
IEEE Network • September/October 200330 0890-8044/03/$17.00 © 2003 IEEE

ulticasting is an efficient way to deliver data
from a sender to multiple receivers [1]. One
of the main advantages of multicast over uni-
cast is the reduction of the network resources

sent to the receivers. As opposed to broadcasting, where
everyone receives the data, multicast delivers data only to a
group of interested users termed a “multicast group.” At any
time users may “leave” or “join” the group. Multicast proto-
cols achieve low network transmission overheads and high
user scalability by building an efficient multicast tree dynami-
cally upon each user leaving or joining (by means of pruning
or grafting). There are a number of exciting multimedia appli-
cations that make good use of multicast capability, such as
stock quote services, video-conferencing, pay-per-view TV,
Internet radio, and so on. Many of these multicast applica-
tions require security in data transmission, i.e., data can only
be exchanged among an exclusive group of users.

Traditional security measures are mainly applicable to a
unicast environment. For instance, data confidentiality, one of
the most important features in network security, can be
offered in this environment by means of a pair of keys. To
offer the same feature in multicast (i.e., data being exchanged
confidentially only among the members in the group), a naive
way is to employ the aforementioned secure unicast technique
between every pair of group members or between the server
and every client in the multicast group. Clearly this is not scal-

able: for N group members, O(N2) unicast connections must
be established. One of the major challenges of offering secure
multicast is to provide a secure service to a large group of
users whose identities are generally not known to each other.

We show in Fig. 1 an architecture of a secure multicast sys-
tem with a single sender and multiple receivers, where the
sender transmits data to receivers via a multicast network.
The control server is responsible for generating, storing, and
distributing keys to both the sender and the receivers. A
secure multicast system supported by key management gener-
ally offers the following security features.

Authentication: There are two types of authentication,
depending on whether the sender or receiver is verified (one
of the current techniques that supports user verification is dig-
ital signature [2]). Sender authentication is the process of reli-
ably verifying the identity of the sender. Receiver
authentication, on the other hand, aims at verifying the identi-
ty of the receiver. Since the sender usually provides the ser-
vice, in some multicast applications (such as video services)
only receiver authentication is required. One of the difficulties
in offering authentication in multicast is how to efficiently val-
idate the identities of a large number of users. If a group of
users join a multicast group simultaneously, it may incur fur-
ther problems such as join implosion.

Data Confidentiality: Confidentiality means that the con-
tent of a message must be shared only by authorized users.
Unauthorized intruders should not be able to make sense out
of the message by simply sniffing (or eavesdropping) on it. In
unicast communication, it can be achieved by encrypting the
data using, for example, the well-known RSA [3]. However,
offering data confidentiality is more difficult in the multicast
environment because a large number of users may be involved
and membership may change quite rapidly.

MM

Kin-Ching Chan and S.-H. Gary Chan,
The Hong Kong University of Science and Technology

Abstract
Multicasting is an efficient way to deliver data to a large group of users in applica-
tions such as Internet stock quotes, audio and music delivery, file and video distribu-
t ion, etc. Many of these applications require the securi ty feature of data
confidentiality, which is not readily offered by the “open” nature of multicast. In
order to offer such confidentiality, the encryption and decryption keys must be con-
stantly changed upon a membership change. In this article, after discussing some
performance criteria to offer secure multicast, we present a number of the proposed
key management schemes for data confidentiality. We categorize these schemes
into four groups: key tree-based approaches, contributory key agreement schemes
supported by the Diffie-Hellman algorithm, computational number theoretic
approaches, and secure multicast framework approaches. Through examples, we describe
the operation of the schemes and compare their performances.

Key Management Approaches to
Offer Data Confidentiality for

Secure Multicast

This work was supported in part by the University Grant Council in Hong
Kong, and by the Areas of Excellence (AoE) on Information Technology
funded by the University Grant Council in Hong Kong (AoE/E-01/99),
and by the Sino Software Research Institute (SSRI00/01.EG04) in the
HKUST.

IEEE Network • September/October 2003 31

Integrity: Integrity means that if the data is altered in
transit over the network, such an alteration should be
detected. One method to achieve this is message digest
(e.g., MD5) [4]. Efficient techniques for unicast communica-
tion may be straightforwardly applied in the multicast envi-
ronment.

In addition to the above, other features need to be provid-
ed, such as traffic confidentiality (i.e., protection of traffic
information such as its patterns from disclosure); non-repudi-
ation (i.e., neither the sender nor the receiver of a message
can deny the transmission); access control (i.e., access to
information resources may be controlled by or for a system);
and service assurance (i.e., resistance to certain attacks, such
as denial of service). These features, however, are not related
to key management issues and hence are out of the scope of
this article.

