
Loss Recovery in
Application-
Layer Multicast

Xing Jin, W.-P. Ken Yiu, and S.-H. Gary Chan
The Hong Kong University of Science and Technology

Application-layer

multicast,

sometimes called

overlay multicast,

can help circumvent

the limitations in IP

multicast and

unicast.

A
pplications such as Internet TV,

multiparty conferencing, and

software distribution require

point-to-multipoint Internet

communication. In traditional IP multicast,

routers replicate packets.1 Despite its introduc-

tion more than a decade ago, IP multicast has

not yet seen wide deployment, mainly because

IP multicast requires multicast-capable routers,

which are not scalable and need to maintain a

per-group state for packet replication. Further-

more, IP multicast lacks large-scale commercial

management functions, such as multicast ad-

dress allocation and reliable transmission. It is

for these reasons that many researchers have

proposed using application-layer multicast

(ALM) to move the multicast-related function-

alities from routers to hosts.2,3

We compare IP multicast and ALM in

Figure 1, where S is the source, H1 through

H3 are receivers (hosts), and R1 through R5 are

routers. Figure 1a shows the IP multicast case,

where routers R1 to R5 replicate and forward

data packets along the physical links in the

router-level spanning tree rooted at S. Fig-

ure 1b shows ALM delivery, where S establish-

es unicast connections to H1 and H3, while H1

delivers data to H2. Therefore, hosts, instead of

routers, replicate and forward packets. ALM

achieves multicast via piece-wise unicast con-

nections. In this example, hosts and unicast

connections between them form an overlay

tree for multicast. Other ALM schemes use

multiple trees or meshes.4,5

There are two main types of ALM services:

reliable service and loss-tolerant service. In

reliable service, a source distributes data to a

user pool; packets lost during this phase must

be recovered. Examples include file distribu-

tion and online games. For these applications,

lost packet recovery time should be as low as

possible. In loss-tolerant service, a certain loss

rate is acceptable. Examples include video and

audio streaming. For these services, the resid-

ual loss rate should be kept below a certain

threshold.

Loss recovery in ALM

In an ALM system, a host may suffer packet

loss due to the following reasons:

& On the transport layer, a unicast connec-

tion can be either Transmission Control

Protocol (TCP) or User Datagram Protocol

(UDP). Packets can get lost when a path is

congested (for a UDP connection) or fails

(for both types of connections), or if the

sender leaves the system or unexpectedly

fails (for both types of connections).

& On the application layer, some services

have requirements for data delivery. For

example, a streaming application usually

has a playback deadline by which data

delivery and loss recovery have to be

accomplished. Data received after the dead-

line are useless and regarded as a loss.

Therefore, timely loss recovery is important

in ALM. Loss recovery in ALM is significantly

different from that in IP multicast. IP multicast

only supports UDP transmission, while ALM

can use TCP or UDP connections. Moreover, in

IP multicast, a host leaving or its failure doesn’t

affect other hosts. But in ALM, the leaving or

failure of a host leads to packet loss at all its

descendants. Clearly, ALM’s high host dynam-

ics puts more challenges on loss recovery.

Furthermore, in IP multicast, any packet sent

by the source will reach all the hosts in the

multicast group (if there is no loss). As a result,

if a host requests retransmission from the

source, all the hosts in the group will receive

the retransmitted packet. On the other hand, in

ALM a host can freely select downstream hosts

and control the transmission content. Loss

recovery in ALM is therefore more flexible.

Loss recovery in ALM is also different from

that in unicast. ALM works on the basis of

unicast, and traditional recovery techniques

for unicast can be directly applied to ALM. In

18

Feature Article

1070-986X/08/$25.00 G 2008 IEEE Published by the IEEE Computer Society

addition, the flexible overlays in ALM allow

for more application-layer recovery mecha-

nisms, such as multiple-path transmission or

lateral error recovery. In ALM, hosts can

cooperate to recover packet loss, and recovery

is not limited to a single path.

We classify the ALM recovery mechanisms

as being proactive or reactive, regardless of the

underlying transport-layer connection. In a

proactive approach, a host sends out redun-

dant recovery packets in addition to the data

packets. If there is data packet loss at the

receiver end, the receiver can use the redun-

dant packets to reconstruct the original data.

Such approaches include erasure-resilient cod-

ing, probabilistic resilient multicast, and mul-

tiple-path transmission. A reactive approach

retransmits the lost packet when loss occurs.

Depending on the retransmission request’s

receiver, we can classify reactive approaches

into source recovery, parent recovery, and

recovery neighbor. Figure 2 (next page) shows

the taxonomy of the loss recovery mecha-

nisms in ALM.

