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Abstract—Geomagnetism is promising for indoor localization
due to its pervasive presence, high signal stability and unnecessity
of extra infrastructure support. It can be fused with a pedometer
(step counter) to further improve accuracy. Traditional fusions
based on particle filter, however, are computationally complex.
Their accuracy is barely satisfactory for large open indoor spaces
(such as airports or malls), mainly because particles cannot
converge properly in environments with high degree of freedom.
They often assume knowledge or explicit user step length input,
which is inconvenient or difficult to achieve in reality.

We propose Mapel, which efficiently fuses geomagnetism with
pedometer based on graphical model without manual user input.
Mapel is applicable to any indoor environment. We first discretize
indoor map into closely spaced lattice nodes (separated by, say,
0.5 ∼ 1 meter) in a graph, representing potential target locations.
Using conditional random field (CRF), Mapel then conducts
geomagnetism-pedometer fusion to estimate user location in the
lattice. By jointly considering geomagnetism pattern and step
counts, Mapel adaptively self-calibrates a step model for each
user without explicit input. Extensive experiments conducted
at our campus show that Mapel outperforms state-of-the-art
schemes by a wide margin (cutting localization error by more
than 40% and reducing computation time by more than 30%).

I. INTRODUCTION

The penetration of smart devices and advances in their
sensing capabilities have enabled indoor localization. The
signals studied include Wi-Fi RSSI, channel state information
(CSI), visible light and ultra-sound. While impressive, these
systems require costly or special infrastructure installation.
Furthermore, due to multipath or interference, the RF signals
are often not stable, which adversely affects localization ac-
curacy. The survey processes of these systems are also rather
time-consuming, where signal vectors have to be collected by
standing at length at different fixed points in the area.

Using geomagnetic field for localization has recently e-
merged as a promising approach, since magnetic field is
omnipresent and temporally stable. Its spatial variation with
respect to the indoor locations (introduced by electrical appli-
ances and building materials) can be easily used to differentiate
them. Without the need for extra infrastructure support, it is
also more cost-effective to deploy. Furthermore, its collection
is efficient, because magnetic field data can be sampled at a
high rate while walking. Meanwhile, indoor layout changes or
metallic mobile objects only affect the field pattern within a
limited scope [1]–[5]. Consequently, magnetic field exhibits
much less fluctuation than RF signals.

(a) Corridor (b)Atrium

Fig. 1: Estimated trajectory of particle-filter-based magnetic localization in the
corridor and campus atrium. The red solid line is the ground-truth trajectory
and the blue dotted line is the estimated trajectory.

Due to advances of inertial sensing on step counts, s-
martphone orientation and user behavior, the pedometer (step
counter) has been increasingly used for indoor localization [6],
[7]. It can be fused with geomagnetism to improve localiza-
tion accuracy. Prior works often employ recursive Bayesian
filtering techniques (e.g., [4], [8]–[11]), which estimate user
location by maximizing some joint probability or particle
convergence given the magnetic field reading and walking
distance of the target. Despite promising results, they are
often computationally complex for a mobile device. They
also assume the knowledge or explicit input of a user’s
initial position and step length, which is often inconvenient
or difficult to achieve in practice.

Furthermore, these models work best in partitioned indoor
spaces with narrow corridors, where the degree of freedom
for the target (mobile client) is constrained. Figure 1 shows a
typical example of a particle-filter-based magnetic localization
performance in our university campus. Clearly, given corridor
constraints in Figure 1(a), the estimated locations match the
ground-truth well. However, as shown in Figure 1(b), for large
spacious setting such as airports or shopping malls, their accu-
racy is barely satisfactory, mainly because the models (such as
particle filter) cannot converge properly in environments with
high degree of freedom.

To address the above drawbacks, we propose a novel graph-
ical model fusing geomagnetism and pedometer for indoor
localization. The scheme, termed Mapel (joint geomagnetism
and pedometer localization), is applicable to any indoor en-
vironment without the need for infrastructure support, and is
especially effective for open space settings. It self-calibrates
the stride size (step length) of the target, and hence can adapt
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Fig. 2: System framework of Mapel.

to heterogeneous users without any explicit user input.
Mapel works as follows. We discretize the whole area into

closely spaced nodes (separated by, say, 0.5 to 1 meter), which
form a lattice. Each node of the lattice corresponds to a
possible position of the target. Based on the joint information
of step counter and the pattern of the collected magnetic field,
target motion can be represented by neighboring transitions
between nodes in the lattice. The transition probability and
walking distance of the user can then be jointly estimated
by applying conditional random field (CRF), with the target
localized by maximizing the overall likelihood.