Data confidentiality is one of the most challenging prob-
lems in secure multicast. To achieve this, a secure multicast
scheme must address key management issues, which include
efficient organization and distribution of keys with low com-
munication overheads, key storage cost, and scheme complexi-
ty. This article reviews a number of such issues. Given that
group membership is dynamic, most of this article focuses on
reducing key delivery overheads and key storage requirement
in this environment.

Current key management mechanisms can be roughly cat-
egorized into four groups: key tree-based approaches; con-
tributory key agreements supported by the Diffie-Hellman
algorithm; computational number theoretic approaches; and
secure multicast framework approaches. After reviewing
some of the security issues and performance criteria for
secure multicast, we introduce the characteristics of each
category and illustrate how they work via examples. We end
with some comparisons and then with some concluding
remarks.

Security Issues and Performance Criteria
Due to the “open” nature of multicasting (i.e., no member-
ship control in the current protocols such as DVMRP, CBT,
and PIM-DM [5–7]), users in the network can join and leave a
multicast group at any time.1 Because of this, one can easily
eavesdrop data sent via multicasting. Data confidentiality can
be achieved by encrypting the multicast data with a key,
whereby the corresponding decryption key (the so called
“group key”) is shared among every current group member.
The main challenge is to allow only those users who have
access rights to the multicast group to have the group key. In

other words, a new member should not be able to decrypt the
multicast data sent before his joining (the so-called “backward
secrecy”) and a former member should not be able to decrypt
the multicast data sent after his leaving or eviction (the so
called “forward secrecy”) [9].

In order to provide such secrecy, whenever there is a mem-
bership change the data must be re-encrypted using a differ-
ent key, and the corresponding decryption key (i.e., the group
key) must be made known to all the members in the group.
The “Re-key” message is used to notify all members of any
key change, and the new key information (such as whether it
is an actual key or the information for generating a new key).
Since there may be a large number of users in a multicast
group, such overheads in key distribution and update can be
high if not managed properly.

There are several criteria for evaluating a key management
scheme. Note that different applications may focus on differ-
ent sets of criteria, depending on their specific concerns. For
example, a satellite pay TV system may be concerned more
with key storage and transmission requirements, while a mili-
tary system may be concerned more with security criteria. We
list below some important performance criteria. Note that we
have used | to denote concatenation (e.g., m1|m2 signifies
that message m1 concatenates with message m2), and {mes-
sage}key to denote encryption (e.g., {m}k signifies that mes-
sage m is encrypted with key k) (Table 1).

Scalability: Scalability refers to the handling of key changes
and efficient data distribution to a large group so as to reduce
key storage in both the control servers and users. An efficient
secure multicast system should be able to deal with a large
and highly dynamic multicast group. The following criteria are
usually used to evaluate the scalability of the system.

•The number of keys stored in each member and con-
trol server: In order to decrypt the multicast data, each
member must receive (or generate) the group key and
store it locally. In order to communicate securely with the
control server, each member may have an individual pri-
vate key (if asymmetric keys are used). Besides these two
keys, some key management schemes introduce yet anoth-
er type of key termed an “auxiliary key” (a.k.a., subgroup
key or key-encrypted key), which is used to reduce the
total number of re-key messages. All these keys incur stor-
age overheads. A control server must store all the keys in
use. Clearly, a large key pool not only requires extensive
memory but also increases the complexity of key manage-
ment.

•The number (or size) of re-key messages: All group
key and auxiliary keys have to be updated upon member-
ship change and sent to the corresponding members. If re-
key messages are not managed properly, they may incur
other overheads, such as key re-transmission or key syn-
chronization.

•The number of keys generated on membership change:
In order to reduce the key storage requirement or the
number of re-key messages, some keys are generated in the
control server or by users upon membership change. Such
a burst of key generation may be processing-intensive. This
is especially critical for a low-power device.
Security: Some security criteria are listed as follows.

•Strength against collusion: Colluders are non-members
of a multicast group but they collude with each other to

� Figure 1. An example of a multicast system.

Multicast
network

Sender

Receiver

Receiver

Control
server

Receiver

� Table 1. Table of notation.

| Concatenation

{message}key Message encrypted with the key “key”

Symbol Definition

1 Some new multicast protocols extend the traditional routing algorithm to
remedy this. However, there are still other security and practicality issues
that need to be addressed [8].

IEEE Network • September/October 200332

retrieve the multicast data sent to the group. Some collud-
ers may have certain knowledge of the multicast group. If
the aggregated knowledge satisfies some certain conditions,
they can decipher the encrypted data. In a collusion-vul-
nerable system, there is generally a trade-off between key
transmission or key storage and the resistance against col-
lusion.