An efficient loss recovery mechanism

should achieve the following objectives:

& Low residual loss rate. Residual loss rate is the

loss rate after recovery. As an analogy, we

can define delivery ratio as the ratio of the

amount of data packets a receiver success-

fully receives to the amount of data packets

the sender sends. Delivery ratio is a com-

plement of residual loss rate.

& Low recovery latency. Recovery latency is the

time interval from the moment a loss is

detected to when the repair is received. The

latency should be as low as possible.

& Low recovery overhead. Recovery overhead is

the ratio of redundant traffic to data traffic.

It should be kept to a minimum.

& Low deployment overhead. The setup and

deployment process should be as simple as

possible. The costs of measurement and

computation should be low.

Existing ALM schemes have different over-

lay reconstruction mechanisms to handle host

leaving and overlay partition. This article

doesn’t discuss overlay reconstruction. In-

stead, it focuses on loss recovery on paths.

Transport-layer transmission

An ALM scheme can choose TCP or UDP

connections to form the overlay, depending

on its application requirements. UDP is unre-

liable and only provides best-effort delivery.

Therefore, packets might get lost during

transmission. On the contrary, TCP can pro-

vide full reliability in a connection through

packet acknowledgment and retransmission.

To provide reliable data transfer among

hosts, some ALM schemes employ TCP con-

nections (for example, CoolStreaming5). How-

ever, TCP cannot provide end-to-end reliabil-

ity for hosts. If a host leaves or fails, all the

host’s descendants need to reconnect to the

remaining overlay and establish new TCP

sessions from where they stopped. If a path

fails, the receiver needs to connect to a new

parent. While it’s easy to reconnect to the

overlay, it’s not guaranteed that the data flows

can be restarted from where they are stopped.

If the host buffers have finite sizes, the

packets needed by the newly established TCP

session might not be in the buffer. Even if the

19

Figure 1. A comparison

between (a) IP

multicast and (b)

application-layer

multicast. In IP

multicast, packets are

replicated and

forwarded by routers.

But in application-

layer multicast, this is

done by hosts.

Ja
n

u
a
ry

–M
a
rch

2
0
0
8

buffer is infinitely large and hosts cache all the

data they have received, hosts might have

different receiving rates and the requested data

in the new TCP session might not arrive at the

new parent. Therefore, even when using TCP,

an additional recovery mechanism is still

necessary.

The same problems exist in UDP transmis-

sion, especially because UDP has high loss rate

when paths congest. Whatever transport-layer

connection is adopted, the issue of reducing

loss rate remains in ALM systems.

Certainly, TCP and UDP connections have

their own advantages and limitations. TCP is

more resilient to path congestion, but it has

higher overhead and a lower transmission rate

than UDP. It therefore might not be applicable

to high-bandwidth applications, such as real-

time streaming. In streaming applications, if

the transmission rate is not high enough, the

application-layer loss will be high and the

streaming quality will degrade. Using multi-

ple-path transmission is a possible solution to

this problem. A host can have multiple

incoming connections and each connection

is responsible for a portion of the data. Even

though each connection has a low transmis-

sion rate, the aggregate incoming rate at the

host can be high. Therefore, in bandwidth-

demanding applications, TCP is often used

with multiple-path transmission (for example,

CoolStreaming).

Proactive recovery in ALM

Proactive recovery approaches actively send

out redundant packets, which can help the

receiver recover loss if some data packets get

lost. Because there is no retransmission of

packets, the recovery latency is low. However,

the amount of redundancy is hard to tune.

Although it can be adjusted dynamically to

compensate for changes in the loss rate,

adaptation is problematic when the network

changes quickly.6 A practical solution is to set

the redundancy according to the worst-case

scenario in the network, but this would result

in high recovery overhead even when the loss

rate gets low. Furthermore, proactive recovery

cannot provide perfect reliability. Data packets

might not be recovered if a large portion of

packets is lost. Therefore, proactive recovery is

applicable to streaming applications that don’t

require 100 percent reliability but require low

recovery latency.

Erasure-resilient coding

In recovery based on erasure-resilient cod-

ing, original data are transmitted along with

additional redundant data. A typical example

is forward error correction. FEC uses (n, k)

Reed-Solomon code, where k data packets are

combined with (n 2 k) redundant recovery

packets to form an n-packet transmission

unit.7 If a host receives more than k packets,

it can recover all the data packets without

error. Otherwise, it can achieve no recovery.

Clearly, FEC’s recovery overhead is (n - k)/k.

