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Abstract
Irregular multivariate time series (IMTS) is characterized by the
lack of synchronized observations across its different channels. In
this paper, we point out that this channel-wise asynchrony can lead
to poor channel-wise modeling of existing deep learning methods.
To overcome this limitation, we propose MTM, a multi-scale token
mixing transformer for the classification of IMTS. We find that
the channel-wise asynchrony can be alleviated by down-sampling
the time series to coarser timescales, and propose to incorporate
a masked concat pooling in MTM that gradually down-samples
IMTS to enhance the channel-wise attention modules. Meanwhile,
we propose a novel channel-wise token mixing mechanism which
proactively chooses important tokens from one channel and mixes
them with other channels, to further boost the channel-wise learn-
ing of our model. Through extensive experiments on real-world
datasets and comparison with state-of-the-art methods, we demon-
strate that MTM consistently achieves the best performance on all
the benchmarks, with improvements of up to 3.8% in AUPRC for
classification.

CCS Concepts
• Computing methodologies → Neural networks; • Mathe-
matics of computing → Time series analysis.

Keywords
Irregular Multivariate Time Series, Channel-wise Asynchrony, To-
ken Mixing, Multi-Scale, Transformer
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1 Introduction
Irregular multivariate time series (IMTS) is a common data modality
in various science domains and real-world applications [10, 29, 30,
33]. An IMTS is a sequence of irregularly sampled observations
indexed in time order, where observations of different variates form
the “channel” dimension. The irregularity of sampling is character-
ized by the uneven time interval between consecutive observations,
as well as partially observed channels. Specifically, we find that
the irregularity of IMTS can lead to a serious lack of synchronized
observations across its different channels, as shown in Figure 1(a).
Such channel-wise asynchrony presents significant challenges for
deep learning methods to model channel-wise correlation of IMTS
data. Early efforts on IMTS analysis mainly focus on improving the
temporal modeling of IMTS data by considering the uneven time
interval with specially designed deep learning modules. However,
most of them have not fully considered the channel-wise asyn-
chrony [5, 36, 37]. They either bypass channel-wise asynchrony
by simply processing different channels independently, or impute
missing channels to obtain a fixed-size vector per timepoint as
model input, which leads to poor channel-wise modeling of the
data.

In light of this, some methods propose Transformer models that
tokenize each single observation in an IMTS and rely on attention
modules along the temporal and channel dimensions to model their
correlations [38, 42, 44]. Nevertheless, we argue that the channel-
wise attention in these methods is also ineffective for channel-wise
modeling, as it relies on the synchronized observations. Due to the
channel-wise asynchrony, such channel-wise attention is always
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Figure 1: (a) Left: An example of irregular multivariate time
series. Right: The distribution of number of channels ob-
served per timepoint in the P12 dataset. (b) A failure example
of channel-wise attention in existing Transformers. Chan-
nels 1 and 2 have no synchronized observation, and will be
processed as independent even though they are potentially
correlated.

computed over a small part of channels. Moreover, if some channels
do not have any synchronized observations, which is a common
case in real-world IMTS data, no channel-wise attention will be
computed between these channels (Figure 1(b)). These channels are
thus processed independently despite that the potential correlations
between them may help the downstream task. As presented in
Table 1, we find almost no performance drop when substituting the
channel-wise attention module with simple multi-layer perceptrons
(MLPs) in such Transformers.

In this work, we overcome the limitation on channel-wise mod-
eling of existing methods in two aspects, i.e., to improve the ef-
fectiveness of the channel-wise attention with multi-scale down-
sampling, and to propose a new token mixing mechanism to further
enhance the channel-wise modeling. First, we find that the lack of
synchronized observations can be gradually alleviated when we
down-sample the IMTS to coarser timescales. However, the limited
existing works on this are either uni-scale patching [45], or cannot
guarantee to mitigate the channel-wise asynchrony [44]. On the
other hand, different from the general down-sampling on regular
dense data, the irregularity and sparsity of IMTS makes it more crit-
ical to retain information during the down-sampling process. The
effectiveness of general down-sampling methods remains unknown
on IMTS. In this work, we conduct a comprehensive comparison
of potential down-sampling methods, and find that a simple con-
catenation of max and average temporal pooling, with the missing
values masked, is the most effective IMTS down-sampler for our
purpose.

Furthermore, although down-sampling can help cross-channel
feature learning in coarser timescales, it sacrifices the temporal res-
olution of the data and still suffers in finer timescales. To solve this
problem, we propose a novel token mixing mechanism to further
enhance the channel-wise feature learning without down-sampling.
The intuition behind is to mix tokens across channels even if they

Table 1: The channel-wise attention module in Transformer
is ineffective for IMTS classification.

Transformer P12 AUROC P19 AUROC PAM F1-Score

w/ Channel Attention 86.1 ±1.6 87.3 ±3.2 95.8 ±1.2
w/o Channel Attention 85.8 ±1.6 87.6 ±2.7 96.1 ±0.7

are not synchronized, which is achieved by proactively choosing
important tokens from one channel, and mixing them with un-
synchronized tokens in other channels. Specifically, based on the
attention scores from a set of specially designed [CLS] tokens, we
find out the importance of tokens within each channel. We then
choose the pivotal tokens to fill the missing channels of the same
timepoint. Then, we mix the information of each channel’s original
tokens with the pivotal tokens from other channels with another
self-attention step. After the mixing operation, we reset the miss-
ing channels to keep the original sampling patterns unchanged.
Through this token mixing mechanism, the pivotal features from
one channel can be effectively mixed with other channels in both
coarse and fine timescales, such that channel-wise features can be
better captured.

To this end, we propose MTM, amulti-scale tokenmixing trans-
former for IMTS classification that effectively integrates the masked
concat pooling and the token mixing mechanism. We carry out
extensive experiments on 3 real-world datasets with various exper-
iment settings, and compare MTM with state-of-the-art methods.
The results show that MTM consistently achieves the best perfor-
mance on all the benchmarks, with significant improvements of up
to 3.8% in classification AUPRC.