•Knowledge of the group members: Group members
may be required to be involved in key distribution or gen-
eration. This can be a potential security loophole when
members attack the system using their prior knowledge of
key generation or key distribution. Therefore, it is general-
ly advisable that members should not know too much
about key generation, key distribution, and the mecha-
nisms involved in establishing the security of the system.
Other Criteria: Besides the above, we list below other crite-

ria for secure multicast:
•The cost of establishing a secure multicast system:

There are two kinds of costs: the cost of establishing a con-
trol manager and the infrastructure of the system, and the
cost of the user machines.

•Implosion avoidance: Implosion generally occurs at the
point to which users are directed (such as the point to
receive key information). A centralized control server may
also have an implosion problem when a burst of members
joins or leaves the system.

•Symmetric key versus asymmetric key: Since a symmet-
ric key is easier to generate and encryption/decryption
algorithms based on it is less processing-intensive, a system
based on symmetric keys in general performs faster and is
more applicable to handheld devices such as smart cards.
However, secret sharing becomes critical in this system,
i.e., trusted parties must be involved in this system.

•Reliable multicast: Unlike TCP, traditional IP multi-
cast is based on best-effort delivery. Since some schemes
use multicast to distribute keys, keys may be missed, which
leads to overheads such as key synchronization. Therefore,
reliable multicast is required for these schemes.

Key Tree-Based Approach
In order to motivate the key tree-based schemes, we first dis-
cuss two simple (non-scalable) solutions for key management.

In the first solution each member establishes a pairwise
unicast channel with the control server. When a member joins
or leaves the multicast group, the server generates and dis-
tributes a new group key to each of the current members.

In this scheme, only two re-key messages are sent when a
new member joins: the new group key is encrypted by the old
group key and sent via multicast; and the new group key is
encrypted by the new member’s individual key and sent via
unicast to the new member. However, the cost for a group key
update upon a user’s leaving is proportional to the size of the
group. Clearly, this is a “join-friendly” approach.

In the second solution a key is assigned to every possible
subset of the current members. Therefore, each member holds
a number of keys equal to the total number of possible sub-
sets that include the member. In other words, for a group size
of N members, the server and each member must hold O(2N)
keys, which is high for a large N. Whenever a member leaves
the group, the multicast data can be encrypted with the key
corresponding to the subset without the departed member.
However, when a new member joins the group, new keys must
be generated and transmitted to every possible subset of
members formed with the new member. Clearly, unlike the
former scheme, this scheme is “leave-friendly” because a
user’s leaving does not incur any overheads, but there are high
overheads for a user’s joining.

Let us illustrate the above by an example. Say there are
three members of a group, A, B, and C. The server then holds
the following keys: KABC, KAB, KBC, KAC, and the individual
keys, while A holds the decryption keys corresponding to
KABC, KAB, and KAC, and likewise for B and C. The data is
encrypted with KABC in order to be multicast to all of the
members, and the members use the corresponding decryption
key to decrypt the data. If a member, A for example, leaves
the group, the server simply uses KBC to send the data to B
and C. Clearly, no new key needs to be generated for a mem-
ber’s leaving. However, if a new member, D for example, joins
the group, then new keys — KABCD, KABD, KBCD, KACD, KAD,
KBD, KCD — must be generated and sent to the relevant mem-
bers.

Clearly, both schemes are not scalable in terms of the num-
ber of users and dynamic traffic with members frequently join-
ing and leaving. Therefore, a tree structure for arranging keys
has been proposed, and we illustrate here how this benefits
the re-key messaging. In Fig. 2, the topmost diagram shows a
star structure used for the first simple (non-scalable) solution,
where the circled nodes represent keys and squared nodes
represent members. Since all members share only the same
group key (the root node), whenever there is a membership
change, the new group key has to be distributed individually
to each member.

To increase the scalability of the system, we split the mem-
bers into two (or more) groups and create a hierarchy with
two levels (refer to the second diagram in Fig. 2). Now, each
member belongs to one of the two subgroups and shares the
same subgroup key (i.e., the second-level internal node).
Therefore, if there is a membership change in a subgroup, the
subgroup key can only be distributed to the corresponding

� Figure 2. Extension of star structure to multi-level tree structure
to reduce re-key overheads.

IEEE Network • September/October 2003 33

subgroup members instead of the entire group, thereby cut-
ting half of the key transmission overhead. The group key can
then be sent to all members using the subgroup keys instead
of sending it to each individual member. To reduce the re-key
overhead within a subgroup, we can “recursively” split each
subgroup to form multi-level subgroups. In this way, we
extend the hierarchy of two levels to a tree structure. By
arranging the keys in such a way, the total number of re-key
messages sent by the control server can be greatly reduced.
There are a few schemes based on this key tree-based
approach [10–14].

