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ABSTRACT
In a wireless system, a signal map shows the signal strength
at different locations termed reference points (RPs). As ac-
cess points (APs) and their transmission power may change
over time, keeping an updated signal map is important for
applications such as Wi-Fi optimization and indoor local-
ization. Traditionally, the signal map is obtained by a full
site survey, which is time-consuming and costly. We address
in this paper how to efficiently update a signal map given
sparse samples randomly crowdsourced in the space (e.g.,
by signal monitors, explicit human input, or implicit user
participation).

We propose Compressive Signal Reconstruction (CSR), a
novel learning system employing Bayesian compressive sens-
ing (BCS) for online signal map update. CSR does not rely
on any path loss model or line of sight, and is generic enough
to serve as a plug-in of any wireless system. Besides signal
map update, CSR also computes the estimation error of sig-
nals in terms of confidence interval. CSR models the signal
correlation with a kernel function. Using it, CSR constructs
a sensing matrix based on the newly sampled signals. The
sensing matrix is then used to compute the signal change at
all the RPs with any BCS algorithm. We have conducted ex-
tensive experiments on CSR in our university campus. Our
results show that CSR outperforms other state-of-the-art al-
gorithms by a wide margin (reducing signal error by about
30% and sampling points by 20%).

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless Com-
munication
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Signal map learning; signal change; Bayesian compressive
sensing; crowdsourcing; database reconstruction.
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1. INTRODUCTION
Received signal strength indicator (RSSI) exhibits spatial

variation, which forms the so-called signal map (or signal
heat map). Knowing the signal map in a timely manner is
important for many applications. For example, in a Wi-
Fi network, the signal of an access point (AP) may change
over time due to AP introduction, removal, migration, power
adjustment, etc. The system administrator would be inter-
ested in the current signal map so as to understand the Wi-Fi
coverage, or to adjust/tune Wi-Fi settings. In fingerprint-
based indoor localization, keeping its signal database up-
dated would lead to improved localization accuracy.

Signal map is often obtained through site survey, where a
professional surveyor walks through the site to measure sig-
nal values at many predefined locations termed “reference
points” (RPs). As signal may evolve over time, this sur-
vey has to be conducted frequently; this is laborious, time-
consuming and costly.

We consider in this paper the following problem: given
a previously obtained signal map and some sparse signals
newly sampled at random points in the site, how can we on-
line update, or reconstruct, the signal map (in terms of signal
values at RPs)? Addressing this problem can substantially
cut the survey cost to keep the signal map up-to-date. As
each AP signal may be considered independently, in the fol-
lowing we will focus on a single arbitrary AP in the site.

Signals may be crowdsourced in space in several ways. For
example, one may install sensors [7] or monitors at different
locations which report signals over time. One may also con-
duct explicit user input [24], where a dedicated surveyor or
a volunteer samples the space at random points. Alterna-
tively, implicit user participation may be used, where naive
users may unknowingly report signals measured at their lo-
cations (as in some indoor localization system [16,24]).

Reconstructing signal map given random sparse samples
is challenging. Existing learning approaches often assume a
certain RSSI signal propagation model (e.g., a log-distance
path loss model), line of sight or open space [1, 15] which
does not work well in complex indoor environments. Fur-
thermore, as the measured signal is noisy, it is desirable
that the reconstructed signal map has confidence interval
indicating the likely RSSI range at a point.

We propose Compressive Signal Reconstruction (CSR), a
novel online signal learning scheme based on Bayesian com-
pressive sensing (BCS). CSR is a generic standalone module
which may be integrated with any existing wireless system
to keep signal map updated. CSR uses a kernel function
to model the signal correlation between any pair of RPs in
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Figure 1: System framework of CSR, an online learning
module for signal map reconstruction.

the signal map (where the correlation value is high if their
locations and RSSIs are similar). A new crowdsourced sam-
ple is first mapped to its closest RP location. Such RP is
termed the sample neighbor. Using the correlations between
the sample neighbor and all the other RPs, a sensing matrix
is then formed for all the samples. Given the sensing ma-
trix, CSR computes the signal change for all the RPs using
compressive sensing.

To the best of our knowledge, this is the first work ap-
plying BCS to address online signal map learning. Note
that CSR is general enough to apply upon any wireless sig-
nal, though most of the discussions and experiments in the
paper are in the context of Wi-Fi. Unlike other signal re-
construction schemes, the BCS in CSR does not assume any
radio propagation model or line-of-sight condition. Further-
more, BCS provides estimation uncertainty, in terms of a
confidence bar, for each reconstructed RSSI at an RP.