We show the system framework of Mapel in Figure 2. It
basically consists of two phases, the offline phase (or the CRF
calibration phase) and the online phase (or the localization
phase). In the offline phase, a surveyor carries a smartphone
and collects magnetic field data while walking on pre-defined
paths. On the walking trajectory, the step counter is used to
label the locations of geomagnetic field signals. Given the
map information, we then perform indoor map discretization
to construct the CRF structure (i.e., the lattice and feature
functions). We then conduct offline training to determine the
coefficients for the CRF feature functions. The signal map
and the calibrated CRF (including structure, feature functions
and their coefficients) are then stored in the magnetic field
fingerprint and CRF database. In the online phase, a user
measures the geo-magnetic field while his step counter returns
the step count and walking orientation. The information is fed
to the conditional random field localization module. Mapel
works with a general step model, and then adaptively self-
calibrates the physical walking parameters in the step model
for a personalized model. It then returns the location based on
the maximum likelihood.

The major contributions of this work are as follows:
• A novel graphical model to fuse geomagnetic field and

pedometer for joint calibration-free indoor localization: We
propose Mapel, a novel and efficient technique which fuses
geomagnetic field and pedometer based on CRF. Mapel
requires neither accurate or explicit input of user initial
positions and step length, nor any offline device calibration,
hence is more practical. Computationally, it is more efficient.

• A self-calibrating algorithm to automatically estimate step
length: Mapel employs a novel self-calibrating algorithm
that returns the walking distance and step length (stride
size) of the user. It starts with a generic step model, and
collects user data on the fly to train a personalized model.

Specifically, it matches the magnetic field variation along
the walking trajectory of the user with the stored magnetic
fingerprint through derivative dynamic time warping [12]
(DDTW) to estimate the walking distance of the user. As
such, the distance has to be consistent with the step model
parameters, which are obtained by regression.

• Extensive experimental studies in various scenarios: We
have conducted extensive experiments on Mapel at our
university campus, including an spacious atrium and con-
strained corridors. Our results validate its implementability,
and show that it outperforms state-of-the-art algorithms by
a large margin (cutting the location error by more than 40%
and reducing the computation time by more than 30%).
This paper is organized as follows. We discuss related work

in Section II. In Section III we show the offline phase of our
system, including fingerprint database construction, map dis-
cretization, conditional random field (CRF) formulation, and
CRF coefficient determination. We present location inference
and step length self-calibration using CRF in Section IV. In
Section V we discuss illustrative experimental results in our
campus. We conclude in Section VI.

II. RELATED WORK

Traditional fingerprint-based indoor localization has been
extensively studied in the past decade. RADAR [13] and
Horus [14] are among the earlier works for Wi-Fi finger-
printing, whose accuracy depends on the density of access
points. The work in [11] fuses Wi-Fi RSSI signals with
pedometers using particle filter. Other signals like channel
state information (CSI), Bluetooth (or iBeacon) or FM rely
on deploying specialized infrastructures, which may not be
feasible for pervasive localization. Our scheme, Mapel, does
not require infrastructure installation, and hence is more cost-
effective to deploy with localization error less dependent on
the infrastructure of the environment.

The fusion of magnetic field fingerprint signals and pe-
dometers has been recently studied. MapCraft [15] uses the
conditional random field (CRF) to localize users. In their
scheme, sequential motion and sensor readings are fed to a
graphical model for location estimation. However, MapCraft
follows the corridors in a segment-like graph and has not
considered the freedom of user movement in large open
space indoor settings. Furthermore, its feature functions only
consider fusing Wi-Fi RSSI signals with pedometers, burying
the potential advantages of geomagnetism. Mapel addresses
these issues by discretizing the indoor map into a lattice,
with each lattice node representing a potential target location.
Traditional CRF [16] is then adapted for the lattice instead
of a segment-like graph, and dedicated feature functions are
designed to leverage the geomagnetism. Infrastructure-based
magnetic field localization has been studied before [3]. This
early study focuses on using robots or special devices to col-
lect magnetic fields. Different from this work, Mapel focuses
on mobile localization based on smartphone sensors.

Fusion based on particle filter has been widely studied
for magnetic field localization [17]. MaLoc [4] implements
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a novel augmented particle filter to address motion estimation
error. Magicol [10] considers a two-way particle filter to
improve the fusion of Wi-Fi fingerprint and magnetic field.
The work in [11] approximates the floor map by connected
line segments. These works do not work well in open indoor
environments. Mapel uses conditional random field which
readily applies to such environments. It preprocesses the
indoor map into lattice, and reduces the degree of freedom
for target estimations. Besides, it does not need to know the
initial user position. Though in this paper we focus on fusing
pedometer and magnetism for mobile localization, Mapel is
also amendable to other emerging signals like vision or visible
light to improve their accuracy.