The key tree-based approach arranges all group members
at the leaves of a “logical” key tree stored in a control server.
Due to the hierarchical nature of the tree, different members
may share the same nodes with other members (e.g., the root
is shared by all members). Associated with each node is a key.
All the members emanating from the same node share a com-
mon key, the so called “subgroup key.” The key at the root is
the group key. In this way, a member is associated with the
other members through sharing the same key. Note that these
subgroups are not mutually exclusive so a member can belong
to more than one subgroup. Whenever a subgroup of mem-
bers needs to be informed that there is a key change, we can
encrypt the new key with the subgroup key and send it via
multicast instead of unicasting to each of the subgroup mem-
bers.

Therefore, each member is assigned the same number of
keys as the height of the key tree. The number of re-key mes-
sages is hence logarithmic to the group size according to the
tree height. However, because of the many keys in the system,
higher storage requirements for both the control server and
members is necessary. Therefore, there is a trade-off between
key transmission and key storage [15].

We now discuss more specifically the hierarchical key tree
scheme (a.k.a. logical key hierarchy) [10, 11]. The hierarchical
key tree is a logical tree structure of a multicast group. The

tree is stored in the control server. In the tree, group mem-
bers are arranged at the leaves and the internal nodes store
keys (see Fig. 3 for a k-ary tree with depth d). There are three
types of keys. The first type is a group key, K1, used to
encrypt/decrypt multicast data; the second type is a subgroup
key (such as K d–1 and K d) used to encrypt/decrypt other keys
instead of the actual data; the last type is the individual key, I.
Each member holds the keys along the path from itself (the
leaf) all the way to the root. Therefore, for the case of mem-
ber u, u holds K1 , … , K d – 1 , Kd. Each subtree in the entire
key tree is a subgroup and each member is assigned to more
than one subgroup. For example, member u belongs to groups
Gd , Gd –1 , … , G1.

When a membership change occurs, apart from the group
key, all keys held by the new or former member must be
changed in a bottom-up manner. For example, if u leaves the
group, we first need to change Kd to a new subgroup key, say
Kd

′, and send it to all the members who shared Kd with u (i.e.,
u’s siblings in the tree). Since Kd is known by u, the control
server has to encrypt Kd

′ by each members’ individual key and
send it to them by unicast. After sending Kd

′, the process can
be propagated one level up. Now, Kd – 1 must be changed.
Since Kd is changed to Kd

′ , which is unknown to u, the control
server can encrypt the new Kd–1 by all subgroup keys, includ-
ing Kd

′ , and send it to all subgroups in the (d – 1)th level. We
repeat the same process upward one level at a time until it
reaches the root where K1 is changed. Then all the keys,
including the group key, held by u are changed.

If u is a new member joining the group, in order to guaran-
tee backward secrecy, all the keys from Kd to K1 must be
changed. Since u knows nothing about the keys in the group,
when the control server changes Kd to a new key Kd

′, then Kd
′

can be encrypted by Kd and multicast to u’s sibling and unicast
to u. Similarly, this process can be propagated upward one level
at a time, with the control server multicasting the new keys to
the subgroups under the key and unicasting the key to u.

� Figure 3. A k-ary key tree.

kK1

Kd-1

Kd

Gd

I

u

K2

Gd-1

G1

IEEE Network • September/October 200334

If we assume that the key tree is a k-ary full tree, after each
membership change, the number of re-key messages per leave
and join are proportional to the depth of the key tree, log k n,
where n is the group size. For each leave, the updated keys at
each level must be sent k times (one for each branch). For
each join, the updated keys at each level must be sent twice
(one for multicasting to the old members and one for unicast-
ing to the new member). Therefore, the number of re-key mes-
sages per leave and join are k logkn and 2 logkn, respectively.

As an example, in Fig. 4 we show a hierarchical key tree of
degree three with nine members, u1 to u9 . The key at the
root, K1 – 9 , is the group key. K1 – 3 , K4 – 6 , and K7 – 9 are sub-
group keys for subgroups {u1, u2 , u3}, {u4, u5, u6}, and {u7,
u8, u9}, respectively, and K1 to K9 are individual keys for each
member.

Suppose that u9 leaves the group, and hence the remaining
eight members, u1 – u8, form a new secure group. A new
group key, K1–8, is then generated, and u7 and u8 now form a
new subgroup that requires a new subgroup key, K7– 8. In
order to send K7–8 to u7 and u8, the control manager encrypts
it with K7 before sending it to u7 and with K8 before sending
it to u8 . Finally, the control manager sends the new group key
K1– 8 to the members in each subgroup by encrypting the
group key with each subgroup’s key.