We show the system framework of CSR in Figure 1. CSR
may be executed periodically (say, in every hour) or in fixed
batches (after collecting say a certain number of samples).
The flow is as follows:

1) Signal Map Initialization: The signal map is initialized
by an offline site survey. Pairs of <location, RSSI>’s are
stored in the database and form the initial signal map which
may evolve over time with CSR.

2) Determining Sensing Matrix for Newly Sampled Sig-
nals: In the online phase, given the location of a newly
crowdsourced RSSI, CSR first finds its sample neighbor.
Given this RP, CSR computes its correlation with all the
other RPs using a kernel function. With multiple samples, a
sensing matrix for compressive sensing is then formed based
on these correlation values.

3) Formulating Bayesian Compressive Sensing : With the
sample neighbor, CSR first calculates the RSSI change be-
tween the original signal and the newly sampled RSSI. Given
all such RSSI changes and the sensing matrix, CSR then
formulates the signal map reconstruction into a Bayesian
compressive sensing problem.

4) Solving BCS : CSR solves the above BCS (via some
existing algorithm), and finds all the signal changes at the
RPs in the map. The updated <location, RSSI>’s are then
returned to the database.

We have conducted extensive experiments on CSR in our
university campus. Our results validate and confirm that
CSR adapts to signal changes for different indoor environ-
ments. CSR outperforms other state-of-the-art algorithms
such as the Basis Pursuit [8] and the Log-distance Path Loss

Table 1: Major symbols used in CSR.
Notations Definitions

M Number of sample neighbors (the nearest RPs)

N Number of reference points (RPs) in the site

(yt)M×1 M × 1 vector of crowdsourced RSSI samples at

time t

(∆yt)M×1 Vector of crowdsourced signal map change

of M RPs at time t

(xt−1)N×1 Vector of RSSIs at N RPs at time t− 1

(∆xt)N×1 Vector of full signal map change at N RPs at t

eM×1 Vector of additive noise in compressive sensing

ΦM×N M ×N sensing matrix in compressive sensing

ψm Correlation coefficients of the m-th sample

neighbor and the N RPs in the signal map

µ Vector of the mean predicted signal change

Σ Variance matrix of predicted signal change

α Vector of reciprocals for variance of predicted

(∆xt)N×1

β Reciprocal of additive noise em variance

model [1, 25] with substantially lower RSSI error (by more
than 30%) and fewer sampling points (often by more than
20%). By integrating CSR with a Wi-Fi fingerprint-based
localization system [2], we also reduce the localization error
significantly (by more than 40%).

This paper is organized as follows. We first discuss the
background and preliminary of CSR in Section 2. After
that, the signal map reconstruction problem and determin-
ing sensing matrix are presented in Section 3. Then the
algorithm of CSR in solving BCS is discussed in Section 4.
We finally illustrate our experimental results in Section 5,
followed by conclusion in Section 6.

2. BACKGROUND & PRELIMINARY
We review previous work in this section, first on survey

reduction and signal map construction with crowdsourcing
(Section 2.1), followed by the algorithms in signal recon-
struction (Section 2.2). Finally we review the basic princi-
ples of Bayesian compressive sensing (Section 2.3). We show
the important symbols used in this paper in Table 1.

2.1 Survey Reduction with Crowdsourcing
In order to save time and labor in the signal map con-

struction, a number of crowdsourcing approaches have been
proposed [11,14]. Recent crowdsourcing studies focus on ex-
plicit user participation and implicit update through extra-
infrastructure.

Users may explicitly input her/his current locations and
RSSIs to update the signal map [5]. In practice, such ex-
plicit participation may be inconvenient for users.

To address this, implicit approaches have been studied,
which make use of a wide range of extra devices or sens-
ing techniques such as RFID [13], inertial navigation sys-
tems [28], and Wi-Fi sniffers [20]. These infrastructures es-
timate user locations and their RSSIs. Then the system
generates the updated signal map.

Our signal map reconstruction with CSR is orthogonal to
above works. CSR focuses on reconstructing the outdated
signal map regardless of how the signals are crowdsourced.
Explicit user input or implicit sensor-assisted crowdsourcing
in above studies can be easily integrated with CSR to achieve
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survey reduction. For example, crowdsourced <RSSI, lo-
cation>’s may be easily accumulated through above ap-
proaches and form the initial signal map (initial input) for
our CSR. Furthermore, CSR does not assume, and hence is
not restricted to any sensor measurement model or crowd-
sourcing user mobility like [7]. Therefore, it is more general
and can be applied in more complex indoor environments.

