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Abstract—Pervasive wireless multimedia applications often re-
quire Personal Digital Assistants (PDAs) for processing and play-
back. The capability of PDAs, however, are generally much
lower than desktop PCs. When these devices are used to play
back video delivered over a network from a desktop server, their
buffers can easily overflow, seriously degrading the video qual-
ity. In this paper, we report our implementation of some special
stream processing techniques to deal with the capability mis-
match between a PC and PDAs for low-delay live video stream-
ing. These techniques are, the Selective Packet Drop (SPD) algo-
rithm, the Game API (GAPI) optimization and the speed adap-
tation algorithm. All of them can be easily implemented. We
show that our system provides much better video quality than
systems without our techniques.

I. Introduction

With their continuous reduction in size and weight, Personal
Digital Assistants (PDAs) such as Pocket PCs and Palms have
grown in popularity over the past years. Nowadays, PDAs offer
multimedia capabilities, network functionalities, and a suite of
programming kits for application development.

We have developed a low-delay real-time video delivery sys-
tem for pervasive multimedia applications such as surveillance,
interactive distance learning, video conferencing and so on. It
is based on packet-based video, and users roaming in a wireless
LAN can ubiquitously access and display video streams with
their PDAs at any time. In the system, a desktop PC captures
the video, compresses it into the H.263+ format and finally en-
crypts the compressed video with a key (we have used the RC4
symmetric key encryption algorithm due to its low processing
requirement) before streaming through a wireless LAN using
UDP to PDAs for display, as illustrated in Fig. 1. Users are
able to view the compressed video with a Pocket PC (we have
used Pocket PC instead of Palm due to its higher processing
and multimedia capabilities).

Streaming video over the Internet and wireless medium
presents many challenges [1], [2]. Specifically, PDAs has the
following limitations:
• Limited buffering capability — PDAs do not have as large
storage as desktops. As a result, how its limited buffer is man-
aged impacts greatly on the system performance. As a matter
of fact, in low-delay real-time video, buffering should not be
large. When a buffer becomes full, packets have to be dropped
or discarded intelligently in order to guarantee high video qual-
ity.
• Relatively low processor speed — Despite the continuous
improvement in processor speed, PDAs still lag far behind
desktops or laptops. This limitation becomes apparent in
processing-intensive low-delay video applications.
The relatively low processing speed of PDAs often causes seri-
ous degradation in video quality delivered to users, due to the
so-called “Speed Mismatch Problem”: although video encoding
is generally more computationally-intensive than video decod-
ing, the video bandwidth can easily overwhelm the mobile de-
vices, if the encoding rate is not properly chosen or controlled.
When this happens, the client’s buffer tends to overflow, lead-
ing to bursty packet drops. To make the matter worse, many
video compression standards such as H.263+ use inter-coded
P frames to reduce temporal redundancy in order to conserve
bandwidth. As the packets corresponding to these P-frames are

This work was supported, in part, by the Sino Software Research Institute at
the HKUST (SSRI01/02.EG21) and the Competitive Earmarked Research Grant
from the Hong Kong Research Grant Council (HKUST 6014/01E and HKUST
6199/02E).

Correspondence to: Dr. S.-H. Chan

Fig. 1. Our wireless video delivery system.

Fig. 2. Video quality without applying any stream processing techniques.

dropped, errors propagate to the subsequent frames, leading to
poor video quality. We show in Fig. 2 what happens when the
encoding frame rate is much higher than the decoding frame
rate if the client employs a simple drop-tail buffering policy.
The server is a PIII PC with 128MB RAM and the client is
an iPaq 3600 Pocket PC. As the server “outpaces” the PDA,
high packet drop rate and error propagation result. Clearly,
the video quality is unacceptable. This example shows that
addressing the mismatch problem is important to offer quality
video.