There have been other works on magnetic field localization.
UnLoc in [18] proposes applying sparse magnetic field distur-
bance as the landmark for indoor localization. Different from
their work, we measure the magnetic field to build an indoor
signal map. Inspired by the observation that geomagnetism
changes around the pillars or gates, LocateMe [19] maps the
target location to these landmarks when a similar pattern of
signal change is measured. FOLLOWME [1] leverages the
walking patterns of earlier travelers to navigate the following
users. These schemes work the best in narrow corridors where
pedestrian walking patterns are constrained. Mapel is more
general to apply in complex environments.

Step length adaptation has been recently studied. The work
in [15] assumes different people may share similar step
frequency coefficients. Different from it, Mapel dynamically
adapts a personalized step model for different users, which
helps improve the localization accuracy. The work in [20] as-
sumes homogeneous users and has not considered the variation
in step lengths among people. The work in [21] estimates or
trains a personalized step model offline, which is not cost-
effective or convenient in practice. As opposed to the above,
Mapel can adapt to different users on the fly to achieve better
accuracy. The works in [22] and [6] use particle filter to
estimate the step model for each individual. Different from
these works, Mapel uses magnetic field pattern in a trajectory
and step count to self-calibrate the step length model.

III. OFFLINE PHASE

Table I summarizes the symbols used in our paper. In
this section, we briefly discuss the offline phase of Mapel,
including geomagnetic database construction and our CRF
structure.

In Section III-A we describe how to construct magnetic
signals fingerprint database. In Section III-B, we present how
to discretize the map into lattice. Based on the discretized
map, we discuss in Section III-C the formulation of conditional
random field (CRF) for geomagnetism localization. We discuss
the feature functions used in our formulation in Section III-D,
followed by CRF coefficients determination in Section III-E.

A. Magnetic Field Signal Map Construction

We first present how we measure the magnetic field using a
smartphone. The magnetic field vector Bp can be measured by

TABLE I: Major symbols used in Mapel.

Notations Definitions

si,t = [ai, bi] Node of state i at time t
E Set of edges formed in discretization
~x = (x1, . . . ,xN ) N temporal inputs into CRF graphical model
~y = (y1, . . . ,yN ) Possible N outputs from CRF graphical model
Bp Geomagnetism readings under phone coordinate system
Bo Geomagnetism observations under earth coordinate system
Ψj,t(~x, ~y) Potential function of state j of output ~y at t given inputs ~x
Ψij,t(~x, ~y) Potential function of states i and j of output ~y

at time t with inputs ~x
f1(xBt−1,x

B
t ,yi,t−1,yj,t) Feature function for magnetic field intensity

f2(xθt ,yi,t−1,yj,t) Feature function for orientation
f3(xlt,yi,t−1,yj,t) Feature function for step length
S Set of states
N Number of nodes in a single layer

smartphone’s magnetometer [2], but the raw magnetic readings
are under the smartphone’s coordinate system. We transform
the readings into the earth coordinate system by the yaw ψ,
the pitch θ and the roll φ of the smartphone, i.e.,

Bp = Rx(θ)Ry(φ)Rz(ψ)Be, (1)

where Be is the magnetic field vector at the same location in
terms of earth coordinate system, and Rx(θ), Ry(φ), Rz(ψ)
are corresponding rotation matrices w.r.t the three axises of
the smartphone [2]. Then we obtain

Be = R−1z (ψ)R−1y (φ)R−1x (θ)Bp (2)

which is independent of the dynamic smartphone headings.
However, we do not use Be directly as the observation, since
smartphone heading estimation is error-prone [4]. Instead we
retrieve both the vertical and horizontal components (w.r.t.
gravity), i.e., Bv and Bh, from Bp. This is because the gravity
sensor indicates the vertical direction and is stabler with
location and time [2]. We combine them with the magnitude
of Bp to generate the observation at location o, i.e.,

Bo = (||Bp||, Bv, Bh) . (3)

Compared with Magicol [10] which proposes using the magni-
tude itself as the magnetic field fingerprint, our observation has
three dimensions which contain more information regarding
the magnetic field.

Based on the magnetometer readings, in the offline phase we
simultaneously match the trace and collect the data as follows:

1) Measuring magnetic fields and motions: a surveyor walks
in the area and the smartphone records all inertial data, includ-
ing magnetic signals, gyroscope readings and accelerations
during the walk. Note that all positions of interest should be
walked through at a roughly constant speed for the better data-
trajectory matching purpose introduced in the following. In our
setting we walk through several survey paths which altogether
cover all the positions of interest.

2) Matching trajectory and data: the ground-truth trace
is mapped against the preplanned path based on walking
distances, data timestamps and turns in order to determine
the location of each step. We calculate the locations of
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Fig. 3: Illustration of the lattice map and the transition map between different
times for graphical model calculation. Each edge is labeled with its length.

intermediate steps proportionally according to estimated step
lengths and overall distance between two turns. The loca-
tion of each collected magnetic data is interpolated into the
corresponding step proportional to the timestamp difference.
Then the magnetic field fingerprint database can be built by
extrapolating the magnetic field data of given positions using
Gaussian interpolation [23].