2.2 Signal Map Reconstruction Algorithms
Signal reconstruction has been widely studied in recent

years [18]. Gaussian process (GP) [1,12] has been proposed
for signal map construction. Early works like [12] utilize GP
to reconstruct signal map. Later works utilize GP to model
spatial distribution in the site [1]. In contrast to GP, our
work on Bayesian compressive sensing does not assume any
signal propagation model. Therefore, it is more general and
can be applied in more complex indoor environments.

More recent works study signal reconstruction using ma-
trix completion [17,23].Some have studied using matrix com-
pletion to construct missing RSSI values in signal map [17].
The work in [23] also utilizes matrix completion in order to
reduce site survey. Given limited site survey where not all
AP signals are covered, these works consider the signal map
in the site as an incomplete matrix and recover the unknown
matrix elements, i.e., the unknown AP signals through the
matrix completion. However, the matrix completion con-
structs the signal map in a deterministic manner. Our BCS
considers the uncertainty in signals and is more robust to-
wards the noisy measurements. Furthermore, CSR provides
the confidence interval of estimation, which can be used in
many probabilistic applications such as the Horus localiza-
tion system [29]. Note that, in contrast to the work in [7],
CSR does not assume any knowledge on environmental fac-
tors (building structure change, AP power alteration, etc.)
which cause the signal map change; it updates the signal
map simply based on the signal difference. Therefore, it is
general enough to apply in complex signal environments.

2.3 Compressive Sensing
Compressive Sensing (CS) is a novel signal reconstruction

approach which takes in far fewer samples than required in
traditional Nyquist paradigm [8]. It has been applied in a
wide range of areas including signal processing and image
reconstruction.

The objective of CS framework is to find a sparse solution
x ∈ RN of linear equation y = Φx, where the measure-
ment vector y ∈ RM and the M ×N sensing matrix Φ are
known. Note that M ≤ N , i.e., the linear system is under-
determined. Given the vector x, let `0-norm be the number
of nonzero entries of x. One simple way to pose a CS frame-
work is to solve the following optimization problem [10],

x̂ = arg min
x∈Rn

‖x‖0, subject to y = Φx. (1)

As above `0-minimization problem is NP-hard, an alterna-
tive solution is to use `1-norm of x (i.e., ‖x‖1 = ΣN

n=1|xn|)
under a sufficient constraint Restricted Isometry Property
(RIP) [6] based on the convex optimization. Many other
optimization-based greedy algorithms are developed to re-
construct sparse signal x, such as OMP [27] and CoSaMP [22].

In practice, the CS measurements y are usually corrupted
by the environmental noises, denoted as e ∈ RM . This noise
can be approximated as a zero-mean Gaussian distribution

with unknown variance σ2. Then the CS model can be ex-
pressed as y = Φx + e. We can consider the Gaussian
likelihood function of signal y given x and e, i.e.,

p
(
y|x, σ2) =

1

(2πσ2)m/2
exp

(
−‖y −Φx‖2

2σ2

)
. (2)

Given Φ and measurements y, and considering prior knowl-
edge about sparse vector x and noise variance σ2, the above
CS reconstruction becomes a Bayesian learning problem, or
the so-called Bayesian compressive sensing (BCS). Particu-
larly, BCS aims to seek the full posterior values of x and σ2,
given the corresponding prior knowledge and the new mea-
surements. BCS outperforms the traditional deterministic
CS by the following two aspects:

Traditional CS requires RIP in order to be solvable, which
may not be satisfied in many application scenarios [21]. Un-
like traditional CS, BCS only relies on the priori statistical
sparse properties of signals, which can be easily satisfied for
signal map reconstruction.

Traditional CS outputs only the reconstructed signal map.
BCS further provides confidence levels in terms of error bars
for reconstructed signals [21], which can be further utilized
in other application scenarios such as probabilistic localiza-
tion algorithms [29].

3. PROBLEM OF SIGNAL MAP LEARNING
We first present the signal map reconstruction problem

based on compressive sensing (CS) in Section 3.1. Given this
problem and CS formulation, we then present in Section 3.2
how to determine coefficients of the sensing matrix.

3.1 Signal Map Reconstruction Problem
Suppose there are N RPs in the site map for an AP,

which are labeled by n ∈ {1, 2, . . . , N}. We show in Fig-
ure 2 a survey site with RPs (locations may not be regu-
lar). The signal of the n-th RP at time t − 1 is given by
fn
t−1 = ([Ln

x , L
n
y ], xnt−1), where xnt−1 represents RSSI of that

RP. The RSSIs of the entire signal map can then be repre-
sented as an N -dimensional vector xt−1 ∈ RN , or xt−1 =
[x1t−1, . . . , x

N
t−1]T .

