 45%. Clearly, Random does not use RTT information in se-
lecting traceroute targets and its result does not depend on the
estimation error. Max-Delta shows its high robustness to the dis-
tance estimation error.

Transit-Stub Topologies: We further evaluate the inference
algorithms on the Transit-Stub topologies. Fig. 8(a) shows the
link ratio versus , where the group size is 256. The trends of
the results are similar to those in Fig. 4. Greedy and Max-Delta
achieve the best and second best performance, while Longest
and Random achieve the worst and second worst performance.
Max-Delta has significantly outperformed Random and Longest
in the first several iterations. When is 9, Max-Delta can dis-
cover 95.4% links in the topology, while Random and Longest
can only discover 86.5% and 72.2% links, respectively. There-
fore, given a certain requirement on the link ratio, say,

, Max-Delta can achieve it with much less traceroutes than
Random and Longest.

Fig. 8(b) shows the average measurement load per host
versus to achieve . Longest has the worst per-
formance. It requires almost the full measurement to achieve

. The reason has been explained above. On average,
Max-Delta achieves 62% and 77% reduction in the measure-
ment load than Random and Longest, respectively. Greedy sig-
nificantly outperforms Max-Delta only when the group size is
large (in the figure). In general, Max-Delta achieves
slightly worse performance than Greedy.

JIN et al.: NETWORK TOPOLOGY INFERENCE BASED ON END-TO-END MEASUREMENTS 2191

Fig. 8. Performance of the inference algorithms on the Transit-Stub topologies. (a) Link ratio versus average measurement load per host (N = 256). (b) Average
measurement load per host to achieve � = 0:95. (c) Average measurement load per host in different iterations of a typical simulation (N = 256).

Fig. 8(c) shows the average measurement load per host
in different iterations of a typical simulation. An average
measurement load of 1.0 means perfect parallelism in mea-
surement. That is, each host is able to find a traceroute target
and conducts traceroute once in the iteration. The end of a
curve in the figure indicates the stop of the inference algorithm,
namely, discovering the fully underlay topology. Max-Delta,
Random, and Longest arrive at the end at the 109th, 129th,
and 149th iterations, respectively. Clearly, Max-Delta is the
quickest to discover a fully complete underlay topology. In
fact, Max-Delta achieves perfect parallelism in its first 101
iterations. But Longest can only achieve perfect parallelism in
its first 31 iterations. In the following iterations, some hosts will
not be able to find any traceroute targets. Clearly, these hosts
tamper the parallelism in inference and increase the inference
time.

B. Results With Anonymous Routers

In the presence of anonymous routers, link and router ratios
are no longer sufficient to evaluate an inferred topology. This is
because does not mean a match in topologies (we
may mistakenly merge or introduce routers/links). We therefore
introduce the following additional metrics.

• Anonymous router ratio , defined as the ratio of the
number of anonymous routers in the inferred topology to
the number of anonymous routers in the actual topology.

• Graph distance, defined as the minimum number of prim-
itive operations (i.e., vertex insertion, vertex deletion and
vertex update) applied to the inferred topology to make it
isomorphic with the actual topology. This metric is for-
mally defined in [34]. The smaller the graph distance is,
the more similar two graphs are.

• Hop gap, the hop gap between a pair of hosts and
is defined as

. We are interested in
the average hop gap among all pairs of hosts.

In our simulations, we assume that full traceroutes are used
(i.e.,). Unless otherwise stated, a random 5%
of the routers are anonymous (type-1).

PlanetLab Topology: Fig. 9 shows the performance of the
Isomap-delay algorithm with different values. Clearly, as

Fig. 9. Parameter tuning for � in the Isomap-delay algorithm.

increases, more anonymous routers are merged and in the
resultant topology decreases. However, when increases, the
possibility of incorrect merging also increases. This is shown
from the curve of the graph distance, which decreases first
and then increases. We hence set to 10 ms to achieve good
tradeoff between and the graph distance. Similarly, we set
to 30 ms. In the Isomap-hop algorithm, it is good to set them to
0.05 and 0.2, respectively.