To summarize, we make the following contributions:
• A thorough investigation into the channel-wise asynchrony in
IMTS and how it impacts channel-wise modeling of existing
deep learning models for IMTS.

• A masked concat pooling method that down-samples IMTS
to mitigate its channel-wise asynchrony and improves the
effectiveness of channel-wise attention, which is designed
based on a comprehensive comparison of different down-
sampling methods on IMTS.

• A channel-wise token mixing mechanism to further enhance
the channel-wise feature learning of IMTS in all timescales.

• A multi-scale token mixing Transformer model MTM that
integrates the pooling and token mixing modules for the
classification of IMTS, with extensive experiments to validate
its effectiveness.

The remainder of this paper is organized as follows: We first
review related works in Section 2, and formally define the problem
we study in Section 3. Afterwards, we elaborate on the design of
MTM and its modules in Section 4. We discuss the experimental
results in Section 5 and conclude in Section 6.

2 Related Works
In this section, we review related works below from two aspects.
First, we summarize and compare prior studies on IMTS thoroughly
in Section 2.1. Second, although token down-sampling has not
been applied for the analysis of IMTS before, we also list relevant
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works analyzing regular data in the literature, and discuss the down-
sampling for IMTS in 2.2.

2.1 Modeling Irregular Multivariate Time Series
IMTS is prevalent in various real-world domains such as healthcare
[10], climate science [33], traffic [39], biology [29], and astronomy
[30]. Despite the recent success of deep learning in the analytics
of regular MTS [20, 23, 24, 43, 48], how to tackle the irregularities
in IMTS with deep learning still remains a challenging problem
[35]. Earliest approaches [11, 14, 16, 18, 34, 40, 41, 46] basically
rely on data imputation to preprocess the time series to be regular
and leverage general time series models. Nevertheless, this will
inevitably introduce bias, artifacts, or cause information loss to the
dataset, thus impacting the analysis of the data [35, 47].

To address this problem, efforts have beenmade to directly model
IMTS without imputation. Recent works try to adapt deep sequence
models to deal with the temporal irregularity of IMTS, such as in-
troducing the time interval information into the state transition
of Recurrent Neural Networks [4, 19, 37], learning neural ordi-
nary differential equations along the temporal dimension [2, 5–
7, 28, 31, 32], and encoding the irregular time for attention mecha-
nism [15, 36]. However, most of these methods still cannot handle
channel-wise asynchrony. In light of this, some Transformer-based
methods [38, 42, 44] propose to tokenize each single observation in
an IMTS by encoding the corresponding time and channel informa-
tion together with the observed value, and use attention modules
to capture their pair-wise correlations. Since a global attention over
all tokens is prohibitive considering the quadratic complexity of
self-attention, these models generally compute the attention along
the temporal and channel dimensions separately. However, the lack
of synchronized observations in IMTS limits the ability of channel-
wise attention to learn channel-wise correlations, which leads to
poor channel-wise modeling of these methods.

There are only few discussion on the channel-wise modeling
problem of IMTS. t-PatchGNN [45] proposes a patching approach
to transform the IMTS into uniform and aligned temporal patches
to avoid the irregularity. Despite it mitigates the asynchrony to
some extent, the patching is applied only once at the beginning
of their model, where multi-scale down-sampling is needed for
better channel-wise modeling. Warpformer [44] is the first multi-
scale model for IMTS, with a learnable irregular warping approach
to project IMTS into multiple timescales. However, this approach
does not always help align different channels. In some cases, it
even exacerbates the asynchrony by projecting originally aligned
observations apart. ViTST [12] converts IMTS into images and
utilizes Vision Transformer with multi-scale modeling abilities for
classification. Nonetheless, the conversion is complicated and time-
consuming. Moreover, the computation overhead is much larger
than other methods. In summary, all these methods are designed
to improve the effectiveness of channel-wise learning on coarser
timescales. Besides, they all rely on imputed data to some extent,
which hampers their modeling abilities.

In contrast, our MTM addresses the channel-wise asynchrony
in two aspects, i.e., improving the existing channel-wise learning
module by gradually down-sampling the data to coarser timescales,
and introducing a new channel-wise feature learning mechanism

to enhance channel-wise modeling in all timescales. As shall be
demonstrated in Section 5, our proposed MTM shows significantly
better performance than existing methods, without the need of any
data imputation.

2.2 Token Down-Sampling in Transformers
Token down-sampling can be broadly categorized into the struc-
tured down-sampling and the unstructured down-sampling based
on how they partition and reduce the target dimension. Structured
down-sampling methods, such as max pooling and average pooling,
partition the dimension into fixed-sized patches, with reduction op-
eration performed within each patch. On the contrary, unstructured
down-sampling methods offer a more flexible approach by adapting
the partition [9]. Recent methods [3, 13, 17, 25] generally rely on a
scoring function, such as the attention scores in the Transformer,
to partition the dimension into varying sized patches, which allows
the model to balance its focus on regions of interest and potentially
leading to improved performance.

Since these methods are mostly studied for dense and regular
data modalities such as regular time series and images, they fo-
cus more on extracting essential features from a redundancy of
data and reducing computational cost. However, the irregularity
and sparsity of IMTS make it more critical to retain information
during the down-sampling process compared with regular data.
In addition, as channel-wise asynchrony has not been attended
before, the effectiveness of general down-sampling methods to mit-
igate the channel-wise asynchrony remains unknown on IMTS.
In this work, we identify the value of down-sampling in tackling
the channel-wise asynchrony, and conduct a comprehensive com-
parison of potential down-sampling methods to find that a simple
concatenation of max and average temporal pooling, with the miss-
ing values masked, is the most effective IMTS down-sampler for
our purpose.