Over a period of time, RSSIs xt−1 of the signal map
evolves to xt. TheN -dimensional vector of full signal changes
on all N RPs from t− 1 to t are given by ∆xt = xt−xt−1,
where ∆xt = [∆x1t , . . . ,∆x

N
t ]T . The objective of the signal

map reconstruction problem is to estimate ∆xt.
In the online reconstruction phase, a batch of new samples

are crowdsourced and aggregated from time t− 1 to t. Each
new sample is first mapped to its physically nearest RP (with
the smallest Euclidean distance on the 2-D map), which is
the red point shown in Figure 3. If there are multiple new
crowdsourced samples mapped to the same RP, their RSSIs
are averaged and stored for that RP. After that, the batch of
new samples are mapped to M different RPs, forming the M
crowdsourced sample neighbors (M RPs which are nearest to
the crowdsourced samples). Each sample neighbor contains
the new signal sample ymt . These are the sparse sampling
points on the whole signal map.

Specifically, similar to fn
t−1, we define the m-th crowd-

sourced sample neighbor at time t as f̃m
t = ([L̃m

x , L̃
m
y ], ymt ),

where its coordinates [L̃m
x , L̃

m
y ] represent the location of the

nearest RP in the map.The crowdsourced RSSIs of M sam-
ple neighbors are aligned as yt ∈ RM , or yt = [y1t , . . . , y

M
t ]T .
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Figure 2: The signal map at time t − 1.
Each RP contains fn

t−1 = ([Ln
x , L

n
y ], xnt−1).

Figure 3: Finding the nearest RP as
one crowdsourced sample neighbor.

Figure 4: The correlation coefficients
between the sample neighbor and all
RPs.

The RSSI change on the m-th sample neighbor can be calcu-
lated as the RSSI difference between new sample ymt crowd-
sourced at time t, and the previous RSSI x̃t−1 ∈ xt−1 of
the nearest RP on the previous signal map, i.e., ∆ymt =
ymt − x̃t−1. Then the vector ∆yt ∈ RM represents the to-
tal crowdsourced signal changes of the M sample neigh-
bors, i.e., ∆yt = [∆y1t , . . . ,∆y

M
t ]T . We consider that each

RSSI change in ∆yt has additive measurement noise em ∼
N (0, σ2).

Given a previous signal map xt−1 and sparse crowdsourced
samples yt, we first determine the crowdsourced signal changes
∆yt at the sample neighbors (the nearest RPs). Then the
signal map reconstruction learns the full signal changes ∆xt

based on these sparse ∆yt. The key problem of signal map
reconstruction is how to determine ∆xt given only ∆yt.
Similar to compressive sensing, we consider that an individ-
ual crowdsourced signal change ∆ymt can be formulated as
a subsample from the full signal changes ∆xt. Then we can
leverage the compressive sensing to recover the entire signal
map from these sparse samples.

Specifically, for each sample neighbor f̃m
t , we find its cor-

relation with all other RPs in the site, as illustrated in Fig-
ure 4. Let ψn

m be the sampling or sensing coefficient be-
tween crowdsourced signal change ∆ymt and the n-th full
signal change ∆xnt . For each individual crowdsourced signal
change ∆ymt , we consider the linear sampling relationship
between it and the full signal changes ∆xt in the entire
signal map as

∆ymt = ψm∆xt + em, (3)

where ψm =
[
ψ1

m, ψ2
m, . . . , ψn

m, . . . , ψN
m

]
, and∑N

n=1 ψ
n
m = 1, 0 ≤ ψn

m ≤ 1. In other word, the crowd-
sourced signal change is considered as the weighted sum of
full signal changes at all RPs. We consider that the higher
ψn

m is, the more likely that the crowdsourced signal change
is near the n-th RP and their signals are correlated. Such
a formulation is valid as significant signal map change hap-
pens in a close region (due to, for example, crowds of people
and new wall partition).

Let eM×1 = [e1, . . . , em, . . . , eM ]T . To summarize, for M
crowdsourced signal changes ∆yt, the whole subset sam-
pling relationship with full signal changes ∆xt is given by

(∆yt)M×1 = ΦM×N (∆xt)N×1 + eM×1, (4)

where the sensing matrix Φ is

Φ =
[
ψ1, ψ2, . . . , ψm, . . . , ψM

]ᵀ
(5)

Our signal map reconstruction problem finally becomes how
to find ∆xt in Equation (4) given ∆yt and Φ. Then given
full signal changes, we construct the full signal map xt as

xt = xt−1 + ∆xt. (6)

3.2 Forming the Sensing Matrix
In this section, we discuss how to determine the sensing

matrix Φ in above BCS formulation. Recall that for each
new sample, we find in the signal map the nearest RP to

form the sample neighbor f̃m
t . Then we need to find other

RPs in the signal map whose signals are correlated with
this crowdsourced sample neighbor (the nearest RP). We
consider that two RPs are highly correlated based on the
following two criteria:

Criterion I. Small physical distance from the sample neigh-

bor f̃m
t : The physical distance Dn

m (unit: m) between f̃m
t−1

and fn
t−1 is calculated byDn

m =
√

(L̃m
x − Ln

x)2 + (L̃m
y − Ln

y )2.