Fig. 10 shows the performance of the merging algorithms on
the PlanetLab topology. The lines labeled “Init” and “Pruning”
indicate the results on the initially inferred topology and the
topology after simple pruning, respectively.

In Fig. 10(a), we clearly see that there is a high router inflation
in the initially inferred topology, with an average of 3.6 and a
maximum of 5.1. The router ratio increases with the group size,
therefore in a larger group the inflation will be more serious.
Simple pruning can averagely reduce the inflation by 60%, but

is still high in the resultant topology. The three merging al-
gorithms further reduce to close to 1, with an average of
1.15, 1.05, and 1.009, respectively. In all the three algorithms,

increases slowly with the group size. It shows that these al-
gorithms are efficient even in a large-scale network. Among
the three merging algorithms, neighbor matching merges the

2192 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 12, DECEMBER 2006

Fig. 10. Performance of the different merging algorithms on the PlanetLab topology (with 5% routers as anonymous). (a) Router ratio. (b) Link ratio. (c) Anony-
mous router ratio. (d) Graph distance. (e) Average hog gap.

most anonymous routers while Isomap-hop merges the least.
In fact, some values in neighbor matching are less than 1,
which shows that it is too aggressive in merging and tends to
over-merge routers.

Fig. 10(b) and (c) show the link ratio and the anonymous
router ratio , respectively. We again see that there is high
inflation in the inferred topology without merging, especially
for anonymous router ratio. In Fig. 10(c), with the merging
algorithms, anonymous router ratios are reduced to a low value
around or less than 2, with reductions of around 95% and
65% as compared with the initially inferred topology and the
topology with only pruning, respectively.

Fig. 10(d) shows the graph distance between the inferred
topology and the actual topology. In the figure, we also show
the graph distance between the actual topology and a topology
generated by randomly adding a certain percentage of links to
the actual one. As the group size increases, the graph distances
of all these topologies increase, mainly due to higher infla-
tion. Among the three inferred topologies, the Isomap-delay
topology is the most similar to the actual topology, followed by
Isomap-hop, and then neighbor matching. Isomap-delay infers
a topology with similar graph distance as the topology with
about 5% additional links. The Isomap-hop topology performs
similarly to the one with 10% additional links.

Fig. 10(e) shows the average hop gap of the three topologies.
Isomap-delay performs the best, while neighbor matching per-
forms the worst. All of them achieve relatively low average hop

gap (less than 20%). We expect that most overlay applications
are not sensitive to such discrepancy.

In summary, the simplest neighbor matching algorithm tends
to over-merge routers and introduces the highest error. Isomap-
delay achieves better performance by its higher complexity. It
also performs better than Isomap-hop for all the metrics consid-
ered. This is because Isomap works the best on Euclidean dis-
tances among points, but the Isomap-hop algorithm only uses
0/1 hop values, which introduces error in the fitting of routers
to a multidimensional space. However, in the networks where
delay is not stable and accurate, Isomap-hop is more useful and
applicable.

Mercator Topology and Transit-Stub Topologies: We further
conduct simulations on the Mercator and Transit-Stub topolo-
gies. Due to the lack of RTT among routers in the Mercator
topology, we do not evaluate the Isomap-delay algorithm on it.
Instead, we evaluate the other two algorithms with different per-
centages of anonymous routers on this topology. We note that
the conclusions on these topologies are qualitatively the same
as that on the PlanetLab topology. We hence only show some
representative results here.

Fig. 11 shows the performance of the merging algorithms on
the Mercator topology. The anonymous routers significantly
inflate the network. Simple pruning can reduce the inflation by
66%. Based on it, Isomap-hop and neighbor matching make
further reduction by 44% and 79%, respectively. Generally,
neighbor matching merges more anonymous routers than

JIN et al.: NETWORK TOPOLOGY INFERENCE BASED ON END-TO-END MEASUREMENTS 2193

Fig. 11. Performance of the different merging algorithms on the Mercator topology (N = 100). (a) Anonymous router ratio. (b) Graph distance.

Fig. 12. Performance of the different merging algorithms on the Transit-Stub topologies (with 5% routers as anonymous). (a) Anonymous router ratio. (b) Graph
distance.