Another application of erasure-resilient

coding is digital fountain, which uses Tornado

and Luby Transform codes instead of the Reed-

Solomon code.8 In this approach, a host can

reconstruct the original content of m packets

from a subset of any m packets drawn from a

large universe of encoding packets. In addi-

tion, another coding technique called network

coding uses intermediate hosts to decode the

encoded data blocks and recode them into

another set of blocks before sending them

out.9 The randomization introduced by the

coding process can ease data-propagation

scheduling and improve system robustness.

In FEC, the selection of n and k depends on

the actual loss rate on the path and the target

residual loss rate. Because no recovery can be

achieved when the loss is higher than a certain

threshold, FEC often selects n and k to tolerate

20

Figure 2. A taxonomy

of loss recovery

mechanisms in ALM.

IE
E
E

M
u

lt
iM

e
d

ia

the highest possible loss rate. FEC hence has a

high recovery overhead. To reduce the over-

head, we can use FEC with packet retransmis-

sion. For example, OverQoS is a two-round

procedure for data transmission.6 In the first

round, the method transmits the original data

packets. If the loss is too high, OverQoS

retransmits the lost packets with FEC protec-

tion in the second round. Because the amount

of lost packets is usually small compared to the

total amount of data packets, the recovery

overhead is significantly reduced. However,

the recovery latency is inevitably enlarged.

Another approach is to use FEC and replicated

packets together.10 That is, after multicasting a

set of data packets, the server continues

multicasting the FEC recovery packets and

some replications of the original data packets.

If the FEC packets cannot reconstruct the

original data, a host can selectively accept

some replicated data packets.

The recovery schemes based on erasure-

resilient coding transmit data and recovery

packets along the same path. While this

technique can address temporary packet loss

on the path, it doesn’t work if the path or the

sender fails. An ALM scheme can combine

erasure-resilient coding with multiple-path

transmission to send the recovery and data

packets along different paths.11 As long as the

multiple paths don’t fail simultaneously, the

host can achieve recovery with a high proba-

bility.

Probabilistic resilient multicast

PRM uses a randomized forwarding tech-

nique to address packet loss in ALM.12 Hosts

first form an overlay tree using any ALM

scheme. Each host then randomly chooses a

constant number of hosts as its extra chil-

dren—besides its own children—in the overlay

tree. A host forwards packets to each of these

extra children with a certain probability (for

example, 0.01 to 0.03). This randomized

forwarding technique operates in conjunction

with the normal data forwarding along the

tree. Their theoretical analysis and simulation

results show that careful selection of the extra

children and the randomized forwarding

probability lets hosts receive data with low

residual loss rate and low recovery overhead.

A strength of PRM is that it works even

when host fails. In a normal ALM tree, if a host

fails, all its children cannot receive data until

the host recovers the partition. With PRM, a

host might be the extra child of other hosts. If

its parent fails, it still can receive data from the

extra paths with a certain probability. It’s

therefore applicable to streaming applications

that tolerate certain data loss and require low

recovery latency. Clearly, PRM has its own

limitations. If the extra children are not

properly selected, some hosts might encounter

unbounded packet loss in a long period. And

it’s still not clear how the extra children

should be selected to reduce the highest

possible loss rate.

In fact, PRM can be regarded as a special

case of multiple-path transmission. It uses one

path for original data delivery and some other

paths for redundant data delivery. Therefore,

the path selection techniques for multiple-

path transmission (for example, disjoint

paths) can be applied to PRM to improve the

recovery efficiency.

Multiple-path transmission

Because packets along a certain path might

get lost, it’s better to transmit them along

multiple paths. As long as the multiple paths

don’t simultaneously fail or get congested, the

receiver can receive at least some of the

packets. Furthermore, a receiver can achieve

a high aggregate incoming rate over multiple

paths. This is especially useful for streaming

applications, which often require high trans-

mission rates that a single path cannot

support.

In streaming applications, layered coding

such as multiple description coding (MDC) is

often used with multiple-path transmis-

sion.13,14 MDC encodes data into several

descriptions. When all the descriptions are

received, the original data can be reconstruct-

ed without distortion. If only a subset of the

descriptions are received, the quality of the

reconstruction degrades gracefully. The more

descriptions a host receives, the lower distor-

tion the reconstructed data have. There are

many schemes using MDC in ALM.4 In these

schemes, the server encodes its media content

into M descriptions using MDC (where M is a

tunable parameter), and transmits the descrip-

tions along M different trees. Note that a host

has different descendants in different trees.

The descendant of a host in one tree is usually

not the host’s descendant in other trees.