It is worth noting that in practice, if it is detected that the
layouts have been changed, we can recollect the magnetic
field fingerprints near the changed layouts and replace them
accordingly. However, for RF signals, a simple change of
layout/access point (AP) locations or adding/removing an AP
may lead to an invalidation of the whole original fingerprint
and a whole fingerprint recollection is needed.

B. Indoor Map Discretization

The inner structures of a building impose hard constraints
on available pedestrian positions. Hence, the main purpose
of map preprocessing is to remove the degrees of freedom
from the map where pedestrians are less likely to be. This
step takes in a predefined floor plan as input, and generates
a lattice consisting of discrete states (indoor locations), while
preserving the physical hard constraints between states.

The indoor map discretization is as follows. First, we extract
periphery edges from the floor plan by finding the contours
of walls and doors [24]. Second, we divide the plan into
small identical squares, or a lattice, with edge length e. Note
that a large e degrades localization accuracy due to low map
granularity, while a small e increases computational cost. In
our localization system, we choose e as the average step length
between 0.5 m and 1 m (say, e = 0.8 m in our system
deployment). Third, we define S = {si,t|1 ≤ i ≤ N} as
nodes of lattice for the moment of each step t, where N is
the number of nodes in a layer. Figure 3(a) shows the lattice
structure. We define the edges of lattice as all adjacent nodes
between two consecutive layers

E = {(si,t, sj,t+1) | 1 ≤ i, j ≤ N, |ai − aj | ≤ 2e, |bi − bj | ≤ 2e},

where ai, aj (bi, bj) represent the x-coordinate (y-coordinate)
of nodes i and j in the lattice, respectively.

We illustrate an example in Figure 3(b). A state si,t at time
t has the following edges to nodes besides si,t+1: the ones

along lattice edges (4 edges in black with length of e, and
4 edges in red with length of 2e); the ones at the diagonal
(4 diagonal edges in green with length of

√
2e, 8 edges in

blue with length of
√

3e, and 4 edges in pink with length of
2
√

2e) (here we refer to the spacial distance and ignore the
one between the consecutive layers).

Finally, during map preprocessing, we discard nodes which
are inaccessible, and remove their corresponding edges. This
step is significant because there is typically a large number
of locations that cannot be accessed from legal regions while
removal of these nodes increases computational efficiency.

C. Conditional Random Field

We first briefly introduce the theory of conditional random
field. Conditional random field (CRF) [16] is a probabilis-
tic graphical model for computing conditional probabilities
p(~y|~x)’s among all possible outputs ~y = (y1, . . . ,yn) given
the inputs ~x = (x1, . . . ,xn). It has been applied to many tasks
in natural language processing and computer vision fields [16].
Based on the undirected graphical model, the conditional
probability of states ~y given ~x can be written as

p(~y|~x) ∝
∏
C∈C

ΨC(~xC , ~yC), (4)

where ΨC (~xC , ~yC)’s are the feature functions, or equivalently,
potential functions, corresponding to the maximal cliques
in the dependency graph [16]. A feature function defines
the degree to which the observed signals (observations ~x’s)
support the transition between two connected states (states
yi,t−1 and yj,t in our CRF).

Given the lattice map in Figure 3, we formulate the condi-
tional random field in order to infer the final target locations. In
our lattice map, we adapt the above CRF for target localization.
We consider the magnetic field, user motion information
(smartphone orientation, step length and step counts) as the
sequence of inputs ~x. Then we implement a CRF to find the
output sequence ~y, which is with the maximum conditional
likelihood of all potential states S in the lattice. Specifically,
the conditional likelihood by the unary and pairwise potential
function is given as follows:

p(~y|~x) ∝
T∏
t=1

 N∏
j=1

Ψj,t(~x, ~y) ·
∏
i,j

(i,j)∈E

Ψij,t(~x, ~y)

 , (5)

where the unary potential function (or the state factor at node
j) is in the form of

Ψj,t(~x, ~y) = exp

(
M∑

k=Mt+1

λkfk(~x,yj,t)

)
, (6)

where M is the total number of potential functions. The
unary function represents the node-wise potential between the
measured signals at the smartphone and the stored fingerprints.

Let M t (0 ≤M t ≤M) be the number of pairwise potential
functions. The pairwise potential function (or transition factor
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Fig. 4: Magnetic field strength of different devices along the same trajectory.

between yi,t−1 and yj,t) is defined as

Ψij,t(~x, ~y) = exp

Mt∑
k=1

λkfk(~x,yi,t−1,yj,t)

 . (7)

As potential target locations are within the lattice and
can only travel between connected states, Mapel constrains
potential locations and reduces indoor disperse mappings, thus
avoiding high computation cost suffered by particle filter.