3 Problem Definition
An IMTS of 𝑇 timepoints and 𝐶 channels is a matrix of chronologi-
cally ordered observations 𝑿 = [𝑥𝑖, 𝑗 ] ∈ (R ∪ {NaN})𝑇×𝐶 together
with its observation time 𝑻 = [𝑡𝑖 ], where 𝑥𝑖, 𝑗 is observation of
channel 𝑗 at time 𝑡𝑖 for 𝑖 ∈ [1,𝑇 ] and 𝑗 ∈ [1,𝐶]. Specifically, the
irregularity of IMTS refers to that 𝑡𝑖+1 − 𝑡𝑖 may not be constant,
and each observation may contain missing channels which makes
𝑥𝑖, 𝑗 = NaN. In this paper, we consider the series-level classification
of IMTS that predicts one categorical label for each time series.
Given a dataset D containing sample pairs (𝑿 , 𝑻 , 𝑦), where 𝑿 and
𝑻 are the input IMTS and its observation time, 𝑦 ∈ {0, . . . , 𝑀 − 1}
is the categorical label of 𝑀 classes, the classification problem is
to obtain an optimal function F (·) that maps the input (𝑿 , 𝑻 ) to
its corresponding label as 𝑦 = F (𝑿 , 𝑻 ) such that the difference
between 𝑦 and the ground truth 𝑦 is minimized.

4 MTM
In this section, we first overview the architecture and workflow
of our proposed MTM in Section 4.1, and then elaborate on the
designs of MTM from Sections 4.2 to 4.4.
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Figure 2: Overview of MTM.

4.1 MTM Overview
Figure 2(a) shows the overall architecture of MTM. MTM comprises
an Input Embedding layer, a Token Mixing layer, and a stack of 𝑁
MTM Blocks. Each MTM Block is further composed of a Masked
Concat Pooling layer and a Token Mixing layer. In MTM, the in-
put IMTS 𝑿 is first embedded by the Input Embedding layer to
obtain the high dimensional token embeddings of the observations.
Meanwhile, in the Input Embedding layer, we also introduce a set of
special [CLS] tokens attached together with the observation tokens.
These [CLS] tokens will be used in our token mixing mechanism in
the Token Mixing layers, and also be used to predict the final class
label at the end. We denote the initial token embeddings as 𝑯 (0) .
After the Input Embedding layer, 𝑯 (0) is first fed into a Token Mix-
ing layer with the output denoted as 𝑯 (1) , followed by a stack of 𝑁
MTM Blocks for feature extraction. Denote 𝑻 (1) = 𝑻 , then the 𝑛-th
MTM Block of MTM takes the token embeddings and observation
time (𝑯 (𝑛) , 𝑻 (𝑛) ) as input, down-samples the data and mixes the
feature to get (𝑯 (𝑛+1) , 𝑻 (𝑛+1) ). The output of the last MTM Block
in MTM is (𝑯 (𝑁+1) , 𝑻 (𝑁+1) ). We extract the embeddings of the
[CLS] tokens from 𝑯 (𝑁+1) and compute the max pooling of these
tokens, followed by an MLP layer to get the class label prediction 𝑦.

4.2 Input Embedding
MTM treats each single observation in an IMTS as a token, and em-
ploys the attention mechanism to extract features from the tokens
for classification. In the Input Embedding layer of MTM shown as
Figure 2(b), we map each observation in the input IMTS 𝑿 to a high

dimensional token embedding 𝒁 = [𝒛𝑖, 𝑗 ] ∈ (R ∪ {NaN})𝑇×𝐶×𝐷 by
considering the observed value, observation time, and channel of
each observation, with

𝒛𝑖, 𝑗 = 𝑥𝑖, 𝑗 · 𝒆 𝑗 + PE(𝑡𝑖 ), (𝑖 ∈ [1,𝑇 ], 𝑗 ∈ [1,𝐶], 𝑥𝑖, 𝑗 ≠ NaN), (1)

where 𝒆 𝑗 ∈ R𝐷 is the trainable embedding vector for the 𝑗-th chan-
nel, 𝐷 is the size of the embedding dimension, and PE(·) is the
sinusoidal positional encoding function of 𝐷 dimensions. To facili-
tate the computation in the Token Mixing layers, we introduce a
tailor-made [CLS] token for each of the𝐶 channels. The embedding
of the [CLS] tokens is randomly initialized as 𝐷 dimensions and
trainable. We denote the [CLS] tokens as 𝑺 = [𝒔 𝑗 ] ∈ R𝐶×𝐷 . We
concatenate the [CLS] tokens together with the observation tokens
to obtain

𝑯 (0) = [𝑺 | |𝒁 ] = [𝒉(0)
𝑖, 𝑗

], (𝑖 ∈ [0,𝑇 ], 𝑗 ∈ [1,𝐶]), (2)

where 𝒉(0)0, 𝑗 denotes the [CLS] token for channel 𝑗 .

4.3 Masked Concat Pooling Layer
To mitigate the asynchrony between channels of IMTS, in MTM
we propose to down-sample the data along the temporal dimension
by merging temporally adjacent observations, such that tokens can
be better aligned along the channel dimension for the attention
mechanism to effectively learn the channel-wise features. In MTM,
we employ the Masked Concat Pooling layers to perform the down-
sampling as shown in Figure 3. Each Masked Concat Pooling layer
is associated with a down-sampling rate 𝑅. In each layer we first
partition the original time span into non-overlapping patches of

4077



MTM KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Concat

Project

&! &" &# &$ &% &&
Time&# &$ &% &&&! &"

Max Avg Max Avg Max Avg&′! &′" &′#

[CLS]

[CLS]

Partition

Masked Concat Pooling

Figure 3: An example of IMTS down-sampling by masked
concat pooling.

size 𝑅, then compute the max and average of token embeddings
within each patch. Timepoints with no observations are masked
out and will not be computed. We then concatenate the max and
average token embeddings of each patch, and use a trainable lin-
ear projection to map the embeddings of size 2𝐷 back to 𝐷 . The
projected embeddings for the corresponding timepoints are used in
the down-sampled timescale. Last, we update the observation time
of the tokens accordingly to match the down-sampled timescale,
and fed the obtained token embeddings and their observation time
to next layers for further processing.