The smaller distanceDn
m is, the signals at these two locations

may be more correlated as they have similar distances from
APs and their surrounding environments are similar [1]. Af-
ter calculating the distance for each RP, we normalize each

Dn
m by Dn

m = Dn
m/
(∑N

n=1D
n
m

)
.

Criterion II. Small difference between RSSIs at two ref-
erence points (RPs): Absolute RSSI difference Rn

m (unit:

dB) between f̃m
t−1 and fn

t−1 is calculated by Rn
m = |x̃mt−1 −

xnt−1|. The smaller RSSI difference Rn
m, the more likely that

these two locations share similar signal change in the sig-
nal space of the new signal map [23]. Similar to Dn

m, we

normalize each Rn
m by Rn

m = Rn
m/
(∑N

n=1R
n
m

)
.

Combining above criteria, we implement an RBF ker-
nel function [9] to evaluate correlation between the sam-
ple neighbor and other RPs. Formally, the correlation be-

tween f̃m
t−1 and fn

t−1 is given by snm , exp

{
− η
[(
θDn

m

)2
+(

(1 − θ)Rn
m

)2]}
, where parameter η represents the sensi-

tivity and θ (0 ≤ θ ≤ 1) represents the weight between
physical distance Dn

m and RSSI difference Rn
m (both η and

θ are determined empirically and will be described in our
experiment). For an individual crowdsourced signal change
∆ymt , each of the correlation coefficients snm is normalized

as ψn
m =

snm∑N
n=1 snm

. To summarize, given a signal map xt−1

and RP locations, we map the new samples yt to their cor-
responding nearest RPs. Then we find the crowdsourced
signal changes ∆yt at those sample neighbors. Then based
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on ∆yt and sensing matrix Φ, through some compressive
sensing algorithm we find the full signal changes ∆xt.

4. BCS FOR SIGNAL RECONSTRUCTION
Based on the problem in Equation (4), in this section we

present how to formulate BCS for signal reconstruction. In
Section 4.1, we present how to formulate BCS to learn sig-
nal changes. Then in Section 4.2, we discuss how to solve
the compressive sensing, followed by complexity analysis in
Section 4.3.

4.1 Formulating BCS
In the following, we first discuss the probabilistic prelim-

inaries in our BCS formulation. Firstly, RSSI value of each
RP at time t− 1 is modeled as a Gaussian distribution, i.e.,

xnt−1 ∼ N
(
x̄nt−1, (σ

n
t−1)2

)
, (7)

where x̄nt−1 represents mean value and (σn
t−1)2 is RSSI vari-

ance. Then RSSI change ∆xnt = xnt −xnt−1 from time t−1 to t
is also a Gaussian distribution, i.e., ∆xnt ∼ N

(
∆x̄nt , (σ

n
t−1)2

+(σn
t )2
)
, where ∆x̄nt represents mean value of ∆xnt . ∆xt−1

can be considered as prior distribution of ∆xt. Based on
Equation (2), we consider

p
(
∆yt|∆xt, σ

2) =
1

(2πσ2)
M
2

exp

(
−‖∆yt −Φ∆xt‖2

2σ2

)
.

(8)
From Bayesian point of view, the objective is to find full

posterior density function of ∆xt, given prior distribution
of full signal changes p(∆xt) and the crowdsourced signal
changes ∆yt. The signal map reconstruction in CSR be-
comes a problem of finding ∆xt in order to

arg max
∆xt

p
(
∆xt|∆yt, σ

2) ,
subject to ∆xt ∼ p(∆xt).

(9)

Based on Equations (7) and (8), posterior distribution of
∆xt is also Gaussian distribution, i.e.,

p(∆xt|∆yt, σ
2) ∼ N (µ,Σ), (10)

where µ and Σ are the mean of posterior full signal changes
∆xt and corresponding covariance, respectively. Once µ
and Σ are determined, full signal values are updated by
Equation (6). The variance Σ, representing the confidence
level, is also stored for later use.