Therefore, packet loss at a host or failure of

21

Ja
n

u
a
ry

–M
a
rch

2
0
0
8

the host only causes the loss of a single

description (out of M descriptions) at each of

its descendants. Figure 3 shows two multicast

trees rooted at the server S, indicated by the

solid and dashed lines, respectively. Each tree

carries one description. If one host, say A, fails,

its descendants B and C in the solid-line tree

will lose one description. However, because B

and C are not descendants of A in the dashed-

line tree, they still can receive the other

description. The transmission resilience is

hence improved.

A key issue in these approaches is how to

build the trees so that for any host in the

system, its descendants in different trees have

no or only small overlaps. One solution is to

use a topology-aware hierarchical arrangement

graph (THAG), where any interior host in one

tree is a leaf host in all the other trees.15

However, in each THAG tree, a large portion of

hosts are leaves, which means that the interior

hosts have heavy forwarding loads. A more

general consideration of the issue is how to

select multiple paths (or multiple parents) for

a host. Many studies address this topic. For

example, one study compared the perfor-

mance of multiple application-, IP-, and

autonomous-system-level disjoint paths in

peer-to-peer (P2P) systems and recommended

using autonomous-system-level disjoint paths.16

Multiple-path transmission has shown

much lower residual loss rate then single-path

transmission.4 Most overlay networks are

highly dynamic with the frequent joining

and leaving of hosts. The underlying Internet

is also dynamic. Routers and links might

unexpectedly fail or get congested. Therefore,

P2P file sharing and streaming applications

have widely used multiple-path transmission

for high resilience.5 However, this approach

has high control overhead for constructing

multiple paths and synchronizing different

data pieces. Furthermore, its transmission

delay is high because the maximum path

delay is always the bottleneck.

Reactive recovery in ALM

The automatic repeat request technique

reactively retransmits lost packets to conduct

recovery.17 The data source usually identifies

each data unit by increasing sequence num-

bers, while a host uses gaps in the sequence

numbers to detect missing units. Depending

on the retransmission request’s receiver, we

can develop different automatic repeat request

schemes.

Source recovery

In source recovery, a host always asks the

source for retransmission after a loss.18 First

developed for IP multicast, the scheme is suited

for small-size ALM systems. A strength of this

scheme is that the source is certain to have the

lost packet. However, because packet loss at a

host affects all its descendants and leads to a

burst of retransmission requests, the retrans-

mission requests might overwhelm the source

if they are not aggregated. To alleviate the

implosion problem at the source, a probabilistic

model can delay each retransmission request by

a random time.19 However, doing so will

increase recovery latency and might not work

well with lots of hosts. Therefore, in large-scale

ALM systems, this scheme is seldom used.

Furthermore, if the source is far away, the

recovery latency can be high.

Parent recovery

In parent recovery, a host requests retrans-

mission from its parent.20 If a parent doesn’t

have the requested packets, it turns to its own

parent for retransmission (and so on, until the

root is reached). Whenever a lost packet is

recovered, the host immediately delivers it

downstream. This retransmission mechanism,

also known as hop-by-hop recovery, is similar

to simplified TCP with no congestion con-

trol.12

Parent recovery is simple and effective. In

parent recovery, the source has no implosion

problem. Furthermore, the delay between a

parent and a child is often low because most

22

Figure 3. Building

multiple trees in

application-

layer multicast.

IE
E
E

M
u

lt
iM

e
d

ia

applications let hosts select close neighbors as

parents. The recovery latency is not high. But

this approach does not fully address all

problems. Packet loss at a host leads to loss

at all its descendants in the overlay tree.

Therefore, loss at a downstream host is highly

correlated to an upstream loss, and a problem-

atic host’s parent is likely in error. As a result, a

retransmission request might get forwarded

upstream multiple times before the packet is

retransmitted. This leads to a large amount of

retransmission requests and high recovery

latency. Furthermore, parent recovery doesn’t

work for host or path failure. If an upstream

host fails or leaves the system, or the trans-

mission path fails, all of its descendants no

longer can recover their loss and will experi-

ence service outage.

We can extend parent recovery so that a

host requests retransmission not only from its

parent, but also from its ancestors along the

path from the source if its parent doesn’t have

the requested packet. This approach is more

resilient to host or path failure, but still suffers

the loss-correlation problem.

Using recovery neighbors

To address the implosion and loss-correla-

tion problems, a large number of approaches

uses recovery neighbors, a model in which

each host in the system must select a few other

hosts or proxies as recovery neighbors. When-

ever a loss is detected, the retransmission

requests are sent to the corresponding recov-

ery neighbors.