4.4 Token Mixing Layer
The channel-wise asynchrony of IMTS makes the channel-wise
attention in existing Transformer models less effective, especially
without down-sampling. To this end, we propose Token Mixing
layer in MTM by introducing a novel token mixing mechanism that
share important information of one channel across other channels,
as it is more likely to be important for other channels.

As is shown in Figure 2(c), a Token Mixing layer is composed of
a Temporal Attention module, a Token Mixing Attention module,
and a Channel-wise Attention module. Here we omit the layer
and block index in the notations for simplicity, and denote the
input token embeddings as 𝑯 (𝑖𝑛) = [𝒉(𝑖𝑛)

𝑖, 𝑗
], (𝑖 ∈ [0,𝑇 ], 𝑗 ∈ [1,𝐶]),

where [𝒉(𝑖𝑛)0,: ] are embeddings of the [CLS] tokens, and [𝒉(𝑖𝑛)1:,: ] are
embeddings of the observation tokens. The Temporal Attention
module takes 𝑯 (𝑖𝑛) as input, and compute the temporal attention
by treating tokens from each channel as a sequence (Figure 2(d)).
Taking the 𝑗-th channel as an example, we compute the pairwise
attention scores [𝑎 (𝑇 )

𝑖,𝑘
] of sequence [𝒉(𝑖𝑛)0, 𝑗 , . . . ,𝒉(𝑖𝑛)

𝑇,𝑗
], and update

the token embeddings as

𝑎
(𝑇 )
𝑖,𝑘

=
(𝑾 (𝑇 )

𝑄
𝒉(𝑖𝑛)
𝑖, 𝑗

) (𝑾 (𝑇 )
𝐾

𝒉(𝑖𝑛)
𝑘,𝑗

)𝑇
√
𝐷

,

𝒉(𝑇 )
𝑖, 𝑗

=
∑︁
𝑘

Softmax(𝑎 (𝑇 )
𝑖,𝑘

) · (𝑾 (𝑇 )
𝑉

𝒉(𝑖𝑛)
𝑘,𝑗

),
(3)

where𝑾 (𝑇 )
𝑄

,𝑾 (𝑇 )
𝐾

, and𝑾 (𝑇 )
𝑉

are learnable parameters defined on
R𝐷×𝐷 .

According to Equation (3), in this step, each [CLS] token embed-
ding will be updated as a linear combination of all tokens from the
same channel, with the combination weights being the attention

scores in [𝑎 (𝑇 )
𝑖,𝑘

]. Considering that the embeddings of [CLS] tokens
will be used to predict the class label in the end, the model will learn
to aggregate important information into the [CLS] tokens, which
naturally makes the attention scores of the [CLS] tokens a good
indicator of the importance of observation tokens [22]. Therefore,
we propose to use the attention score of the [CLS] tokens with
respect to the observation tokens to identify the pivotal tokens. We
compare such attention scores for all channels within each time-
point, and define the token with the largest attention score as the
pivotal token for that timepoint.

The pivotal tokens have been well mixed within their original
channels by the Temporal Attention module. However, the lack of
synchronized observations along the channel dimension makes it
hard for them to be mixed with tokens in other channels. Hence,
we propose to copy the pivotal tokens to fill the missing tokens in
other channels of the same timepoint, such that the pivotal tokens
can be mixed to other channels even without synchronized tokens
with another temporal attention (Figure 2(f)). We conduct the copy-
and-fill operation on the token embeddings [𝒉(𝑇 )

𝑖, 𝑗
], and denote the

output as [𝒓𝑖, 𝑗 ]. Taking the 𝑗-th channel as an example, we compute
their pairwise attention scores as

𝑎
(𝑀 )
𝑖,𝑘

=
(𝑾 (𝑀 )

𝑄
𝒓𝑖, 𝑗 ) (𝑾 (𝑀 )

𝐾
𝒓𝑘,𝑗 )𝑇

√
𝐷

, (4)

where𝑾 (𝑀 )
𝑄

,𝑾 (𝑀 )
𝐾

, and𝑾 (𝑀 )
𝑉

are learnable parameters defined on
R𝐷×𝐷 . To avoid the original information of less observed channels
being overwhelmed by the pivotal tokens, we down-weight the
pivotal tokens’ attention score by the length of the IMTS as

𝛽𝑖, 𝑗 =


𝑎
(𝑀 )
𝑖, 𝑗

/𝑇, 𝒉(𝑇 )
𝑖, 𝑗

is NaN

𝑎
(𝑀 )
𝑖, 𝑗

, otherwise
, (5)

and update the token embeddings as

𝒓 ′𝑖, 𝑗 =
∑︁
𝑘

Softmax(𝛽𝑖,𝑘 ) · (𝑾
(𝑀 )
𝑉

𝒓𝑘,𝑗 ) . (6)

After this process, we reset the missing tokens in [𝒓 ′
𝑖, 𝑗
] as NaN

to keep the original sampling pattern unchanged, and denote the
output as [𝒉(𝑀 )

𝑖, 𝑗
]. We refer to this process as the Token Mixing

Attention.
The Channel-wise Attention module takes [𝒉(𝑀 )

𝑖, 𝑗
] as input, and

compute the channel wise attention by treating tokens from each
timepoint as a sequence. Taking the 𝑖-th timepoint as an example,
we compute the pairwise attention scores of [𝒉(𝑀 )

𝑖,1 , . . . ,𝒉(𝑀 )
𝑖,𝐶

], and
update the token embeddings as

𝑎
(𝐶 )
𝑗,𝑘

=
(𝑾 (𝐶 )

𝑄
𝒉(𝑀 )
𝑖, 𝑗

) (𝑾 (𝐶 )
𝐾

𝒉(𝑀 )
𝑖,𝑘

)𝑇
√
𝐷

,

𝒉(𝑜𝑢𝑡 )
𝑖, 𝑗

=
∑︁
𝑘

Softmax(𝑎 (𝐶 )
𝑘,𝑗

) · (𝑾 (𝐶 )
𝑉

𝒉(𝑀 )
𝑖,𝑘

),
(7)

where𝑾 (𝐶 )
𝑄

,𝑾 (𝐶 )
𝐾

, and𝑾 (𝐶 )
𝑉

are learnable parameters defined on

R𝐷×𝐷 . We denote the final output as 𝑯 (𝑜𝑢𝑡 ) = [𝒉(𝑜𝑢𝑡 )
𝑖, 𝑗

].
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Table 2: Statistics of benchmark datasets.