Isomap-hop, but it also makes more mistakes by showing larger
graph distance. In Fig. 11(b), the graph distances of the inferred
topologies quickly increase as the percentage of anonymous
routers increase. When the percentage of anonymous routers is
large (say, larger than 7%), the merging error is also large. In
that case, application-layer measurement may not be sufficient
to infer a highly accurate topology.

Fig. 12 shows the performance of the merging algorithms
on the Transit-Stub topologies. We note that of the initially
inferred topology in Fig. 12(a) is much larger than that in
Fig. 11(a). For example, of the initially inferred topology
with 5% anonymous routers among a group of 100 hosts are 17
and 172 based on the Mercator topology and the Transit-Stub
topologies, respectively. One reason is that the total number of

routers in the Mercator topology is much larger than that in the
Transit-Stub topologies. We have randomly selected routers to
attach hosts and used shortest-path routing to identify interhost
paths. With a huge amount of routers in the Mercator topology,
the shortest paths have few overlaps. This is different from the
case in the Transit-Stub topologies, where routers in the core
are more frequently visited than others and paths adjacent to
one host often share the same edge networks.

VI. CONCLUSION

In this paper, we study how to infer the underlay topology
among a group of hosts through end-to-end measurement tools
such as traceroute. Such techniques are useful in many applica-
tions, for example, constructing an efficient overlay or building

2194 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 12, DECEMBER 2006

a high-bandwidth overlay tree. We study two important issues
in topology inference.

The first one is how to efficiently infer a network topology
in the absence of anonymous routers. We propose Max-Delta,
where a server assigns the traceroute targets for hosts so as to
reveal the most undiscovered underlay information. Our simula-
tion results show that to obtain a topology with 100% accuracy,
each host needs to traceroute almost all the others, regardless
of the inference algorithm. However, to obtain a topology with
95% links of the actual one, Max-Delta can reduce the mea-
surement load at each host by 20% as compared with a random
measurement method, and by 47% as compared with the full
measurement method (on the PlanetLab topology). Max-Delta
can, hence, infer a highly accurate topology with low measure-
ment load.

We further study the anonymous router problem in topology
inference. Anonymous routers seriously distort the inferred
topology and increase the complexity of inferring a topology
consistent with traceroutes. Our study shows that preserving
the distance and trace consistencies in topology inference is of
unpractically high complexity. We hence relax the constraints
and present two fast algorithms to merge anonymous routers.
Our simulation results show that the Isomap-delay algorithm
performs the best out of all the algorithms studied. On the
PlanetLab topology with 5% anonymous routers, it can infer a
topology with anonymous router ratio around 1.5 and average
hop gap around 9.2%. Most overlay applications are expected
to be able to tolerate such discrepancy.

REFERENCES

[1] Y. H. Chu, S. Rao, S. Seshan, and H. Zhang, “A case for end system
multicast,” IEEE J. Sel. Areas Commun., vol. 20, no. 8, pp. 1456–1471,
Oct. 2002.

[2] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, “A
scalable content-addressable network,” in Proc. ACM SIGCOMM,
Aug. 2001, pp. 161–172.

[3] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris, “Re-
silient overlay networks,” in Proc. ACM SOSP, Oct. 2001, pp. 131–145.

[4] M. Kwon and S. Fahmy, “Topology-aware overlay networks for group
communication,” in Proc. ACM NOSSDAV, May 2002, pp. 127–136.

[5] X. Jin, Y. Wang, and S.-H. G. Chan, “Fast overlay tree based on ef-
ficient end-to-end measurements,” in Proc. IEEE ICC, May 2005, pp.
1319–1323.

[6] J. Han, D. Watson, and F. Jahanian, “Topology aware overlay net-
works,” in Proc. IEEE INFOCOM, Mar. 2005, pp. 2554–2565.

[7] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S.
Shenker, I. Stoica, and H. Yu, “OpenDHT: A public DHT service and
its uses,” in Proc. ACM SIGCOMM’05, Aug. 2005, pp. 73–84.

[8] Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarca, J. Heller-
stein, and S. Shenker, “A case study in building layered DHT applica-
tions,” in Proc. ACM SIGCOMM, Aug. 2005, pp. 97–108.