The selection of recovery neighbors is not

trivial. A straightforward approach is to set

some predeployed hosts (for example, proxies)

as other hosts’ recovery neighbors.21 Whenev-

er a host detects a loss, it sends a retransmis-

sion request to one or more of the predeployed

hosts. In spite of its simplicity, this method

introduces additional deployment overhead,

which can be significantly high in large-scale

systems. This method is therefore not scalable.

A more intelligent solution is lateral error

recovery (LER), which employs a lateral re-

transmission instead of a vertical retransmis-

sion from a host’s ancestors.22 LER randomly

divides hosts into several planes and indepen-

dently builds an overlay tree in each plane. In

a plane, a host acts as the multicast tree root

and is called the plane source (usually the one

closest to the original source). The original

source sends data to all the plane sources,

which then distribute data along their own

trees. Each host selects some hosts in other

planes as its recovery neighbors, which are

sorted according to the estimated recovery

latency and ended with the plane source and

the original source.

Whenever a loss occurs, the host sends a

retransmission request to its recovery neighbors

in the sorted order. In the example shown in

Figure 4 (next page), three planes are formed.

Host B in plane 2 selects host A in plane 1 and

host C in plane 3 as its recovery neighbors. If B

encounters packet loss, it sends a retransmit

request to the recovery neighbor with the

smallest recovery latency. If the retransmission

fails, host B resorts to the recovery neighbor

with the second smallest recovery latency, and

so on. If all the recovery neighbors fail to

provide the lost packet, host B resorts to the

plane source and the original source.

In LER, recovery no longer depends on

upstream hosts, but relies on adjacent lateral

hosts. It therefore addresses the loss-correla-

tion problem. Furthermore, if a host fails or

encounters packet loss and affects its descen-

dants, the retransmission requests from the

descendants are sent to different hosts. This

addresses the implosion problem. A limitation

of LER is that it takes high measurement and

computation overheads to select proper recov-

ery neighbors. Some techniques have been

proposed to tune the tradeoff between mea-

surement cost and the resulting recovery

latency.22

Cooperative error recovery (CER) is a meth-

od that selects recovery neighbors in another

way.23 It first computes the loss correlation

between two hosts according to how the paths

from the tree root (which is also the data

source) to the hosts overlap. It then divides

hosts into multiple recovery groups, where the

loss correlation among hosts in the same

group is minimized. A host then serves as the

recovery neighbor of other hosts in the same

group. The advantage of CER is the small

probability that a packet simultaneously gets

lost at a host and its recovery neighbors. It

does address the loss-correlation problem, but

doesn’t reduce recovery latency when select-

ing recovery neighbors. And in LER and CER,

the recovery loads on hosts are not balanced.

It’s possible that many hosts might select a

particular host as their recovery neighbor, in

23

Ja
n

u
a
ry

–M
a
rch

2
0
0
8

which case retransmission requests might

overload such a host.

A general extension of the recovery neigh-

bors is using multiple parents for data delivery.

A typical example is mesh-based P2P stream-

ing. In one study, hosts form a mesh using

traditional gossip algorithms.5 The hosts then

periodically exchange data availability infor-

mation with their neighbors and further

exchange streaming data. In this approach,

each neighbor becomes a recovery neighbor;

so when a host identifies the data it lacks, it

contacts its recovery neighbors for the data.

This approach is resilient to system and

network dynamics and has low residual loss

rate. However, the recovery latency is high if

the neighbors are far away—which is often the

case in the randomly formed gossip mesh.

Discussion and comparison

Table 1 summarizes the qualitative compar-

ison results of the recovery schemes we’ve

discussed.

All the recovery schemes are applicable to

UDP, because they all handle packet loss

relating to path congestion. If TCP is used,

packet loss due to path congestion is inher-

ently solved by TCP retransmission mecha-

nisms. We therefore only need to address path

failure and sender failure issues. But only using

erasure-resilient coding cannot address these

two problems because they transmit data

packets and redundant packets along the same

path. If the path or the sender fails, no

redundant packets can be received. Similarly,

parent recovery is not applicable to TCP. All

the remaining schemes can be jointly used

with TCP because they all transmit data

packets and recovery packets along different

paths.

Proactive recovery schemes have no explicit

recovery latencies because recovery packets are

proactively sent with data packets, regardless

of packet loss. We regard the recovery latency

as the transmission latency of packets, which

is small compared to reactive recovery because

the receiver doesn’t need to wait for packet

retransmission. Among the three proactive

recovery schemes, erasure-resilient coding has

small recovery latency while PRM and multi-

ple-path transmission have relatively large

recovery latencies. The reason for the differ-

ences in latency is because in the latter two

schemes, data is transmitted over multiple

paths and the longest path enlarges the overall

transmission delay.