Dataset #Samples #Channels #Classes (positive%) Sparsity

P12 11988 36 2 (14.2%) 88%
P19 38303 34 2 (4.19%) 95%
PAM 5333 17 8 (N/A) 60%

Note that for both Equations (3) and (7), the unobserved tokens
(with embedding as NaNs) are masked out and do not participate in
the computation.

5 Illustrative Experimental Results
In order to demonstrate the modeling ability of MTM, we conduct
extensive experiments on three well-adopted benchmark datasets
for classification of IMTS. In this section, we first describe the exper-
iment settings and implementation details of models in Section 5.1.
We then compare the performance of MTM with state-of-the-art
methods in Section 5.2. We further study the modeling abilities of
MTM for data with different degrees of channel-wise asynchrony in
Section 5.3, followed by an ablation study on our proposed key mod-
ules in Section 5.4. To gain more insight into the design of MTM,
we compare performance of MTM with different potential down-
sampling methods in Section 5.5, and analyze key hyperparameters
of MTM in 5.6. Lastly, we empirically study the efficiency of MTM
by comparing the number of model parameters and running speed
with other baselines in Section 5.7.

5.1 Experiment Settings
In this work, we experiment on three widely used real-world health-
care and human activity IMTS datasets. Among them, the P12 [8]
and P19 [27] datasets contain electronic health records as IMTS,
collected from patients in their hospital stays. The objectives of
analyzing these two datasets are to predict in-hospital mortality
and the occurrence of sepsis, respectively. The PAM dataset [26]
contains IMTS that measure daily living activities of the subjects
with motion sensors. The objective is to predict from each IMTS
a categorical label that indicates one out of eight activities of the
subject.

The P12 and P19 datasets are highly biased regarding the target
labels. Therefore, we compute the area under the receiver operating
characteristic curve (AUROC) and the area under the precision-
recall curve (AUPRC) of the prediction result for evaluation. For
the PAM dataset, we compare the accuracy, precision, recall, and
F1-score of the prediction result for evaluation. We follow previous
studies [12, 47] to preprocess the data, and split each dataset into
5 subsets. Each subset is further split by 80%, 10%, and 10% for
training, validation, and testing, respectively. We apply the same
fixed split provided by [47] for MTM and all baselines. For each
dataset, we experiment with the models on the 5 subsets, and report
the mean and standard deviation of their test results. Information
of the processed datasets is summarized in Table 2.

We mainly compare our proposed MTM with seven state-of-
the-art methods, including Raindrop [47], ContiFormer [6], Co-
former [38], Warpformer [44], and ViTST [12], which are the best-
performing methods for IMTS classification reported in recent stud-
ies. We also compare with GraFITi [42] and t-PatchGNN [45], which
are competitive methods for IMTS forecasting, by adapting them
for classification tasks.

In the experiments, we implement MTM and all the baseline
methods with PyTorch [21]. For MTM we perform grid search
to obtain the best combination of hyperparameters, including the
hidden dimension, number of layers, dropout rate, learning rate, and
the down-sampling rate. For the baseline methods, we follow the
implementation provided by the original papers. All experiments
are done on an experiment platform of an NVIDIA GeForce RTX
4090 with 24 GB GPU memory.

5.2 Comparison With State-Of-The-Art
The full results of the experiment are shown in Table 3. In this
table, we also show results of older baselines reported in past pa-
pers [12, 47]. MTM achieves the best performance on all evaluation
metrics over the three datasets. Among the baselines, GraFITi is
based on a bipartite graph representation of IMTS, which is the
only method among the baselines that does not rely on any imputed
values. Therefore, it has a more satisfactory performance than other
baselines even though it is originally designed for forecasting. How-
ever, GraFITi does not consider the channel-wise asynchrony, thus
still suffering from poor channel-wise modeling. Meanwhile, de-
spite that Warpformer considers multi-scale modeling of IMTS, its
warping-based down-sampling approach does not always mitigate
the channel asynchrony, thus cannot improve its channel-wise mod-
eling ability, which leads to a suboptimal performance. t-PatchGNN
avoid the irregularity of IMTS by transforming the data into uni-
form and aligned temporal patches. Despite its patching approach
mitigates the asynchrony to some extent, the patching is applied
only once at the beginning of their model, which is not enough to
deal with different degrees of asynchrony. Its suboptimal perfor-
mance also indicates that multi-scale down-sampling is needed for
better channel-wise modeling. Another strong baseline is ViTST,
which converts IMTS data into line-graph images, and utilizes ViTs
to classify these images. Despite its simplicity in directly applying
the existing ViTs, we notice that its conversion from IMTS data to
images can be very complicated and time-consuming. Any changes
to the raw IMTS data or the image generation settings may require
a re-generation of all the images, leading to its inflexibility in ap-
plications. Its performance also relies on its backbone ViT which
is pretrained on extra large image datasets. It may not perform
very well if we train it from scratch like other methods in our
experiments.

In comparison, MTM addresses the poor channel-wise model-
ing problem of existing methods with a carefully-designed down-
sampling module to mitigate the asynchrony, and a token mixing
mechanism to enhance channel-wise feature extraction, which gives
MTM better channel-wise modeling ability, and makes MTM sig-
nificantly more powerful than other baselines. Meanwhile, MTM
directly works on the IMTS data and does not rely on any imputed
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Table 3: Classification results. The best results are in bold and the second bests are underlined.