D. Feature Functions in CRF

Here we introduce potential functions (feature functions) in
the CRF of Mapel. We specify all the features together with
their corresponding observations and how they relate to state
transitions. Note that in the CRF of Mapel, we match locations
to different states, and consider user movements as transitions
between states, and at each moment a user is considered to stay
at one single state. Based on the magnetic field and motion
sensor signals, in the followings we describe how to define
the feature functions:

Magnetic Field: The first feature function, denoted as f1(·),
expresses the degree to which the magnetic field obser-
vations are consistent with the fingerprints generated from
Section III-A. A unary feature function can be defined as

f(xBt ,yi,t) = −(xBt −Bi)
T (Σt)

−1(xBt −Bi), (8)

where Bi is the magnetic field fingerprint data at position yi,t,
and Σt is the covariance. However, magnetic field strength
has been observed to differ by some constant offset for
different devices as shown in Figure 4. Hence if the exact
offset ∆ between magnetometers is pre-calculated offline, we
can replace xBt with xBt + ∆ in Equation (8) to obtain a
usable feature function. Otherwise, measuring the offsets in
the magnetic fields of two consecutive steps t−1 and t, instead
of absolute values, is considered in our formulation to address
the device heterogeneity problem.

Specifically, the unary function of Equation (8) is trans-
formed into a pairwise function as in Equation (7): we measure
the pairwise geomagnetism offset Bi − Bj between states
yi,t−1 and yj,t. Then we deduct this offset from the difference
between two consecutive observations and have the following

pairwise feature function

f1(xBt−1,x
B
t ,yi,t−1,yj,t) = −~zT (Σt−1,t)

−1~z, (9)

where ~z = (xBt−1 − xBt ) − (Bi − Bj). Here Bi and Bj are
the magnetic field fingerprints at locations yi,t−1 and yj,t,
respectively, while Σt−1,t is the signal covariance between
t−1 and t. With Equation (9), we only compare the difference
between two adjacent states with the reading offsets of two
consecutive steps. In this way, we avoid offline calibration
between different smartphone magnetometers.

Walking Orientation and Step Length: The second and
third feature functions consider the extent to which inertial
measurements (xθt ,x

l
t) support transitions between two states:

f2(xθt ,yi,t−1,yj,t) = I(yi,t−1,yj,t) · f̃2
(
xθt ,yi,t−1,yj,t

)
,

f3(xlt,yi,t−1,yj,t) = I(yi,t−1,yj,t) · f̃3
(
xlt,yi,t−1,yj,t

)
,

where I(yi,t−1,yj,t) is an indicator function between s-
tates yi,t−1 and yj,t. We define I(yi,t−1,yj,t) = 1, if
and only if the states (in lattice), yi,t−1 and yj,t, are
connected. Otherwise, I(yi,t−1,yj,t) = 0. Two compo-
nents of observations, namely the walking orientation xθt
and step length xlt at time t between states yi,t−1 and
yj,t, are considered to be independent. Two feature func-
tions, f̃2

(
xθt ,yi,t−1,yj,t

)
and f̃3

(
xlt,yi,t−1,yj,t

)
, relate the

walking orientation and step length with states, respectively.
Specifically, f̃2

(
xθt ,yi,t−1,yj,t

)
is defined as

f̃2
(
xθt ,yi,t−1,yj,t

)
= ln

(
1√

2πσθt

)
−
(
xθt − θ(yi,t−1,yj,t)

)2
2
(
σθt
)2 ,

where θ(yi,t−1,yj,t) is the orientation of the edge between
two states, yi,t−1 and yj,t, and σθt is the orientation variance
at time t. Edges from the current state to other neighboring
ones are constructed in the lattice in order to represent
sixteen possible headings in a discretized manner, as shown
in Figure 3 in Section III-B. Another feature function of step
length, f̃3(xlt,yi,t−1,yj,t), is defined similarly, and we do not
repeat it here for brevity.

In our system, we choose a typical linear frequency mod-
el [21] as our generic step model, i.e.,

step length = a · f + b, (10)

where f is frequency in Hz and a, b are constants which vary
among people. Note that other models [25], [26] can easily be
applied in our Mapel. As different users may yield different
step lengths, we propose a novel algorithm which dynamically
adapts the step model later in Section IV-B. Mapel considers
conditional probabilities of several steps instead of only one
step measurement within the particle, hence is more robust to
sensor noise at one time stamp than a traditional particle filter.

It is worth noting that our CRF can be easily extended to
other signals like Wi-Fi fingerprints. Through the implementa-
tion of a similar unary feature function for magnetic field like
Equation (8), we can easily replace xBt with RF fingerprint
data (such as Wi-Fi) to measure the degree of signal matching.