On the other hand, if u9 is a new member joining the
group, K1– 8 and K7– 8 must be changed to K1– 9 and K7– 9 ,
respectively. Since u9 knows nothing about the keys in the
group before it joins, K7–9 can be sent to u7 and u8 by encrypt-
ing it with the previous subgroup key, K7– 8 , while the new

group key, K1– 9 , can be encrypted with the previous group
key, K1–8 , before multicasting it to members u1 to u8 . Finally,
the control manager sends K1–9 and K7–9 to u9 by unicast.

Obviously, a hierarchical key tree scheme reduces the num-
ber of re-key messages to O(log n). Since a user belongs to
multiple multicast groups, it increases the difficulties of a con-
trol server in managing all group members. Indeed, given a
pool of users, it has been shown that there is an optimal
group size to achieve minimum transmission overhead [16,
17]. In addition, since subgroup keys are sent via multicast,
reliable multicast is required.

In order to further reduce the number of re-key messages,
researchers have proposed other key tree schemes that make
use of a one-way function to generate a sequence of keys from
the lower subgroups to the upper levels [12, 14]. For instance,
in [12] a one-way function key generator is applied on the
user’s side to generate the subgroup keys along the path from
itself to the root. Since some keys are generated on the user’s
side, these schemes can further reduce the number of re-key
messages. However, they increase the workload of the user.

Contributory Key Agreement Supported by
the Diffie-Hellman Algorithm
Some key-management schemes extend the well known Diffie-
Hellman key-exchange algorithm [18] to support group key
agreement [19–23]. Instead of the control server generating
and distributing a group key to all members, these schemes

� Figure 4. An example of ternary hierarchical key tree.

Join Leave

K1-9

K4-6

K5 K6v4

u5 u6u4

K1-3

K2 K3K1

u2 u3u1

K7-9

K8 K9K7

u8 u9u7

K1-8

K4-6

K5 K6K4

u5 u6u4

K1-3

K2 K3K1

u2 u3u1

K7-8

K8K7

u8u7

IEEE Network • September/October 2003 35

focus on the issue of “key agreement.” In contributory
key-agreement schemes, generating and distributing a
group key is the responsibility not only of the control
server, but also every member.

The two-party Diffie-Hellman algorithm provides
neither encryption nor signatures but allows two indi-
viduals to agree on a common (symmetric) key. After
agreeing on a shared key, the individuals can send mes-
sages to each other securely. In this system, a common
generator, g, and a common prime number, p, are
required. The generator accepts a secret number, S i ,
randomly generated by member i and outputs a partial
key (i.e., the key information to generate the group
key), g S i (= gSi mod p). If two individuals, M1 and M2
for example, agree on a shared key, they first exchange
their partial keys (i.e., gS1 and gS2). Afterward, they
can compute the shared key, gS1S2 . It has been proved
that nobody else can compute the shared key gS1S2 in a
reasonable amount of time even though they know gS1

and gS2 .
All the contributory key-agreement schemes sup-

ported by the Diffie-Hellman algorithm are based on
computing a subset of {gΠ (A)| A ⊂ {S1, … , S n}} from
gΠ j =1

n
, j ≠ i

Sj , member Mi can easily compute the shared
group key gΠ j = 1

n Sj .
In [22] a scheme called CLIQUES is proposed to

handle contributory key agreement. Unlike key tree-
based approaches, CLIQUES arranges the group mem-
bers in a logical linear structure and passes key
information sequentially. The group members are
indexed. The last two members (the two highest
indexed members) are responsible for taking part in
some special steps of key distribution, with the last
member also a control server. The process of key ini-
tialization of CLIQUES can be divided into four stages
as follows:

1) Each member Mi receives a partial key
gΠ{Sj| j∈[1, i–1]} from his previous member, Mi–1 . It then com-
putes a new partial key gΠ{Sj| j ∈[1 , i]} by adding his own secret
number. This partial key is passed sequentially until it reaches
the second to last member, Mn – 1 , at which the first stage fin-
ishes.

2) Member Mn–1 multicasts his partial key, gΠ{Sj| j∈[1, n–1]},
to all other members except Mn. After all the members
receive the partial keys, each member factors out his own
secret number by using his inverse function, S i

–1. The partial
key for Mi becomes gΠ{Sj| j∈[1, n–1]∧(j ≠ i)}.

3) All the members (except Mn) are required to send their
factorized partial keys to Mn (Mn has the responsibility to
store these factorized partial keys for future use).

4) Mn puts his secret number into all the factorized partial
keys, {gΠ{Sj| j ∈[1 , n]∧(j ≠ i)}|i ∈ [1, n – 1], and sends them back
to the corresponding members. Each member computes the
group key by combining the partial keys he receives and his
own secret number.