Methods
P12 P19 PAM

AUROC AUPRC AUROC AUPRC Accuracy Precision Recall F1-Score

GRU-D (2018) 81.9 ±2.1 46.1 ±4.7 83.9 ±1.7 46.9 ±2.1 83.3 ±1.6 84.6 ±1.2 85.2 ±1.6 84.8 ±1.2
SeFT (2020) 73.9 ±2.5 31.1 ±4.1 81.2 ±2.3 41.9 ±3.1 67.1 ±2.2 70.0 ±2.4 68.2 ±1.5 68.5 ±1.8

mTAND (2020) 84.2 ±0.8 48.2 ±3.4 84.4 ±1.3 50.6 ±2.0 74.6 ±4.3 74.3 ±4.0 79.5 ±2.8 76.8 ±3.4
IP-Net (2018) 82.6 ±1.4 47.6 ±3.1 84.6 ±1.3 38.1 ±3.7 74.3 ±3.8 75.6 ±2.1 77.9 ±2.2 76.6 ±2.8

DGM2-O (2021) 84.4 ±1.6 47.3 ±3.6 86.7 ±3.4 44.7 ±11.7 82.4 ±2.3 85.2 ±1.2 83.9 ±2.3 84.3 ±1.8
MTGNN (2020) 74.4 ±6.7 35.5 ±6.0 81.9 ±6.2 39.9 ±8.9 83.4 ±1.9 85.2 ±1.7 86.1 ±1.9 85.9 ±2.4
Raindrop (2022) 82.8 ±1.7 44.0 ±3.0 87.0 ±2.3 51.8 ±5.5 88.5 ±1.5 89.9 ±1.5 89.9 ±0.6 89.8 ±1.0

ContiFormer (2023) 82.1 ±2.2 44.8 ±3.5 84.4 ±2.1 50.4 ±4.3 85.2 ±2.8 86.8 ±2.7 86.7 ±2.6 86.3 ±2.7
Coformer (2023) 85.8 ±1.9 52.4 ±4.3 89.2 ±1.8 57.3 ±3.3 91.2 ±0.6 92.4 ±0.7 93.7 ±0.7 92.8 ±0.5

Warpformer (2023) 86.5 ±1.2 54.3 ±2.7 88.7 ±2.0 52.4 ±4.5 94.2 ±2.3 95.1 ±2.2 94.7 ±2.3 94.9 ±2.2
ViTST (2023) 85.1 ±0.8 51.1 ±4.1 89.2 ±2.0 53.1 ±3.4 95.8 ±1.3 96.2 ±1.3 96.1 ±1.1 96.5 ±1.2

t-PatchGNN (2024) 84.5 ±0.9 50.8 ±2.6 87.0 ±1.4 51.5 ±5.2 93.9 ±1.2 94.9 ±0.9 94.8 ±1.3 94.8 ±1.2
GraFITi (2024) 86.6 ±1.1 54.8 ±3.1 89.1 ±2.6 56.6 ±6.3 96.0 ±0.8 96.3 ±0.6 96.0 ±0.8 96.1 ±0.7

MTM (ours) 88.0 ±1.0 58.6 ±4.1 90.3 ±2.0 58.3 ±5.3 97.5 ±0.2 97.8 ±0.3 97.5 ±0.4 97.6 ±0.2

Table 4: Statistical significance test results.

Dataset
P12 P19 PAM

AUROC AUPRC AUROC AUPRC Acc. Prec. Rec. F1

P-value 0.008 0.007 0.023 0.026 0.003 0.000 0.007 0.000

values, which makes the data processing simple, flexible, and not
subjective to extra artifacts.

We conduct statistical significance tests to further justify the
improvement of MTM over the baselines. On the first subset of each
each dataset, we run MTM and the best baseline for the dataset 5
times with different random seeds, and apply independent samples
t-test to examine the significance of the improvement. Table 4
shows the p-values from the tests, which represent the statistical
probabilities if there were no difference between the performances
of MTM and the baselines. All the p-values in Table 4 are less
than 0.05. which indicates that the performance gain to be highly
significant.

5.3 Experiments with Varying Sparsity
To further study the modeling abilities of MTM for data with differ-
ent degrees of channel-wise asynchrony, we randomly mask out a
subset of channels in the PAMdataset and compare the performance
of different methods. This setting emulates real-world situations
where some sensors fail or become unreachable during the data col-
lection period. The PAM dataset is of 60% sparsity. We experiment
with 10%-50% data masked out, corresponding to 64%-80% sparsity,
which emulates moderate to severe channel-wise asynchrony for
our purpose. The masking is applied to the training, validation, and
testing sets. We report the average F1-score over the 5 subsets as
the result for each method.

As shown in Figures 4, MTM leads the board with the highest F1-
scores when 10% to 50% of the channels are masked out. With 50%
of the channels masked, MTM can still accomplish the classification

task well with an F1-score up to 91%. This highlights the excellent
capability of MTM to model IMTS data with different degrees of
channel-wise asynchrony. On the other hand, we observe that the
performance of Raindrop and ContiFormer flops faster than other
methods when the masking ratio increases. This is because they
both heavily rely on data imputation to handle the channel-wise
irregularity of IMTS. Specifically, ContiFormer requires to impute
missing channels in each observation to get fixed-sized vectors
as its input. Raindrop learns to generate the representation of the
missing channels from the observed channels. Their performance is
thus more severely affected when the sparsity of the data increases.