To address this problem, we have implemented a number
of special processing techniques. Our techniques are general
enough to work with many error recovery schemes (such as [3],
[4], [5] and references therein) and many network-adaptive rate
control schemes [6], [7]. Regarding video, we have used a GOP
structure of IPPPP...IPPPP..., with the GOP size chosen so as
to tradeoff startup delay, error propagation and bandwidth re-
quirement (we have used a GOP size of 10 in this paper). The
techniques we have implemented in the system are:
• Client-side implementation:
– Selective Packet Drop (SPD) algorithm: SPD drops packets

to retain only the most important few frames (i.e., the leading
P-frames) in the buffer upon the arrival of an I-frame. This is
done in order to prevent buffer overflow and to synchronize the
video delivered between a server and the clients.
– Game API optimization: In order to improve the decod-

ing rate of PDA, we have used the Game API library for fast
video frame display. We demonstrate that this technique can
markedly increase the decoding rate as compared to simply us-
ing Win32 system calls. The processing gap between a desktop
PC and a Pocket PC is narrowed due to reduced CPU usage in
rendering activities.
• Feedback-based implementation: Note that even with SPD
and GAPI, the video may appear “jerky” if a server outpaces a
receiver by a large margin (mainly due to the fact that whenever
an I-frame arrives, a burst of P-frames may be dropped.). In
order to address this problem, the server can match the clients’
processing capabilities based on feedback from clients. Clearly,



due to the feedback implosion issue, this solution is suitable for
unicast and small-scale multicast applications (for large-scale
multicast applications, a means of controlling the feedback rate
has been suggested in [8]).
Adapting the encoding rate to the decoding rate has been dis-
cussed in [9], [10], [11]. Most of these algorithms require a re-
ceiver periodically and continuously feeding back its buffer state
back to the server. This increases the network bandwidth and
may cause the server to adapt too frequently, which is visually
disagreeable. We implement a new algorithm in our system in
which a client only updates the server whenever it is necessary.
The speed matching algorithm is termed Speed Adaptation Al-
gorithm (SA).
In SA, clients measure the decoding time it takes to decode
its frames. Each client measures the decoding time of the first
frame and reports a slightly increased decoding time as the tar-
get inter-frame time to the server (via a feedback TCP channel).
Hence after, each client compute at each frame a new target
inter-frame time based on the measured frame decoding time.
Whenever there is a significant change in the target inter-frame
time as compared to the last feedback value, the client updates
the server with the new value. Based on this feedback, the
server adjusts its encoding frame rate so as to match the speed
of the client(s). Obviously, such a solution is effective when the
processing capability of the PDAs does not vary much during a
round-trip, which is usually the case.

By applying these techniques, we have successfully built a
low-delay live video surveillance system with a Pocket PC over
a wireless LAN. Our results show that excellent video quality
can be achieved on a Pocket PC.

This paper is organized as follows. We first describe in detail
these techniques in Sect. II. In Sect. III, we present our exper-
imental environment and measurement results. We conclude in
Sect. IV.

II. System Implementation

In this section, we describe in more detail the client-side im-
plementations followed by the feedback-based implementation.

A. Client-side solutions

We have implemented the following two techniques in our
video delivery system at the client-side, namely the Selective
Packet Drop (SPD) algorithm and the Game API (GAPI) op-
timization.

A.1 Selective Packet Drop (SPD) algorithm

Note that the importance of video frames in a GOP sequence
IPPPP... decreases from the first I frame to the last frame in
that GOP. This is because each P frame in the GOP uses the
previous frame as the reference frame. The Selective Packet
Drop (SPD) algorithm aims to drop the trailing P-frames to
prevent a buffer from overflowing while maintaining low video
delay.

In SPD, packets are allowed to accumulate in the buffer as
long as there is buffer space. To keep the delay low and to take
into consideration of network delay jitter and fluctuations in the
time required to encode/decode a frame, the n most important
video frames (i.e., the leading frames at the head of the buffer
queue) are retained in the buffer whenever an I-frame arrives.
Clearly, higher network jitter and encoding/decoding variability
require higher n, which also means a higher delay.

We use a dedicated thread to run the SPD. The module im-
plemented is shown in Fig. 3. It starts by initializing the queue
data structure and the enqueue flag. It then enters into a loop
to handle all received packets by the SPD algorithm. When
the first packet of an I-frame is received, all except the first n
frames in the queue are dropped. The last block of the pseudo
code enqueues the currently received packet if the enqueue flag
is set. The purpose of the enqueue flag is to make sure that
once a frame is dropped, it waits until the next I-frame ar-
rives before accepting packets again as the subsequent P frames
would be useless. If the queue cannot accommodate all pack-
ets of the frame at the tail of the queue, the function call to
RemoveCurrRecvFrame is used to remove that frame’s packets
buffered in the queue.