375



E. CRF Coefficients Determination

CRF model in Mapel combines these feature functions
together into potential functions. We introduce as follows how
coefficients λi’s in Equations (6) and (7) are determined in
offline CRF training. Training CRF is to find the λi such that
the log-likelihood L of the training dataset T is maximized:

arg max
{λi}

L(T ) = arg max
{λi}

∑
(~x,~y)∈T

log p(~y|~x). (11)

where T contains magnetic field signal fingerprints, sensor
data collected from walking trajectories, and corresponding
ground truths of walking trajectories.

To compute the exact optimal λi in the CRF structure,
we need to use junction tree [27] or loopy belief algorithm
[23]. To improve the training efficiency, we first enumerate
many possible values of λi, then use the location inference
algorithm detailed in Section IV-A to obtain the estimations
and choose the setting which maximizes the log-likelihood.
Other choices of λi may have different influences on the
localization performance, and detailed results are presented
in the experimental evaluation in Section V.

IV. ONLINE LOCALIZATION

In this section, we present the online location inference us-
ing CRF in Section IV-A. In Section IV-B we show how Mapel
can adaptively learn step models for different users. Then in
Section IV-C, we discuss the computational complexity and
some potential performance improvement methods for Mapel.

A. Infering Location

The final step of localization is to find the most likely
sequence of ~y, i.e. the most likely trajectory, based on the
observations. In practice, we prefer the model to generate
estimated positions at every step. In fact, at each time the
user can only stay in one position. Therefore, we adapt from
Viterbi algorithm to compute the marginal probability of each
step. More specifically, in each step, the algorithm finds the
highest score (likelihood) along the path ending at state s, and
gradually fills in a lattice, i.e.,

δt(s|~x) = max
s′∈S,(s′,s)∈E

(δt−1(s′|~x) ·Ψs′,s,t(~x, s
′, s)) ,

πt(s|~x) = arg max
s′∈S,(s′,s)∈E

(δt−1(s′|~x) ·Ψs′,s,t(~x, s
′, s)) ,

(12)

However, in some cases, since some edges in E are longer than
a typical step length, the feature functions described above are
slightly modified to capture the motion information in two or
more steps. For example, considering edge e0 ∈ E whose
length is twice as long as a typical step length. In this case,

δt(s|~x) = max
s′∈S,e0=(s′,s)∈E

(δt−2(s′|~x) ·Ψs′,s′′,t−1(~x, s′, s′′)

·Ψs′′,s,t(~x, s
′′, s))

(13)
where s′′ is the estimated location of user at time t − 1 and
can be estimated by using s′ and walking direction and step
length at time t− 1. πt(s|~x) can be defined accordingly.

In each step, the most recently filled column of the lattice
δt(·) is normalized. Let the total step of the pedestrian be Ns.
The final sequence ~y can be obtained by first finding

yNs = arg max
s∈S

(δNs(s|~x)), (14)

followed by the recursive search of

yi = πi+1(yi+1), i ∈ {Ns − 1, Ns − 2, ..., 1}. (15)

B. Self-calibrating a Personalized Step Model

As people’s strides vary, simply using the general step mod-
el described above for all users may incur large localization
error. Next we propose a novel algorithm which dynamically
adapts the step model. Initialized with a generic step model,
Mapel learns the step length models for different users to
further maintain high localization accuracy.

We first present the basic idea. After each step, Mapel
returns an estimated trajectory which matches the observations
most. We can collect all the magnetic field fingerprint data on
the estimated trajectory as the fingerprint data vector, each
component of which is an observation Bo. Similarly, we
also have the ground truth of the magnetic field data vector.
Recall that Figure 4 shows that along the same trajectory,
the magnetic field sequence shapes are similar. Therefore,
we adopt derivative dynamic time warping [12] (DDTW) to
compare and match the most similar parts of two vectors.
Then we estimate the walking distance using the real-world
total distance of the matched part in the fingerprint data
vector. Given the estimated walking distance, Mapel regresses
the model parameters in Equation (10) and hence adapts to
different users.

The details of our adaption algorithm are as follows. Ob-
servations in one step may not be applicable to estimating
walking distance. In those areas where magnetic fields vary
little, matching error with dynamic time warping [28] (DTW)
can be large. Here we aggregate magnetic field readings from
several consecutive steps together and perform DTW on the
aggregated observations only when the range of magnetic field
magnitude readings is larger than a threshold, say, 5 µT in
our system. Since we prefer matching shape characteristics of
series (such as peaks and slopes) rather than actual values,
we perform DTW on the first-order derivatives on each di-
mension of magnetic field features (Derivative Dynamic Time
Warping [12], or DDTW), and calculate the distance between
the i-th observation Bt(i) at target and the j-th magnetic field
fingerprint Bf (j) using L2-norm distance, i.e.,