[9] Y. Chen, D. Bindel, H. Song, and R. Katz, “An algebraic approach
to practical and scalable overlay network monitoring,” in Proc. ACM
SIGCOMM, Aug. 2004, pp. 55–66.

[10] Traceroute. [Online]. Available: http://www.traceroute.org/
[11] V. Jacobson, “Pathchar,” 1997. [Online]. Available: http://www.caida.

org/tools/utilities/others/pathchar/
[12] B. Yao, R. Viswanathan, F. Chang, and D. G. Waddington, “Topology

inference in the presence of anonymous routers,” in Proc. IEEE IN-
FOCOM, Apr. 2003, pp. 353–363.

[13] T. S. E. Ng and H. Zhang, “Predicting Internet network distance with
coordinates-based approaches,” in Proc. IEEE INFOCOM, Jun. 2002,
pp. 170–179.

[14] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: a decen-
tralized network coordinate system,” in Proc. ACM SIGCOMM, Aug.
2004, pp. 15–26.

[15] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” Science, vol. 290,
pp. 2319–2323, Dec. 2000.

[16] M. Coates, R. Castro, R. Nowak, M. Gadhiok, R. King, and Y.
Tsang, “Maximum likelihood network topology identification from
edge-based unicast measurements,” in Proc. ACM SIGMETRICS,
2002, pp. 11–20.

[17] M. Coates, A. Hero, R. Nowak, and B. Yu, “Internet tomography,”
IEEE Signal Process. Mag., vol. 19, pp. 47–65, May 2002.

[18] D. G. Andersen, N. Feamster, S. Bauer, and H. Balakrishnan,
“Topology inference from BGP routing dynamics,” in Proc. ACM
SIGCOMM IMW, Nov. 2002, pp. 243–248.

[19] F. Wang and L. Gao, “On inferring and characterizing Internet routing
policies,” in Proc. ACM SIGCOMM IMC, Oct. 2003, pp. 15–26.

[20] “Skitter.” 2002. [Online]. Available: http://www.caida.org/tools/mea-
surement/skitter/index.xml

[21] R. Govindan and H. Tangmunarunkit, “Heuristics for Internet map dis-
covery,” in Proc. IEEE INFOCOM, Mar. 2000, pp. 1371–1380.

[22] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with Rocketfuel,” in Proc. ACM SIGCOMM, Aug. 2002, pp. 133–145.

[23] B. Donnet, P. Raoult, T. Friedman, and M. Crovella, “Efficient algo-
rithms for large-scale topology discovery,” in Proc. ACM SIGMET-
RICS, Jun. 2005, pp. 327–338.

[24] P. Barford, A. Bestavros, J. Byers, and M. Crovella, “On the marginal
utility of network topology measurements,” in Proc. ACM SIGCOMM
IMW, Nov. 2001, pp. 5–17.

[25] A. Broido and K. C. Claffy, “Internet topology: Connectivity of IP
graphs,” in Proc. SPIE ITCom, Aug. 2001.

[26] Y. Zhang, N. Duffield, V. Paxson, and S. Shenker, “On the constancy of
Internet path properties,” in Proc. ACM SIGCOMM IMW, Nov. 2001,
pp. 197–211.

[27] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relation-
ships of the Internet topology,” in Proc. ACM SIGCOMM, Sep. 1999,
pp. 251–262.

[28] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. Cambridge, MA: MIT Press, 2001.

[29] H. Lim, J. C. Hou, and C.-H. Choi, “Constructing Internet coordinate
system based on delay measurement,” in Proc. ACM SIGCOMM IWC,
Oct. 2003, pp. 129–142.

[30] M. Costa, M. Castro, A. Rowstron, and P. Key, “PIC: Practical Internet
coordinates for distance estimation,” in Proc. ICDCS, Mar. 2004, pp.
178–187.

[31] B. Wong, A. Slivkins, and E. G. Sirer, “Meridian: a lightweight net-
work location service without virtual coordinates,” in Proc. ACM SIG-
COMM, Aug. 2005, pp. 85–96.