SPDThread(m, n)
1 Q ← Empty Queue of size m
2 EnqueueF lag ← 1
3 while 1
4 do ReadPacket(P )
5 if P is the first packet of an I-frame
6 then Retain(Q, n)
7 EnqueueF lag ← 1
8 if EnqueueF lag = 1
9 then if not Full(Q)

10 then Enqueue(Q, P )
11 else RemoveCurrRecvFrame(Q)
12 EnqueueF lag ← 0

Fig. 3. The Selective Packet Drop (SPD) algorithm.

TABLE I

Some Game API display-related functions.

Function Description
GXOpenDisplay Initialize the Game API

library
GXCloseDisplay Release the resources used

by Game API
GXBeginDraw Prepares the Game API

before display
GXEndDraw Release the resources

allocated with GXBeginDraw
after display is done

GXGetDisplayProperties Obtain the hardware display
capabilities usable by the
Game API library

A.2 Game API Optimization

Microsoft has released a new set of API, the Game API
(GAPI), specifically targeted for use in high-performance, real-
time games on Pocket PC devices. It has a number of useful
functions for fast video display. We have achieved a substantial
increase in the decoding frame rate (nearly 40% in our experi-
ments) when we change our display code from the Win32 graph-
ics API to this set of GAPI. This improvement comes from the
fact that these functions allow the display memory to be ac-
cessed directly. With GAPI, the decoding rate is significantly
increased. Table I shows the list of the display-related functions
available in the Game API.

B. Feedback-based solution

B.1 System Description

We show in Fig. 4 the system diagram of our server-side video-
streaming subsystem with the feedback and speed adaptation
architecture. It consists of the following components: the Syn-
chronization Unit, the H.263+ encoder, the Network Module,
the Token Bucket and the virtual Clock. The Synchronization
Unit controls the rate at which a frame is captured by waiting
for at least one token in the Token Bucket. When the unit ob-
tains a picture and passes it to the H.263+ encoder, a token
is removed from the token bucket. Tokens are inserted to the
token bucket by a clock ticking at a rate specified by the most
recent feedback data from the receiver. The clock is informed
of the most updated token insertion interval by the network
module. When the token bucket is full, no more tokens can be
inserted. The network module buffers the compressed stream
from the encoder and sends it to the user(s) via UDP. It may
also poll the client(s) for feedback.

Regarding the client-side video-streaming subsystem (Fig. 5),
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Fig. 4. Server-side video-streaming subsystem diagram.
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Fig. 5. Client-side video-streaming subsystem diagram.

it has a Packet Queue to buffer all the video packets from the
network. The drop controller analyzes all the incoming video
packets and decides when to drop packets. It notifies the packet
queue of the dropping decision it needs to perform. Indepen-
dently, the H.263+ video decoder reads packets from the packet
queue and decodes them to output to the output module. It
also measures the time to decode a frame and sends the data to
the Speed Adaptation Unit. Using the data, the Speed Adap-
tation Unit decides whether to feed back to the server based on
a formula given below (in Sect. II-B.2).

B.2 Speed Adaptation

Note that the achievable frame-rate at a client may fluctuate
with time (due to background jobs and variations in frame de-
coding time). In order for the server not to outpace the client
most of the time, the interval between successive encoded frames
(“inter-frame” time) should not be set simply equal to the aver-
age time to decode a frame at the client, but slightly longer to
account for the statistical fluctuation of the frame-rate at the
client. In our system, each client hence reports to the server
a requested inter-frame time using a mechanism similar to the
round-trip time estimation as used in TCP, i.e., it first estimates
the mean time to decode a frame and the mean deviation of it,
and then requests an inter-frame time for the encoding process
using these data.

The mean time to decode a frame is estimated as follows. For
every frame i, i ≥ 1, the decoder measures

• T
(i)
t — the total time interval between the rendering of frame

i− 1 and frame i;

• T
(i)
r — Obviously, T

(i)
t consists of two parts: the busy time

for the CPU to process the packets of frame i, and the idle time
for the CPU to wait for the the constituent packets of frame i to
arrive (mainly due to the blocking call used in UDP, recvfrom).
Denote the total idle time spent in the function call recvfrom

by T
(i)
r .