D (Bt(i),Bf (j)) =

√√√√ 3∑
k=1

[der(Bt(i, k))− der(Bf (j, k))]
2
,

where der(Bt(i, k)) =
1

2
(Bt(i+ 1, k)−Bt(i− 1, k)),

der(Bf (j, k)) =
1

2
(Bf (j + 1, k)−Bf (j − 1, k)),

Bt(i, k) and Bf (j, k) are the k-th dimension of Bt(i) and
Bf (j), respectively, given the definition of magnetic field
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Fig. 5: Survey paths (dashed lines) in university (a) atrium & (b) corridors.

features in Equation (3).
After this we obtain a number of triplets: 〈the total number

of steps in one aggregation, sum of step frequencies, estimated
walking distance obtained from DDTW matching〉. Since∑S
i=1 (a+ fi · b) = a ·S+ b ·

∑S
i=1 fi where S is the number

of steps in one aggregation, the final personalized step model
is obtained by linear regression on these triplets. It is further
leveraged in Mapel to improve localization accuracy.

C. Complexity & Performance Improvement

The time complexity of estimating trajectory is O(|S| ·Ns),
where S is the set of states. If the number of states is too
large, the algorithm may suffer from high computational cost.
In the case of real-time tracking, we also introduce some
heuristics to improve the performance. First, Mapel conducts
an exhaustive search over the whole site in the first few steps
(initialization), until there are only a few states whose scores
(likelihood values) are much higher than others. Then Mapel
conducts localization over these states discovered. Second, if
Mapel finds in some step that the sum of all states’ scores
(likelihoods) before normalization is notably small, then it
stops and restarts the localization (when signal noise is large
or under abnormal holding gestures by users).

The time complexity of step model learning is O(KMfMo),
where K is the number of triplets, Mf is the maximum
length of fingerprint data vector in the triplets and Mo is the
maximum length of magnetic field ground-truth observations
in the triplets. Note that the step length model can be computed
online, making the system adaptive to different users.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of Mapel in
different environments. In Section V-A, we first introduce the
system settings and comparison schemes. Then in Section V-B,
we illustrate the experimental results.

A. System Settings & Comparison Schemes

Different types of smartphones are involved in experiments,
including Samsung Galaxy S4, LG Nexus 5 and Sony Xperia

Z2. We use Sony Xperia Z2 to perform site survey tasks.
They all run the Android operating system no earlier than
2.3. We implement the server on a Dell PC with a 3.6GHz
processor, 16G RAM and Windows 8.1. The mobile device
performs inertial sensor sampling and walking state detection
continuously in the background. When the user is detected
to be walking, the step information (including step count,
step frequency and walking direction) is logged and used for
localization. Sampling frequency is set to be 25Hz for all
sensors. From the experiments we observe that only a few
steps of walking trace are sufficient to localize the user. Hence
we only need to keep a small buffer for the walking trace.

In our experiment, we compare our Mapel with the follow-
ing two state-of-the-art algorithms, and the detailed parameter
settings follow and can be referred to their works.
• Magicol [10]: which measures not only the values but also

the relative trend of magnetic field change, when the user
is walking through an indoor corridor. Via dynamic time
warping and particle filter, Magicol filters away incorrect
locations and maps the target to location with the optimal
trend matching.

• MaLoc [4]: which uses particle filter to yield potential
locations. The particle filter first selects candidate locations
with the best magnetic field matching, then reduces the
weights of particles in incorrect positions. Specifically, we
implement MaLoc by setting initial number of particles to
be 2, 000.
We have conducted extensive experiments to validate the

localization algorithms in two typical indoor environments: a
large open campus atrium of 2, 046 m2 (Figure 5(a)) and the
long office corridors of 9, 630 m2 (Figure 5(b)) , respectively.
In floor maps, we also show the survey paths.

To obtain the ground truth of walking traces, we first set
many landmarks (say, doors or corners) and measure their real
positions in advance. When users are walking, they record the
time when passing by those landmarks. Localization errors are
calculated as all the Euclidean distances between the estimated
locations in the historical trajectory and ground truths. Real-
time localization errors are given by the errors at each step.

We have also conducted extensive experiments to further
validate the accuracy of localization and step model personal-
ization. In the experiment we invite eight volunteers to walk
along the ground-truth trajectory presented in Figure 6(a). In
summary, there are six males and two females whose heights
and weights vary from 1.68 m to 1.87 m, and from 50 kg to 80
kg, respectively. For each user, we also compare the estimated
walking distance obtained from the adapted step model with
the ground truth by calculating the relative error ratio of the
absolute value of difference between estimation and the ground
truth of walking distance against the latter at each step.