5.4 Ablation Study
We strongly believe that the good performance of MTM is rooted in
our proposed multi-scale down-sampling and token mixing mecha-
nisms. To validate the efficacy of these novel designs, we implement
variants of MTM by removing the Masked Concat Pooling layers,
the use of [CLS] tokens, and the Token Mixing Attention modules,
respectively. We carry out the experiments for these MTM variants,
and report the results in Table 5. All the three variants show infe-
rior performance to the full MTM model in the classification tasks.
We note that by using the token mixing mechanism in MTM, the
AUROC increases up to 2% on the P19 dataset. This improvement
is much larger than that of the other two datasets, and also larger
than the improvement brought by the down-sampling module. This
is because the P19 dataset is the most sparse dataset among the
three datasets. The severe lack of synchronized observations even
makes the down-sampling module less helpful. On the other hand,
the down-sampling modules works better than token-mixing on
the PAM dataset, which is because PAM is the least sparse dataset.
By comparing the variants with and without the [CLS] tokens,
we discover that the introduction of the [CLS] tokens alone can
also bring some performance gain to MTM even without the full
token mixing mechanism. These results provide strong evidence
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Figure 4: Performance with varying masking ratio.

Table 5: Ablation study results.

MTM Variants P12 P19 PAM

Pooling [CLS] Mixing AUROC AUPRC AUROC AUPRC Accuracy Precision Recall F1-Score

N N N 86.1 ±1.6 52.6 ±6.6 87.3 ±3.2 51.1 ±5.5 95.6 ±1.3 95.9 ±1.3 95.6 ±1.1 95.8 ±1.2
Y N N 86.9 ±1.3 56.1 ±3.7 87.5 ±2.9 52.0 ±5.6 96.9 ±0.6 97.2 ±0.3 97.2 ±0.5 96.9 ±0.4
Y Y N 87.1 ±1.0 57.7 ±4.1 88.4 ±2.5 55.3 ±3.7 96.2 ±0.9 96.4 ±0.9 96.2 ±0.9 96.3 ±0.9
N Y Y 87.2 ±1.2 56.9 ±2.9 89.3 ±2.6 56.8 ±4.8 96.1 ±0.6 96.7 ±0.6 96.1 ±0.6 96.4 ±0.6

Y Y Y 88.0 ±1.0 58.6 ±4.1 90.3 ±2.0 58.3 ±5.3 97.5 ±0.2 97.8 ±0.3 97.5 ±0.4 97.6 ±0.2

to demonstrate the effectiveness of our proposed masked concat
pooling and token mixing mechanism.

5.5 Comparing Down-Sampling Methods
As there is a lack of related study on the down-sampling of IMTS, we
implement four representative down-sampling methods on MTM.
The three structuredmethods include max pooling, average pooling,
and a concatenation of max and average pooling. The one unstruc-
tured method base on the attention score from its previous layer to
select the top scored timepoints, and merge the observations to its
nearest selected timepoints. We experiment these methods on our
datasets, and show the results in Table 6.

From the results we observe that the masked concat pooling,
which is the method we use in our MTM, achieves the best per-
formance among its structured and unstructured counterparts. We
think the reason behind is that the concat pooling can maximally
retain information from the data. In contrast to the regular dense
data where down-sampling is applied for extracting essential infor-
mation from a redundancy and achieving computational efficiency,
IMTS is already very sparse, and we employ down-sampling to
mitigate the channel-wise asynchrony, which makes the retaining
of information more important than reducing them. This is why
the concat pooling is consistently better on all the datasets despite
max and average pooling are more frequently adopted for image
and regular time series. On the other hand, we observe that the

attention-based unstructured pooling method has inferior perfor-
mance comparing the structured methods, despite its success in
computer vision researches. Besides the ability of retaining infor-
mation when reducing the dimension, we think another reason
is that its irregular partitioning of the time dimension adds up to
the difficulties for the model to learn the temporal correlations
in the down-sampled timescale. We think this is also the reason
why the unstructured warping-based multi-scale module in the
Warpformer baseline does not actually outperform the structured
pooling method we propose in MTM.

5.6 Hyperparameter Study
To gain deeper insights into our proposed MTM with different
setups, we compare the performance of MTM with different down-
sampling rate and number of layers on the P12 and P19 datasets.
The P12 and P19 datasets are of severe channel-wise asynchrony,
which is good for us to understand the sensitivity of the related
hyperparameters. The results are shown in Figure 5. When we fix
the number of Token Mixing layers in MTM, and experiment with
different down-sampling rates, we find that the performance is
suboptimal when we set the down-sampling rate too large or too
small for both datasets. The best performing values are 3 for the P12
dataset and 2 for the P19 dataset. When we fix the down-sampling
rates to each dataset’s optimal, and experiment with varying num-
ber of layers, we find that, with increasing number of layers, the
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Table 6: Performance of MTM with different down-sampling methods.

Pooling Method
P12 P19 PAM

AUROC AUPRC AUROC AUPRC Accuracy Precision Recall F1-Score

Max Pooling 87.5 ±1.2 57.3 ±3.8 89.8 ±2.4 56.8 ±3.3 97.0 ±0.4 97.4 ±0.5 97.0 ±0.4 97.2 ±0.4
Avg Pooling 87.4 ±1.7 57.2 ±5.2 89.5 ±2.2 55.9 ±3.7 96.5 ±0.6 96.8 ±0.8 96.5 ±0.6 96.6 ±0.7

Attention Scoring 87.2 ±1.3 56.2 ±3.5 86.5 ±3.2 49.9 ±5.4 96.4 ±0.9 96.8 ±0.6 96.4 ±0.9 96.6 ±0.7
Concat(max, avg) 88.0 ±1.0 58.6 ±4.1 90.3 ±2.0 58.3 ±5.3 97.5 ±0.2 97.8 ±0.3 97.5 ±0.4 97.6 ±0.2

Figure 5: Performance with different hyperparameter setups.

performance of MTM stabilizes around the optimal value, while it
flops on the P19 datasets. These findings shed light on the impor-
tance of adapting these hyperparameters to the specific properties
of the datasets.