Obviously, the busy time a CPU takes to process the frame
i is the limit the PDA can process frame i (the maximum

decoding capability at that time), which is given by, T (i) =

T
(i)
t −T

(i)
r . T (i) is hence the inter-frame time for frame i which

the Pocket PC is capable of processing1. The average time T (i)

to decode and display a frame can therefore be estimated as

T (i) = αT (i−1) + (1 − α)T (i), where 0 < α < 1. Clearly, a
high α means that the adaptation “remembers” history and
is resistant to changes or fluctuation; on the other hand, a
low α means that the system is more susceptible to statisti-

cal fluctuation. We estimate the mean deviation of T (i), D
(i)
T ,

as D
(i)
T = γD

(i−1)
T + (1− γ)|T (i) − T (i)|, where 0 < γ < 1.

Each value T (i) + βD
(i)
T is a target inter-frame time for feed-

back, where β is a positive constant. Choosing too large a β
may unnecessarily reduce the frame rate and too low a β will
increase the chance that the decoder drops packets due to statis-
tical fluctuation (from our experiments, β = 0.8 performs quite
well).

To reduce the amount of feedback, the target inter-frame time
is sent selectively, i.e., when the target inter-frame time is sig-
nificantly different from the previously feed back value. In our
implementation, it is feed back when the difference between the

current value of T (i) + βD
(i)
T and the previously transmitted

1We assume that the decoding thread is of highest priority possible, in which
the execution time of other preempting threads/processes can be ignored. Other
threads/processes are allowed to run when the decoding thread is waiting for a
packet.

feedback value is larger by more than a certain fraction, f . As
compared to the Continuous Media Player in which the encoder
speed is adjusted by a mechanism similar to Additive Increase
and Multiplicative Decrease (AIMD), our speed adaptation al-
gorithm achieves a smoother rate fluctuation and lower feedback
overhead [9].

In the server, it adapts the decoding speed by using a token
bucket. The time between successive token insertion is equal to
the most recent feedback value. The encoder has to obtain a
token from the token bucket before encoding a frame; otherwise
it is stalled for a token. In this way, the encoding rate is limited
to the rate as suggested by the recent feedback data, but is
unrestricted if the server’s encoding frame rate is less than the
achievable decoding frame rate at clients.

III. Experimental Results and Comparisons

We have implemented the aforementioned techniques to eval-
uate the effectiveness of our solutions. In this section, we first
present our experimental environment followed by some illus-
trative measurements and results.

A. Experimental Environment

We have used the Foreman as a representative video sequence
in our experiment (the use of other sequences show a similar
trend and hence is not discussed). The sequence consists of
400 frames and is in the QCIF format. The frames are en-
coded in the H.263+ format before delivered over the network.
The server-side video delivery program runs on a Pentium III
550MHz PC with 128 MB memory. The server is connected to
a 100Mbps LAN. The mobile access point for offering wireless
network connections is directly connected to the same LAN. The
client-side program runs on an iPaq 3600 Pocket PC. Besides
the wireless LAN card, no other additional hardware is installed
to the Pocket PC.

Regarding the H.263+ settings, we have used a Quantization
Parameter (QP) of 13, a search window size of 31 and a GOP
size of 10. Error concealment is not used so as to eliminate
its effect for fair comparisons. We use the following values in

our experiment: α = 0.875, β = 0.8, γ = 0.75, T
(0)
a = 100ms,

D
(0)
T = 3ms, n = 0 (low-delay video), and f = 10%.
The encoded video stream is transmitted packet-by-packet to

the clients. Each encoded frame is divided into blocks of 1, 024
bytes of UDP packets. The buffer at the decoder side is a FIFO
queue accommodating up to 32 packets.

B. Illustrative Measurement Results

The evaluation is done by comparing the picture quality in
terms of PSNR with and without our solutions. Note that since
some packets may be dropped, we compute PSNR only for the
displayed complete frames. We also compare the encoding frame
rate with and without Speed Adaptation.