B. Illustrative Experimental Results

Figure 6 shows the estimated walking traces of Mapel (blue
dotted lines) in the campus atrium and corridors compared
with the ground truth in red solid lines. We can observe
the estimated trajectory with Mapel closely matches with the
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ground-truth. We compare our results with other localization
systems such as Magicol and MaLoc. Figure 8 shows the
CDF of localization errors in the university atrium. We can
clearly see that our Mapel works well in large open space
and outperforms the traditional particle-filter-based algorithms.
In Figure 9, we also show the CDF of localization errors
in the university corridors. In these figures, we also show
that our scheme outperforms other state-of-the-arts with lower
localization errors and smaller deviation (cutting localization
error by more than 40%).

In this experiment we also invite another seven volunteers
besides user No.1 to walk along the same trajectory in the
atrium. Figure 7 shows mean localization error, step length
estimation error and standard deviation for users. We can see
that Mapel achieves high accuracy in location and step length
estimation (errors are 1.18m and 2.80% on average, respective-
ly) for different users. If we use generic step model [21], the
average step length estimation error grows to 4.41%, showing
that Mapel achieves better adaptivity with self-calibration.

Figure 10 shows the average real-time localization errors of
different systems in the campus atrium. For the particle filter
based systems, we repeat the followings ten times and show
the average. In each experiment, we manually choose a random
initial position near the accurate initial position and walk on
the same trajectory afterwards. Recall that from Figure 1 we
can see that the typical particle-filter-based system cannot
converge at all given no initial position. In Figure 10, with
a rough initial position, the particle filter can only provide the
coarse location, which is of low localization accuracy. As the
particle may not capture all possible step length and direction
errors, Magicol and MaLoc cannot converge quickly in such
large open spaces or complex environments. Since Mapel
discretizes the states into finite transitions and constrains the
estimation deviation, it can converge much faster (after the
first 2 meters) and more accurately to the correct locations.

Since the final probabilistic score (likelihood) is normalized,
we can divide all λi by λ1 and check these ratios instead.
Figure 11 shows the localization accuracy in the campus
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atrium under different settings of λi (2 ≤ i ≤ 3), representing
the weights of the step orientation feature and the step length
feature, respectively. From the figure we can see that different
weights only introduce little change in localization error (often
less than 1.5m). Note that a too large feature weight should be
avoided because it amplifies minor differences in the feature
values of two tracking solutions into significant differences
in the potential function, due to the exponential function in
Equations (6) and (7). In the experiment we observe that
all feature weights chosen from [0.6, 1.8] already yield good
performances applicable in various environments.

As the Mapel users may carry devices different from the one
used for magnetic field fingerprint construction, we also eval-
uate the compatibility of Mapel among different smartphones.
When no pre-calculated magnetometer offset is provided, we
instead implement Equation (8) as the magnetic field feature
function. Figures 12 and 13 show the CDFs of localization
errors in the campus atrium with and without addressing the
device heterogeneity problem in Nexus 5 and Samsung Galaxy
S4, respectively. We can see that due to different offsets
of these magnetometers, solely comparing the fingerprints in
the database with collected ones leads to high localization
error. If magnetic field differences between different positions
are applied instead, Mapel successfully captures the device-
independent features for better localization accuracy. Note
that Mapel achieves consistent errors on Samsung Galaxy S4
because Figure 4 has shown minor differences in its readings
from that of Sony Xperia Z2 in the same location.

Next we present the computation time of Mapel on Sony
Xperia Z2. It is given by the average running time for a single
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step along the same trajectory. The execution time is 482.2
ms, 1808.8 ms and 743.8 ms for Mapel, Magicol and MaLoc,
respectively. Mapel outperforms other state-of-the-art systems
in online execution time (reducing computation time by more
than 30%), maintains good user experience and achieves much
lower localization error.

Finally, we show the average energy consumption of our
system using Sony Xperia Z2. The average current is 472.32
mA, 251.14 mA and 781.17 mA for the Mapel application,
screen energy consumption and continuous Wi-Fi scanning
(with screen on), respectively. We can see that Mapel is much
more energy efficient than continuous Wi-Fi scanning.

VI. CONCLUSION

In this paper, we propose Mapel, a novel magnetic field lo-
calization system based on the graphical model. We discretize
the indoor map into the lattice structure. Each node in the
lattice represents a state or the location of the target, and the
connected edges from other nodes can constrain the target’s
potential locations into finite ones. Therefore, we reduce the
degree of freedom for the target location estimation. Then
we fuse geomagnetism and motion information from the step
counter and implement conditional random field (CRF) to infer
the target location. Furthermore, Mapel adaptively learns the
step length model for each user to be pervasively deployed.

Compared with the traditional particle filter approaches, our
Mapel converges faster and achieves much higher localization
accuracy. Extensive studies in our university campus have
shown that Mapel outperforms the state-of-the-art schemes by
a large margin (cutting localization error by more than 40%
and reducing computation time by more than 30%).
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