4.2 Solving BCS
In this section, we present how to learn posterior p(∆xt)

based on sparse crowdsourced signal changes ∆yt and prior
distribution of ∆xt and σ2. Let αn be the reciprocal of
(σn

t−1)2+(σn
t )2, andα = [α1, . . . , αn]. Given ∆xnt ∼ N (∆x̄nt , α

−1
n ),

we have p (∆xt|α) =
∏N

n=1N
(
∆x̄t, α

−1
n

)
. Let β be the pre-

cision of noise e (i.e., β = σ−2). Initial ∆x0 and β can be
either extracted from the initial version of signal map at
time 0, or be simply defined as general prior probability dis-
tribution such as hierarchical prior [4].

Posterior distribution of full signal changes ∆xt and pa-
rameters α, and β is denoted as p(∆xt,α, β|∆yt), given
crowdsourced signal changes ∆yt. Then

p(∆xt,α, β|∆yt) = p(∆xt|α, β,∆yt)p(α, β|∆yt). (11)

In above Equation (11), p(∆xt|α, β,∆yt), the posterior

distribution, can be computed analytically [26] as

p(∆xt|α, β,∆yt) =
p(∆yt|∆xt, β)p(∆xt|α)

p(∆yt|α, β)

= (2π)−
N
2 |Σ|−

1
2 exp

(
−1

2
(∆xt − µ)ᵀΣ−1(∆xt − µ)

)
,

where posterior mean µ and covariance Σ are

µ = βΣΦᵀ∆yt, Σ = (βΦᵀΦ +A)−1, (12)

and A = diag(α1, α2 . . . αn . . . , αN ).
As µ and Σ rely on parameters α and β, we now need to

findα and β to maximize posterior distribution p(α, β|∆yt),
i.e., the second term on right side of Equation (11).

We apply the type II maximum likelihood [26] to estimate
the above parameters. Let Σnn be the n-th diagonal value
of Σ, i.e., the n-th signal RSSI change variance as shown in
Equation (12). We can obtain the updated αnew

n as

αnew
n =

1− αnΣnn

µ2
n

, n ∈ {1, 2 . . . N}, (13)

where µn is the n-th entry of vector µ. Similar to αnew
n , we

have

βnew =
M − Tr(I −AΣ)

‖∆yt − Φµ‖22
, (14)

where Tr(A) is defined as the trace (the sum of diagonal
elements) of matrix A. Given the initial values of α and β,
µ and Σ can be calculated through Equation (12), and then
α and β can be further iteratively updated by Equation (13)
and (14) until convergence.

To summarize,to reconstruct the signal map xt at time t,
BCS learns the full signal changes ∆xt based on the sam-
ple neighbors yt and the previous signal map xt−1 at time
t − 1. After finding ∆xt, CSR returns the updated xt to
signal map database for other applications such as Wi-Fi
monitoring or indoor localization.

4.3 Complexity Analysis
We briefly analyze the reconstruction complexity as fol-

lows. At time t− 1, we have a signal map for each AP and
we consider O(N) RPs to be reconstructed at time t. Sup-
pose there are M ′ pairs of <RSSI, location>’s fed to CSR
and they are mapped to M crowdsourced sample neighbors
(M ′ ≥ M) in O(M ′N) time. During each reconstruction
(i.e., at time t), M crowdsourced RSSI samples are accumu-
lated. Determining sensing matrix Φ for M crowdsourced
samples takes O(MN) (Section 3.2). It takes O(M) to find
the crowdsourced signal changes ∆yt (Section 3.1). In our
experiment, when determining ∆xt for signal map recon-
struction, we leverage variational Bayesian algorithm [3,19],
which takes O(M3) (Section 4.2).

To summarize, reconstructing the signal map of one AP
over N RPs in CSR takes

O(M ′N +M3). (15)

5. EXPERIMENTAL EVALUATION
In this section, we present the experimental evaluation

over CSR in our HKUST campus. In Section 5.1, we show
the experimental settings and performance metrics of CSR.
Then in Section 5.2, we evaluate the performance of CSR
compared with state-of-the-art algorithms.
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Figure 5: Floor map of the corridor area for experiment (red
points are RPs, green stars illustrate crowdsource points).
The deployed APs are also marked on the map.

Figure 6: Floor map of the hallway area for experiment (red
points are RPs, green stars illustrate crowdsource points).
The deployed APs are also marked on the map.

5.1 Settings and Performance Metrics
We conduct all experiments on two indoor scenarios on our

university campus. One is a typical corridor environment
(43 × 25 m2) with many wall partitions, whose floor plan
is shown in Figure 5. Another one is a spacious hallway
(50× 27 m2), whose floor plan is shown in Figure 6.