To offer backward secrecy, whenever a new member joins
the multicast group, the new member Mn + 1 replaces Mn to
distribute partial keys in stage four. First, Mn factorizes out
his secret number from all these factorized partial keys and
then adds a newly generated secret number, Sn

′ . The new keys
become {gSn′ Π{Sj| j∈[1, n–1] ∧ (j ≠ i)}|i ∈ [1, n]}, which Mn sends
to Mn+1. After Mn+1 receives all these keys, he adds his own
secret number (as in stage 4) and sends the new partial keys,
{gS n′Π{S j | j ∈[1 , n + 1]} ∧ (j ≠ i)∧(j ≠ n)|i ∈ [1, n + 1]}, back to the
corresponding members.

Offering forward secrecy is relatively easy. When a mem-
ber, Ml for example, leaves the group, Mn sends the new par-

tial keys excluding the secret number of Ml,
{gΠ{Sj| j ∈[1 , n]∧(j ≠ i)∧(j ≠ l)}|i ∈ [1, n] ∧ (i ≠ l)}, to all the mem-
bers besides Ml. Since the new group key becomes
g Π j = 1

n
∧ j ≠ l

S j , Ml has no information to compute the new
group key. Therefore, Ml is successfully evicted from the
group communication.

We show an example of key initialization and re-keying in
Figs. 5, 6, and 7. In Fig. 5, there are four members, M1 to M4,
agreeing on a shared group key according to the initialization
steps mentioned above.

Figure 6 shows a re-key example for a member leaving a
multicast group. If M2 leaves the group, M4 only needs to send

� Figure 5. An example of key initialization.

Stage 1: M1

M1

M2

gS
1

M2 M3 M4

Stage 2:

M1

M2 M4

M3

Stage 3:

M1

M1 M2 M3 M4Group key

=

M2 M4

M3

Stage 4:

M4M3

gS
1

S
2

gS
1

S
2

S
3

gS
1

S
2

S
3

gS
1

S
3

S
4

gS
1

S
2

S
4

gS
1

S
2

S
3

S
4 g(S2

S
3

S
4)S1 = g(S1

S
3

S
4)S2 = g(S1

S
2

S
4)S3 = g(S1

S
2
S
3)S4

gS
2

S
3

S
4

gS
1

S
3

gS
1

S
2

gS
2

S
3

� Figure 6. A re-key example for a member leaving a multicast
group.

M1

M3

M1 M3 M4 M2Group key

M4

gS
1

S'
4

gS
1

S
3

S'
4 = g(S3

S'
4)S1 = g(S1

S'
4)S3 = g(S1

S
3)S'

4 ?

gS
3

S'
4

IEEE Network • September/October 200336

the new partial keys with his new
secret number, S ′

4, to the correspond-
ing members. Then all current mem-
bers compute the new group key,
gS1S3S4′ , but the former member, M2,
does not have enough information to
compute the new group key.

Figure 7 shows a re-key example
for a member joining a multicast
group. When a new member M5 joins
the group, first M4 sends the partial
keys with his new secret key, S ′

4 , to
M5 and then M5 sends the new par-
tial keys with his secret number, S5,
to the corresponding members. Final-
ly, all the members collect all the
necessary partial keys for computing
the new group key, g S1S2 S3 S4′ S5 .

In this scheme the control server
(i.e., the last group member) is only
responsible for storing the partial key
from all the members. Since it does
not generate any key, it can be a less
powerful device. Furthermore, since
a symmetric key is used, all members can use a low-end device
such as an inexpensive set-top box to encrypt and decrypt
multicast data. This scheme, however, suffers from the scala-
bility problem, i.e., the number of re-key messages and the
number of partial keys exchanged in the initialization stage
are proportional to the multicast group size. Furthermore,
since the control server and the newly joined member must
collect the partial keys from other members, implosion prob-
lems may arise.

Instead of organizing group members in a linear manner,
other schemes organize members into other structures such
as tree and d-dimensional hypercube [23, 24]. The schemes
based on different structures can efficiently reduce the
number of partial keys in the init ial ization stage to
O (log n) .

Computational Number Theoretic Approach
The computational number theoretic approach allows group
members to compute a shared group key according to some
key information sent from other members or the control serv-
er. The Diffie-Hellman cryptography algorithm mentioned in
the previous section is actually a computational number theo-
retic approach in which each member “contributes” some of
its own information (i.e., its partial key) in order to agree
upon a new common key for data encryption. The schemes
introduced in this section do not have such a contributory
characteristic, i.e., the members do not exchange information
among themselves in order to generate a new group key. A
number of schemes based on the computational number theo-
retic approach have been proposed previously [25–30].