5.7 Model Efficiency
Our proposed MTM mainly comprises attention operations. It does
not require extra computation-intensive operations, and operations
in our proposed masked concat pooling and token mixing mecha-
nism are mostly parallelizable to enjoy accelerated computation on
modern GPUs. Moreover, our multi-scale down-sampling approach
by masked concat pooling allows MTM to compute the attention
over less tokens and further reduces the computational overhead.
These characteristics enable MTM to remain efficient while being
very powerful. In this section, we empirically study the computation
efficiency of our proposedMTM by comparing the number of model
parameters and training time consumption of different models on
the PAM dataset. From the results shown in Figure 6, we can see
that MTM achieves the best performance while also maintaining a
small model size and short training time. Specifically, MTM runs
much faster than the other two methods Warpformer and Coformer
with similar Transformer-based designs. On the other hand, despite
achieving a good classification performance, we can see that ViTST
is significantly larger in model size and slower in training time
than most methods. We also note that the Contiformer consumes
significantly longer training time than all other methods because
of its neural ODE-based designs. Therefore, we are not showing it
in Figure 6.

6 Conclusion
In this paper, we focus on the classification of IMTS, especially re-
garding the channel-wise feature extraction. We first point out the
ineffectiveness of the channel-wise attention in existing Transform-
ers to be caused by the severe channel-wise asynchrony of IMTS
data, and propose to overcome this limitation in two aspects, i.e.,
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improving the effectiveness of existing channel-wise learning mod-
ule with multi-scale modeling, and introducing a new channel-wise
learning mechanism. To this end, we propose MTM, a multi-scale to-
ken mixing transformer. We first propose a masked concat pooling
in MTM to gradually down-sample IMTS. Moreover, we propose a
novel channel-wise token mixing mechanismwhich learns to proac-
tively choose important tokens from one channel and mix them
with other channels. We experiment on three real-world datasets
from the healthcare and human action recognition area, which
demonstrate the applicability, feasibility, and SOTA performance
of our proposed MTM in real-world IMTS classification scenarios,
with improvements of up to 3.8% in AUPRC. Meanwhile, we also
realize that the key designs of MTM are currently limited to the clas-
sification task. An extension of this work to forecasting and other
generative tasks of IMTS can be meaningful research directions for
future efforts.
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A More Results on Applicability
Our proposed MTM is designed for general IMTS data. It does not
rely on any domain-specific properties, which gives it great ap-
plicability to different domains. Section 5.2 compares MTM with
baseline methods on datasets from the healthcare and human ac-
tion recognition domains. To further validate the applicability of
MTM, we experiment on the SpokenArabicDigits (SAD) dataset [1]
from the speech recognition domain. SAD contains 8800 regular
multivariate time series of speech signals collected from native Ara-
bic speakers’ pronunciations of 10 Arabic digits. Each time series
consists of 13 channels representing different feature types. The ob-
jective of this dataset is to predict the corresponding digits from the
time series data. Since the data is regular, we randomly mask 80%
of the observations in each time series to generate highly sparse
IMTS. We compare the classification accuracy of MTM with the
most competitive baselines from Table 3. As the results shown in
Table 7, our MTM also achieves the best performance in comparison
with these competitive baselines.

Table 7: Classification accuracy on SpokenArabicDigits.

Method Acccuracy (%)

Coformer 93.7
Warpformer 89.7

ViTST 94.0
t-PatchGNN 91.8
GraFITi 93.6

MTM (ours) 94.5

B More Results on Extremely Sparse IMTS
We further extend our experiments with IMTS of varying sparsity
in Section 5.3 to extreme conditions. Table 8 shows performance of
MTM and the most competitive baselines on the PAM dataset with
60%-90% data masked out, which corresponds to overall spasity of
84%-96%. By comparison, we observe that the advantage of MTM
gradually expands with the increase of data sparsity, which demon-
strates the effectiveness of our proposed method in addressing the
channel-wise asynchrony problem.

C Visualization
To better understand the behavior of our proposed method, we
study two examples of the attention scores used for choosing the
pivotal tokens in our proposed token mixing mechanism. The exam-
ples are taken from the P12 dataset. For each example we visualize
the attention scores [𝑎 (𝑇 )

𝑖, 𝑗
] from the first and second Token Mixing

layers, where the first Token Mixing layer works on the original
timescale, and the second layer works on a coarser timescale down-
sampled by 4. From the attention maps in Figure 7 we can see that
the data at the original timescale severely suffers from channel-wise
asynchrony, and a down-sampling process effectively mitigates the
problem. On the other hand, tokens with the highest attention
scores are chosen as the pivotal tokens and mixed with other chan-
nels in the Token Mixing Attention that follows, which further
enhances MTM’s channel-wise modeling ability to deal with the
channel-wise asynchrony of IMTS.

(a)

(b)

0 1 Unobserved
(NaN) Pivotal

Figure 7: Attention score visualizations.
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Table 8: Classification performance on PAM with extremely high masking ratios.

Methods
Accuracy (%) Precision(%) Recall(%) F1-Score(%)

60% 70% 80% 90% 60% 70% 80% 90% 60% 70% 80% 90% 60% 70% 80% 90%

Coformer (2023) 85.7 80.5 69.7 60.2 84.7 78.6 69.7 60.2 85.7 80.5 68.5 60.2 85.0 79.2 68.7 59.5
Warpformer (2023) 79.4 73.9 63.5 59.1 82.5 77.2 68.3 62.4 81.5 76.3 64.0 59.6 81.4 76.3 64.9 59.0

ViTST (2023) 86.8 80.5 75.6 69.6 88.7 84.1 78.4 72.7 88.6 82.6 77.7 70.9 88.6 83.1 77.8 70.9
tPatchGNN (2024) 81.1 75.5 68.1 59.8 84.7 79.9 72.3 63.0 83.5 77.1 70.2 60.5 83.9 78.1 70.7 61.2

Grafiti (2024) 85.8 80.5 71.0 63.2 85.9 81.0 73.1 64.5 85.8 80.5 71.1 63.2 85.6 80.5 71.4 63.3

MTM (ours) 88.7 85.2 77.8 70.5 88.8 85.0 79.4 72.9 88.7 85.2 77.8 70.5 88.7 85.0 78.2 71.3
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