Besides environmental disturbance such as metal objects,
crowds of people, etc., we also consider the AP power al-
teration in our experiment to enrich the signal map change
studies. In Figures 5 and 6, we show the locations of de-
ployed APs. 6 TP-Link TL-MR3020 APs are installed in
each site. We manually adjust the transmission power of 3
APs and move physical locations of other 3 APs over time
(3 ∼ 5 meters apart from previous locations). In this way,
we simulate the AP transmission power adjustment (due to
firmware update or hardware degradation, etc.) and AP
physical location changes (due to introduction/removal of
wall partition or decoration, etc.). We take into account
these possible factors on signal map change, and do not dif-
ferentiate them in our signal map reconstruction for gen-
erality. Meanwhile, the official APs deployed by our uni-
versity may also experience unknown signal fluctuation or
alteration. In our experiment,we evaluate the RSSI recon-
struction error with both our own APs and the official ones
deployed by the university.

To construct an initial signal map, we conduct RSSI col-
lection on 38 RPs in corridor and 86 RPs in hallway. The
density of RPs (the distance between two neighboring RPs)
is 3 m in both sites. At each RP, at each of the 4 directions
(north, south, west and east) we form 1 RSSI vector. Then
we have respectively 152 and 344 RSSI vectors in these two
sites. We utilize Xiaomi Red Mi 2 for data collection. Red
dots in Figure 5 and 6 represent locations of RPs.

Besides the initial signal map, we randomly collect RSSI
samples every 0.5 h to simulate the crowdsourcing process.
In Figures 5 and 6, the ground-truth locations of crowd-

sourced RSSIs are illustrated as green stars. The RSSI
crowdsourcing is conducted in the corridor between April
7th and April 25th, 2016, while in the hallway it is con-
ducted between February 24th and February 29th, 2016.
Meanwhile, a manual site survey is conducted every day
and the collected fingerprints are used as ground truth to
evaluate the reconstruction accuracy.

We present the performance metrics as follows. For each
AP, we denote the RSSI at the n-th RP in the previous sig-
nal map at time t−1 as xnt−1. At time t, let the ground-truth
RSSI at the n-th RP as ẋnt . Meanwhile, we denote the recon-
structed RSSI through a certain scheme as xnt at that RP.
Then for each RP n, the reconstruction error (dB) is defined
as the absolute difference between the ground-truth RSSI
and the reconstructed one at time t, i.e., enrec = |ẋnt − xnt |.
If enrec is close to 0, the reconstructed RSSI closely match
the ground-truth. We also find the cumulative density func-
tion (CDF) and the mean of the reconstruction errors enrec’s
on all RPs of all APs in each survey site. To illustrate the
signal change, we also evaluate the RSSI difference between
the current and previous signals when no signal map recon-
struction is conducted, i.e., entrue = |ẋnt − xnt−1|. We also
compare CSR with the following state-of-art reconstruction
algorithms:

Basis Pursuit (BP) Reconstruction: BP algorithm is one
of deterministic reconstruction methods for compressive sens-
ing framework [8]. Similar to matrix completion method, BP
uses convex optimization to predict the signals.

Log-distance Path Loss (LDPL) Reconstruction: In LDPL
reconstruction, propagation model is widely used to predict
signals [1,25]. In our experiment, we implement least squares
to estimate the parameters in the propagation model and
then predict RSSI in the site.

An initial signal map is used as the “Without Reconstruc-
tion”case to illustrate the actual change of signal map RSSIs.
To evaluate the performance in dynamic environment, we
also vary the number of crowdsourced samples and location
input error among crowdsourced signals.

To evaluate the benefits over WLAN application, we incor-
porate CSR into a Wi-Fi fingerprint-based indoor localiza-
tion system [2]. Experiments are also conducted at the same
corridor shown in Figure 5. The initial fingerprint database
or the outdated signal map was constructed in September
2015. To update fingerprints, in the first week of April 2016
we randomly collect new samples at sparse locations cov-
ering 25% of the site. We append RSSI readings of newly
detected APs and remove those APs which are no longer de-
tected. Given the fingerprints updated by CSR, a weighted
k-nearest neighbors algorithm (WKNN) is applied to esti-
mate the user locations. The localization error is calculated
by the Euclidean distance between the ground-truth location
and the estimated one.

5.2 Illustrative Experimental Results
Figure 7 illustrates the signal map reconstruction results

of an AP using CSR in the corridor environment. We also
show the prediction error bars in the figure. We leverage
30% crowdsourced samples in the whole site. In this fig-
ure, black crosses represent the original and outdated RSSIs,
while the blue diamonds are the ground-truth signals. Their
difference in signal level indicates that the signal map has
changed. The signal map is then updated by CSR, and the
red circles are the adapted RSSI values. We can observe that
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Figure 7: RSSI reconstruction results us-
ing CSR for one AP at different RPs.
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Figure 8: CDF of RSSI reconstruction er-
ror (dB) in corridor.