In [25] a scheme named “secure lock” is proposed. In this
scheme, when a member joins or leaves the group, the group
members receive a re-key message that can be used to gener-
ate a shared group key based on the Chinese Remainder The-
orem (CRT).

CRT states that if there are n pairwise relatively-prime
numbers, N1, N2, … , Nn , and another set of positive integers,
R1, R2, … , Rn , then we can form a set of congruous equa-
tions, X ≡ Ri mod Ni, ∀ i ∈ [1, n] , that have a common solu-
tion X. In other words,

where fi is a positive integer obtained by solving the following
equation for all is,

To apply the CRT to key management, the common solu-
tion of the congruous equations can be used to generate a
shared group key for all the group members. First, each mem-
ber is assigned a positive integer, Ni for example, for member
i. Ri represents the set of the group key encrypted with the
public key of each member, i.e., if G denotes the group key

1 1≡

=∏
f

N

N
Ni

j
n

j

i
imod .

X
N

R f Nj
n

i
i i

i

n

j
j

n
=

=

= =

∏∑ ∏1

1 1
mod ,

� Figure 7. A re-key example for a member joining a multicast group.

Stage 1:

Stage 2:

Group key

M4

M1

gS
1

S
2

S
3

S
5

gs
1

S
2

S
3

S'
4

S
5 = g(S2

S
3

S'
4

S
5)S1 = g(S1

S
3

S'
4

S
5)S2 = g(S1

S
2

S'
4

S
5)S3 = g(S1

S
2

S
3

S
5)S'

4 = g(S1
S
2

S
3
S'

4)S5

gS
1

S
2

S'
4

S
5

gS
1

S
3

S'
4

S
5

gS
2

S
3

S'4S
5

M2

M5

M3

M4

M1 M2 M3 M4 M5

M5

{gS
1

S
2

S
3, gS

1
S
2

S'
4, gS

1
S
3

S'
4, gS

2
S
3

S'
4}

� Figure 8. Architecture of the Iolus framework.

GSI
GSI

GSI

GSI

: Subgroup

GSI

GSC

IEEE Network • September/October 2003 37

and k i denotes the public key of member i, then
Ri is equal to {G}ki.

Whenever there is a membership change, the
control server computes and sends a new com-
mon solution, X, according to the set of pairwise
relative primes, N i , and the new encrypted group keys, Ris.
After a member, Mi, receives X (i.e., the re-key message), Mi
computes Ri from X. Since Ri is the group key encrypted with
Mi’s public key, Mi can decrypt X with his private key to
retrieve the new group key.

Secure lock makes good use of CRT to let each member
compute the group key. However, it is not scalable because
the size of the secure lock (re-key messages) and the time to
generate the set of encrypted group keys are proportional to
the group size. Therefore, this aproach only works well in
small systems.

Secure Multicast Framework
A secure multicast framework is a distributed system in which
some intermediate participants such as trustable agents (with
the agents in some cases integrated as group members) work
as the control servers to deliver or generate keys. Users are
divided into different physical groups which are served by
their respective agents. In this way, any key change is done
within a subgroup. We illustrate the framework by using as an
example the Iolus framework [31]. (There are other schemes
based on this secure multicast framework. Readers interested
in them are referred to [32–34] and the references therein.)

The Iolus framework deals with the scalability issues of a
multicast group by partitioning a large multicast group into
subgroups and employing a hierarchy of group security agents
to “relay” key and encrypt data. Therefore, join and leave
requests can be handled within the respective subgroups. Sim-
ilar to the idea of a key tree-based approach, Iolus divides
members into a hierarchy of subgroups. However, members
are arranged into physical subgroups as opposed to a logical
hierarchical key tree.

Figure 8 shows the architecture of the Iolus framework,
which consists of a number of group security agents (GSAs).
The GSA responsible for controlling the top-level subgroup
(root) of the hierarchy is called the group security controller
(GSC), while other GSAs are called group security intermedi-
aries (GSIs). GSIs sit between subgroups and are responsible
for managing their own subgroups.

A GSI works as a relay. It decrypts the data sent from the
upper-level subgroup and multicasts the data to its down-
stream subgroup after re-encrypting the data with its own sub-
group key. To reduce the overhead of re-encryption for the
entire multicast data, the sender encrypts the data using a
random key, which is in turn encrypted with the GSC key and
concatenated to the actual data. For each “key translation,”
only the random key needs to be re-encrypted by GSI. For
example, in Fig. 9 the GSI between subgroup Gi and Gi+1,
upon receiving data from Gi, decrypts the random key and
then re-encrypts the data using its subgroup key, {rand#}ki+1,
before forwarding it to the members in Gi+1.