In reactive recovery, parent recovery per-

forms retransmission from the current parent,

which is often close to the host. However, the

loss-correlation problem enlarges the recovery

latency. Using recovery neighbors also doesn’t

lead to high recovery latency because recovery

neighbors often are close to the corresponding

host. On the other hand, source recovery has

high recovery latency because the source often

is a fixed point on the Internet regardless of

other hosts’ location. If the source is far away,

the recovery latency can be high.

Given a certain target residual loss rate,

proactive approaches generally have higher

recovery overhead than reactive approaches.

This is because reactive approaches only need

to retransmit lost packets, where the cost is

proportional to the amount of lost packets.

However, in proactive approaches, the param-

eters are often set according to the network’s

worst case. As a result, even when the loss rate

becomes low, the recovery overhead is still

high. Note that in multiple-path transmission

using layered coding or MDC, the recovery

overhead can be high because such coding is

inefficient.14

In the proactive approaches, multiple-path

transmission has the highest deployment

overhead. It needs to construct and maintain

multiple paths and schedule data delivery

among the paths. In PRM, if each host only

randomly selects extra children, the overhead

isn’t high. Its overhead will increase with more

24

Figure 4. An example of

lateral error recovery.

IE
E
E

M
u

lt
iM

e
d

ia

complicated selection mechanisms. In the

reactive approaches, using recovery neighbors

has high deployment overhead. It’s not easy to

select a qualified recovery neighbor with low

delay and high uploading bandwidth. On the

contrary, source recovery and parent recovery

have low deployment overhead. A host only

needs to know the source or the parent.

A combination of proactive and reactive

approaches might make for an efficient recov-

ery scheme in terms of both overhead and

latency. Furthermore, some schemes have

combined erasure-resilient coding with proac-

tive or reactive multiple-path transmission.

Multiple-path transmission is highly resilient

to host and network dynamics, but it has high

end-to-end delay and high control overhead.

Using erasure-resilient coding (such as Luby

Transform or network coding) can reduce both

data redundancy over multiple paths and end-

to-end delay (including recovery latency).9,11

Using an overlay recovery tree is another way

to reduce recovery latency in multiple-path

transmission.24 In this scheme, hosts use a

mesh overlay for normal data transmission.

Hosts also form a low-delay overlay tree. If a

host fails to receive a data segment within a

certain time, it resorts to its parent in the

overlay tree for the missing segment. As the

end-to-end delay in a tree is often smaller, the

recovery latency is therefore reduced.

We quantitatively compared representative

schemes through simulations, including PRM,

source recovery, parent recovery and LER. We

generated several Transit-Stub topologies with

Georgia Tech Internetwork Topology Models.

In these tests, we randomly connected a host

to a stub router with a 1-millisecond delay,

while the delays of core links are given by the

topology generator. We choose the Delaunay

Triangulation ALM scheme as the basis.3

Packets are randomly dropped in a network

link, and with probability 0.95 the loss rate is

uniformly distributed between 0 and 1 per-

cent. With probability 0.05, the loss rate is

uniformly distributed between 5 and 10

percent. Each host has a certain failure

probability of 5 percent. All these error hosts

fail for a certain time, with the failure time

uniformly and independently distributed

within 640 seconds. For PRM, we set the

parameters as in Banarjee et al.12 That is, each

host selects three extra children and forwards

data to them with a probability of 0.01. For

LER, we divide hosts into two planes and

simulate two versions of LER, depending on

the selection of recovery neighbors. We can

use global network positioning to find the

closest host in a plane as the recovery

neighbor, or randomly ping 10 hosts in the

plane and choose the closest one.22

We evaluated the schemes for streaming,

where the playback deadline is set to 2 sec-

onds. Figure 5 (next page) shows the residual

loss rate versus the number of hosts. Similar

results have been presented elsewhere.22 Gen-

erally, the loss rate increases with the number

of hosts, because the tree is deeper and packets

are more likely to be lost. The performance

without loss recovery is clearly unacceptable,

and all the recovery schemes can significantly

reduce the residual loss rate. Among the

25

Table 1. Comparison of loss recovery mechanimsms in ALM.

Scheme Recovery mechanism

UDP/TCP

applicable Recovery latency

Recovery

overhead

Deployment

overhead

Proactive Erasure-resilient
coding

Encode data and use
redundant packets

Yes/no

Equal to
transmission
latency

Small Moderate Moderate

Probabilistic resilient
multicast

Hosts selects other hosts
as extra children

Yes/yes Large Moderate Moderate

Multiple-path
transmission

Multiple paths Yes/yes Large Moderate High

Reactive Source recovery Send retransmission
request to source

Yes/yes High Low Low

Parent recovery Send retransmission
request to parent

Yes/no Moderate Low Low

Recovery neighbor Hosts send
retransmission
requests to recovery
neighbors

Yes/yes Moderate Low High

Ja
n

u
a
ry

–M
a
rch

2
0
0
8

schemes, source recovery has the highest

residual loss rate, mainly due to the relatively

long distance between the source and a host.