Percentage of Sampled Signals
0% 20% 40% 60%

M
ea

n 
R

ec
on

st
ru

ct
io

n 
E

rr
or

(d
B

)

3.5

4

4.5

5

5.5

6

6.5

7

CSR Update
BP Update
LDPL Update
Without Update

Figure 9: Mean reconstruction error ver-
sus percentage of samples in corridor.
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Figure 10: Mean reconstruction error
versus location input error in corridor.
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Figure 11: CDF of RSSI reconstruction
error (dB) in the hallway.
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Figure 12: Cumulative errors of the Wi-Fi
fingerprint-based localization system inte-
grated with CSR.

the predicted RSSIs (red circles) closely match ground truth
(blue diamonds). It shows that CSR successfully adapts the
signal map towards the ground truth, significantly reduces
the difference with the altered signal map.

Figure 8 shows the CDF of signal map reconstruction error
(enrec in dB) using LDPL, BP and CSR in the corridor envi-
ronment. We also show the actual RSSI change (entrue) in the
signal map, denoted as “Without Update”. CSR improves
the mean reconstruction error by around 29% (from 6.6 dB
to 4.7 dB) in the corridor. Given the same number of crowd-
sourced samples (only 40% samples in the whole site), we
can observe that CSR outperforms LDPL and BP schemes.
It is because unlike LDPL reconstruction the BCS in CSR
does not rely on any radio propagation model or line-of-
sight condition. Furthermore, the probabilistic formulation
in CSR tolerates the signal noise and is more robust than
the deterministic BP scheme.

Figure 9 shows the mean signal map reconstruction er-
ror (dB) versus different number of crowdsourced signals
in the corridor environment. When no crowdsourced data
are fed initially, the RSSI reconstruction error is high for
all schemes. As more crowdsourced samples are given, the
RSSI reconstruction accuracy increases. We can observe
that CSR already achieves high RSSI reconstruction accu-
racy even given 40% of all crowdsourced samples. We can see
that CSR achieves similar reconstruction accuracy to LDPL
and BP given at least 20% fewer crowdsourced signals. It
is because CSR sufficiently leverages the crowdsourced sig-
nals to reconstruct RPs with high correlation and the entire
signal map gets updated. In our deployment setting, we set
40% by default to achieve balance between the RSSI error
and the crowdsourcing efficiency.

Figure 10 shows the mean signal map reconstruction error
(dB) versus the location input error in the corridor environ-
ment. We simulate the scenario when the location of the
RSSI vector is fed to CSR. We consider a Gaussian location
error upon the ground-truth coordinate. Clearly, the RSSI
reconstruction error increases as larger location input error
is added. We can observe that even under large location
input error (say, up to 6 m), CSR can still achieve better
reconstruction accuracy than the other schemes.

Figure 11 shows the CDF of signal map reconstruction
error in the hallway environment (see Figure 6). Similar to
Figure 8, CSR achieves much lower RSSI reconstruction er-
ror compared with LDPL and BP. As the signal reconstruc-
tion results are qualitatively similar to those in the corridor,
for brevity we do not repeat them here.

In the following, we present the improvement in Wi-Fi
fingerprint-based localization accuracy using CSR. Figure 12
shows the CDF of localization errors using the Wi-Fi fin-
gerprints updated by different signal map reconstruction
schemes. We can observe that CSR improves the localiza-
tion error by at least 40%, and the updated localization
accuracy with CSR is close to that with manual site survey
(the ground-truth signal map). It shows that CSR effec-
tively updates the Wi-Fi fingerprint database and improves
the adaptivity of indoor localization systems towards the
environmental change.

6. CONCLUSION
In this paper, we propose Compressive Signal Reconstruc-

tion (CSR), a novel signal map online learning scheme us-
ing Bayesian compressive sensing (BCS) and crowdsourcing.
Via the BCS formulation, CSR not only finds the signal
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changes for radio map update, but also provides error bars
for confidence inference. Besides, CSR does not rely on any
radio propagation model, and can be easily integrated with
any wireless applications such as Wi-Fi monitoring or indoor
localization systems. We have deployed CSR in our univer-
sity campus. Extensive experiments show that CSR achieves
more than 30% improvement in RSSI reconstruction accu-
racy compared with other state-of-the-art schemes. We have
shown that CSR is also robust to location input errors (as
much as 6 meters) in the crowdsourced signals.Furthermore,
we have also integrated CSR with existing Wi-Fi fingerprint-
based indoor localization systems. Given the changed signal
map, CSR effectively reconstructs the fingerprint database
and improves the localization accuracy by at least 40%.
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