Note that there is one more issue that needs to be considered.
As packet loss can be due to reasons other than speed mismatch
between the server and a client (i.e., channel errors and con-
gestion losses), it is necessary to isolate their effect from our
experiments in order to draw meaningful conclusions. For all
experiments, we independently maintain a log for packets trans-
mitted and a log for packets received by the client application.
By comparing the logs at the client-side and the server-side for
each experiment, it is confirmed that the wireless environment
has negligible error and there is no congestion losses through-
out any of the experiments. We conclude that packet loss is
due to the inability to process packets fast enough before buffer
overflow.

B.1 Client-based solutions

In Fig. 6 we show the decoded video quality when none of our
solutions is used (i.e., the NO OPTION setting). The gaps in
the sequence means that there are dropped frames due to buffer
overflow and propagation errors. The video quality decreases
quite sharply once packets start to be dropped (at around frame
50). This is when the decoder buffer becomes full (as the en-
coder out-runs the decoder). With the buffer often being full,
we also observe a rather high delay (in seconds) in the system.

The “landsliding” performance in video quality can be
markedly improved when our SPD algorithm is used. This is
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Fig. 6. PSNR for the decoded frames with the NO OPTION setting.
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Fig. 7. PSNR of decoded frames with SPD.

shown in Fig. 7. Note that the PSNR is maintained at a high
level. Since the arrival of an I-frame triggers the intelligent
packet drop algorithm, some video frames are not displayed, as
evident from the discontinuities in the figure. Basically, in each
GOP, around half of the frames are dropped. Though PSNR
and delay are greatly improved, the burst of frame loss leads to
some “jerkiness” in the decoded sequence.

This missing frame problem can be solved by applying the
GAPI optimization, as shown in Table II. In this table, the re-
sults for both cases are obtained (both cases also with the SPD
algorithm turned on). By applying GAPI optimizations, the
decoding frame rate increases substantially and hence reduce
significantly the fraction of frame loss. Note that the combined
method, i.e. the SPD algorithm and GAPI optimizations, re-
quires implementation at the client-side only, making it suitable
for multicasting video to a large number of PDAs.

B.2 Feedback-based solution

We finally present the performance of a feedback-based sys-
tem with SPD and GAPI implemented at the client side PDA
and the Speed Adaptation algorithm implemented at the server
side. We show in Fig. 8 the corresponding PSNR as measured in
the PDA. Clearly, the video quality has been greatly improved
with much less dropped frames. The figure shows that our speed
adaptation algorithm is effective in matching the speeds be-
tween the encoder and decoder. The end-to-end delay is also
low, due to the synchronizing nature of our Selective Packet
Drop algorithm.

TABLE II

Overall frame rate statistics for the 400 frames Foreman sequence

Encoding Decoding Fraction of
Options frame frame frame loss

rate (frame/s) rate (frame/s)
SPD alone 34.59 17.41 48.25%
SPD with
GAPI 34.52 29.32 14.5%
optimization
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Fig. 8. PSNR of the decoded frames in a feedback-based system, with
speed adaptation, SPD and GAPI optimization.

IV. Conclusions

In this paper, we have described our experience in imple-
menting a low-delay video streaming system. Pocket PCs are
generally much slower than desktop PCs, and hence the encoder
may easily overwhelm the decoder, leading to packet drop and
poor video quality (the so-called “Speed Mismatch Problem”).
Stream processing techniques are needed to bridge the process-
ing gap between the encoder and the decoder.

This speed mismatch problem can be addressed by our Selec-
tive Packet Drop (SPD) algorithm, the Game API optimization
and the speed adaptation (SA) algorithm. The SPD algorithm
drops the least important frames whenever an I-frame arrives to
prevent buffer overflow while keeping the delay low. The Game
API optimization renders video with a higher speed, hence nar-
rowing the processing gap. The speed adaptation (SA) algo-
rithm uses clients’ feedback to match the encoding rate to the
decoding capability of the clients.

Our experiments show that video quality is substantially im-
proved with our techniques. The display frame rate with the
Game API can be increased significantly. This shows that our
techniques are useful and implementable for pervasive multime-
dia applications such as surveillance and distance-learning.
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