Parent recovery and PRM are better.

PRM employs similar retransmission mech-

anism as in parent recovery. It also uses extra

connections to enhance performance. It’s

therefore slightly better than parent recovery.

LER achieves by far the lowest loss rate among

the schemes. In addition, its results are the

most stable when the host number increases.

The two versions of LER trade off between

residual loss rate and measurement cost. As

shown, LER can address the loss correlation

and implosion problems efficiently.

Conclusions

In this article, we discuss and compare

different recovery mechanisms in ALM. The

major challenge in loss recovery is how to

achieve low residual loss rate with low recov-

ery overhead. As discussed, a promising ap-

proach might be a combination of proactive

and reactive techniques.

As wireless access becomes popular nowa-

days, there will be great demand for systems to

accommodate mobile devices. This introduces

more challenges for loss recovery, as connec-

tions in wireless networks are even more

dynamic and unstable, and wireless transmis-

sion uses broadcast instead of unicast. Clearly,

efforts are needed to cope with the challen-

ges. MM

Acknowledgments

The Innovation and Technology Commis-

sion of the Hong Kong Special Administrative

Region, China (GHP/045/05) supported this

work, in part.

References

1. S.E. Deering, ‘‘Multicast Routing in Internet-

works and Extended LANs,’’ ACM Sigcomm

Computer Comm. Review, vol. 18, no. 4, 1988,

pp. 55-64.

2. Y.H. Chu et al., ‘‘A Case for End System Multicast,’’

IEEE J. Selected Areas Comm., vol. 20, no. 8, 2002,

pp. 1456-1471.

3. J. Liebeherr, M. Nahas, and W. Si, ‘‘Application-

Layer Multicasting with Delaunay Triangulation

Overlays,’’ IEEE J. Selected Areas Comm., vol. 20,

no. 8, 2002, pp. 1472-1488.

4. V. Padmanabhan et al., ‘‘Distributing Streaming

Media Content Using Cooperative Networking,’’

Proc. ACM Int’l Workshop Network and Operating

Systems Support for Digital Audio & Video (Nossdav),

ACM Press, 2002, pp. 177-186.

5. X. Zhang et al., ‘‘CoolStreaming/DONet: A Data-

Driven Overlay Network for Peer-to-Peer Live

Media Streaming,’’ Proc. IEEE Infocom, IEEE Press,

2005, pp. 2102-2111.

6. L. Subramanian et al., ‘‘OverQoS: An Overlay Based

Architecture for Enhancing Internet QoS,’’ Proc.

Usenix Symp. Networked Systems Design and Imple-

mentation, Usenix Press, 2004, pp. 71-84.

7. J. Nonnenmacher, E. Biersack, and D. Towsley,

‘‘Parity-Based Loss Recovery for Reliable Multicast

Transmission,’’ IEEE/ACM Trans. Networking, vol. 6,

no. 4, 1998, pp. 349-361.

8. J. Byers, M. Luby, and M. Mitzenmacher, ‘‘A Digital

Fountain Approach to Asynchronous Reliable Mul-

ticast,’’ IEEE J. Selected Areas Comm., vol. 20, no. 8,

2002, pp. 1528-1540.

9. C. Gkantsidis and P. Rodriguez, ‘‘Network Coding

for Large Scale Content Distribution,’’ Proc. IEEE

Infocom, IEEE Press, 2005, pp. 2235-2245.

10. S.-H. Chan et al., ‘‘Video Loss Recovery with FEC

and Stream Replication,’’ IEEE Trans Multimedia,

vol. 8, no. 2, 2006, pp. 370-381.

11. C. Wu and B. Li, ‘‘rStream: Resilient Peer-to-Peer

Streaming with Rateless Codes,’’ Proc. ACM Multi-

media, ACM Press, 2005, pp. 307-310.

12. S. Banerjee et al., ‘‘Resilient Multicast Using

Overlays,’’ IEEE/ACM Trans. Networking, vol. 14,

no. 2, 2006, pp. 237-248.

13. V. Goyal, ‘‘Multiple Description Coding: Com-

pression Meets the Network,’’ IEEE Signal Processing

Mag., vol. 18, no. 5, 2001, pp. 74-93.