[32] Planetlab. [Online]. Available: http://www.planet-lab.org
[33] E. Zegura, K. Calvert, and S. Bhattacharjee, “How to model an inter-

network,” in Proc. IEEE INFOCOM, Mar. 1996, vol. 2, pp. 594–602.
[34] A. N. Papadopoulos and Y. Manolopoulos, “Structure-based simi-

larity search with graph histograms,” in Proc. DEXA, Sep. 1999, pp.
174–178.

Xing Jin (S’04) received the B.Eng. degree in com-
puter science and technology from Tsinghua Univer-
sity, Beijing, China, in 2002. He is currently working
towards the Ph.D. degree at the Department of Com-
puter Science and Engineering, Hong Kong Univer-
sity of Science and Technology, Kowloon.

His research interests include overlay multi-
cast with applications and QoS issues, Internet
topology inference, end-to-end measurements, and
peer-to-peer streaming.

Mr. Jin was awarded the Microsoft Research Fel-
lowship in 2005. He is a Junior Editor of the Journal of Multimedia since 2006.

JIN et al.: NETWORK TOPOLOGY INFERENCE BASED ON END-TO-END MEASUREMENTS 2195

W.-P. Ken Yiu (S’03) received the B.Eng. and
M.Phil. degrees in computer science from the
Hong Kong University of Science and Technology
(HKUST), Kowloon, in 2002 and 2004, respectively.
He is currently working towards the Ph.D. degree
at the Department of Computer Science and Engi-
neering, HKUST.

His research interests include computer networks,
peer-to-peer systems, multimedia networking, and
network security.

Mr. Yiu was awarded the Academic Achievement
Medal from HKUST in 2002, and the Sir Edward Youde Memorial Fellow-
ship from Sir Edward Youde Memorial Fund in 2005 and 2006. He is a student
member of the IEEE Computer Society.

S.-H. Gary Chan (S’89–M’98–SM’03) received
the B.S.E. degree (Highest Honor) in electrical engi-
neering from Princeton University, Princeton, NJ, in
1993, with certificates in applied and computational
mathematics, engineering physics, and engineering
and management systems, and the M.S.E. and Ph.D.
degrees in electrical engineering from Stanford
University, Stanford, CA, in 1994 and 1999, respec-
tively, with a minor in business administration.

He is currently an Associate Professor with the
Department of Computer Science and Engineering,

Hong Kong University of Science and Technology, Kowloon, and an Adjunct
Researcher with Microsoft Research Asia, Beijing. He was a Visiting Assistant
Professor in Networking with the Department of Computer Science, University

of California, Davis, CA, from 1998 to 1999. During 1992–93, he was a Re-
search Intern at the NEC Research Institute, Princeton, NJ. His research interest
includes multimedia networking, peer-to-peer technologies and streaming, and
wireless communication networks.

Dr. Chan is a member of Tau Beta Pi, Sigma Xi, and Phi Beta Kappa. He
was a William and Leila Fellow at Stanford University during 1993–1994. At
Princeton University, he was the recipient of the Charles Ira Young Memo-
rial Tablet and Medal, and the POEM Newport Award of Excellence in 1993.
He served as a Vice-Chair of IEEE COMSOC Multimedia Communications
Technical Committee (MMTC) from 2003 to 2006. He is a Guest Editor for
the IEEE Communication Magazine (Special Issue on Peer-to-Peer Multimedia
Streaming), 2007, and Springer Multimedia Tools and Applications (Special
Issue on Advances in Consumer Communications and Networking), 2007. He is
Co-Chair of the Multimedia Symposia for IEEE GLOBECOM (2006) and IEEE
ICC (2007). He was the Co-Chair for the Workshop on Advances in Peer-to-Peer
Multimedia Streaming for the ACM Multimedia Conference (2005) and IEEE
ICC (2005).

Yajun Wang received the B.Eng. degree in com-
puter science from the University of Science and
Technology of China, Hefei, in 2002. He is currently
working towards the Ph.D. degree at the Department
of Computer Science and Engineering, Hong Kong
University of Science and Technology, Kowloon.

His research interests include computational
geometry, combinatorics, algorithms, and data
structures.