26

Figure 5. Residual loss

rate for streaming

applications.

IE
E
E

M
u

lt
iM

e
d

ia

14. B. Li and J. Liu, ‘‘Multirate Video Multicast over the

Internet: An Overview,’’ IEEE Network, vol. 17,

no. 1, 2003, pp. 24-29.

15. R. Tian et al., ‘‘Robust and Efficient Path Diversity in

Application-Layer Multicast for Video Streaming,’’

IEEE Trans. Circuits and System for Video Technology,

vol. 15, no. 8, 2005, pp. 961-972.

16. T. Fei et al., ‘‘How to Select a Good Alternate Path

in Large Peer-to-Peer Systems?’’ Proc. IEEE Infocom,

IEEE Press, 2006, pp. 1-13.

17. S. Lin, D.J. Costello, and M.J. Miller, ‘‘Automatic-

Repeat-Request Error-Control Schemes,’’ IEEE

Comm. Mag., vol. 22, no. 12, 1984, pp. 5-17.

18. M.S. Lacher, J. Nonnenmacher, and E.W. Biersack,

‘‘Performance Comparison of Centralized Versus

Distributed Error Recovery for Reliable Multicast,’’

IEEE/ACM Trans. Networking, vol. 8, no. 2, 2000,

pp. 224-238.

19. J. Nonnenmacher and E.W. Biersack, ‘‘Scalable

Feedback for Large Groups,’’ IEEE/ACM Trans.

Networking, vol. 7, no. 3, 1999, pp. 375-386.

20. P. Radoslavov et al., ‘‘A Comparison of Application-

Level and Router-Assisted Hierarchical Schemes for

Reliable Multicast,’’ IEEE/ACM Trans. Networking,

vol. 12, no. 3, 2004, pp. 469-482.

21. J. Gemmell et al., ‘‘The PGM Reliable Multicast

Protocol,’’ IEEE Network, vol. 17, no. 1, 2003,

pp. 16-22.

22. W.-P. Yiu et al., ‘‘Lateral Error Recovery for Media

Streaming in Application-Level Multicast,’’ IEEE

Trans. Multimedia, vol. 8, no. 2, 2006, pp. 219-232.

23. G. Tan and S.A. Jarvis, ‘‘Improving the Fault

Resilience of Overlay Multicast for Media Stream-

ing,’’ Proc. IEEE/IFIP Int’l Conf. Dependable Systems

and Networks, IEEE Press, 2006, pp. 558-567.

24. M. Zhou and J. Liu, ‘‘A Hybrid Overlay Network for

Video-on-Demand,’’ Proc. IEEE Int’l Conf. Commu-

nications, IEEE Press, 2005, pp. 1309-1313.

Xing Jin is working toward

a PhD in the Department of

Computer Science and Engi-

neering at the Hong Kong Uni-

versity of Science and Technol-

ogy, Kowloon. His research

interests include overlay multi-

cast, Internet topology inference, end-to-end mea-

surements, and peer-to-peer streaming. Jin has

a B.Eng. in computer science and technology from

Tsinghua University, Beijing. He received a Microsoft

Research Fellowship in 2005. He is a junior editor of

the Journal of Multimedia and a student member of the

IEEE Computer Society. Contact him at csvenus@

cse.ust.hk.

W.-P. Ken Yiu is working

toward a PhD in the Depart-

ment of Computer Science and

Engineering at the Hong Kong

University of Science and Tech-

nology, Kowloon. His research

interests include computer net-

works, peer-to-peer systems, multimedia network-

ing, and network security. Yiu has a B.Eng. and

M.Phil. in computer science from the Hong Kong

University of Science and Technology, Kowloon. He

received the Academic Achievement Medal from

HKUST in 2002, and the Sir Edward Youde Memorial

Fellowship in 2005 and 2006. He is a student

member of the IEEE Computer Society. Contact

him at kenyiu@cse.ust.hk.

S.-H. Gary Chan is an associ-

ate professor in the Department

of Computer Science and Engi-

neering at the Hong Kong Uni-

versity of Science and Technol-

ogy, Kowloon. His research

interests include multimedia

networking, peer-to-peer technologies and stream-

ing, and wireless communication networks. Chan

has a PhD from Stanford University in electrical

engineering. He is a member of Tau Beta Pi, Sigma

Xi, and Phi Beta Kappa, and a senior member of the

IEEE Computer Society. Contact him at gchan@

cse.ust.hk.

For further information on this or any other computing

topic, please visit our Digital Library at http://

www.computer.org/csdl.

27

Ja
n

u
a
ry

–M
a
rch

2
0
0
8

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