Regarding the join operation, a new member first locates
its subgroup’s GSA before sending a join request to this GSA.
To provide backward secrecy, the GSA generates a new sub-
group key and sends it to its subgroup members (including the
other GSIs attaching to the subgroup). The new subgroup key
can be encrypted with the old subgroup key before multicast-
ing it to its subgroup members and encrypted with the new
member’s individual key before sending it to the new member.
For leave request, a new subgroup key must be generated by
its GSA and distributed to all the current subgroup members

(including the attaching GSIs). Since the old subgroup key is
known to the former member, it cannot be used to encrypt
the new key. Therefore, the new subgroup key must be
encrypted by each member’s individual key and sent to the
corresponding members via unicast channels.

The Iolus framework breaks a large and wide-area multi-
cast group into smaller subgroups, leading to easy manage-
ment. As each subgroup is likely to be an autonomous system
(AS), the GSA can be a control server of the AS and perform
some administrative work (such as authentication). However,
the Iolus framework suffers from several drawbacks. Since
there is a GSA in every subgroup, the system cost increases.
Furthermore, since the GSA must perform key translation, it
introduces message delay, especially when the group is large
or when the GSAs are not powerful enough. Therefore, the
framework is not very suitable for some real-time multicast
applications such as video-conferencing.

Comparison
According to the performance criteria listed earlier, we pre-
sent the comparison among different key-management
schemes in Table 2. We have used the following nomencla-
ture: n is the group size, k is the branching factor of a key
tree, m is the number of subgroups, and di is the distance
from GSA to the subgroup to which member i belongs. In
order to compare the schemes, we have made the following
assumptions:
• In the case of a hierarchical key tree, the tree is balanced

and full.
• In CLIQUES and secure lock, a partial key and a secure

lock are involved as the re-key message.
• In the Iolus secure framework, members are evenly dis-

tributed in each subgroup so that the number of members
in each group is n/m.
We clearly see that different approaches have their

strengths and weaknesses. There is not a single scheme that
has an overriding advantage over the others. In reality, a
scheme should therefore be chosen depending on the particu-
lar application requirements.

Conclusion
Many multicast applications require data confidentiality. Key
management, which involves key distribution (re-key messag-
ing), key storage, and key generation, is the main issue of data
confidentiality. In this article, we have discussed this issue and
some performance criteria for evaluating a key-management
scheme for multicast applications. We have reviewed the tech-
niques of some of the current key-management schemes,
which can be roughly divided into four categories:
• Key tree-based approaches, in which a tree is used to divide

members into subgroups so as to reduce the number of re-
key messages.

• Contributory key agreement methods supported by the
Diffie-Hellman algorithm, which extends the two-party
Diffie-Hellman algorithm to support multicast security and
allows members to “agree” upon a symmetric group key.

• Computational number theoretic approaches, which use
number theory so that members can compute a shared
group key according to the information sent from a control
server.

� Figure 9. Key translation in a GSI.

{DATA} rand # { rand #} ki
GSIGi Gi+1

{DATA} rand # { rand #} ki+1

• A secure multicast framework, which introduces agents to
share the workload of a control server for key management,
and assigns members to different subgroups so as to reduce
re-key messaging within a subgroup.
In each category, we have illustrated the fundamental

mechanisms and addressed their strengths and weakness. We
also compared them in terms of the number of keys stored by
the server and members, re-key messages for leave and join,
complexity, and so on.

References
[1] S. E. Deering, “Multicast Routing in Internetworks and Extended LANs,” Proc.

ACM SIGCOMM, vol. 18, Aug. 1998, pp. 55–64.
[2] NIST, “NIST: FIPS 186 for Digital Signature Standard,” NIST: FIPS 186 for

Digital Signature Standard (DSS), May 1994.
[3] R. Rivest, A. Shamir, and L. Adlemann, “A Method for Obtaining Digital Sig-

natures and Public-Key Cryptosystems,” Commun. ACM, Feb. 1978 pp.
120–26.

[4] R. L. Rivest, “The MD5 Message-Digest Algorithm,” RFC 1321, Apr. 1992.
[5] S. E. Deering, “Multicast Routing in a Datagram Internetwork,” Ph.D. thesis,

Stanford University, Palo Alto, California, Dec. 1991.

IEEE Network • September/October 200338

� Table 2. A comparison of key management schemes (n is the group size, k is the branching factor of a key tree, m is the number of sub-
groups, and di is the distance from GSA to the subgroup to which member i belongs.)

Number (or size) of keys O(n) O(n) O(n) O(n/m) for a linear structure;
stored in a control manager O(n/m+m) for a star structure

Number (or size) of keys O(log n) O(1) for a system with O(1) O(1)
stored in each member a static control manager;

O(n) for a system with a
dynamic control manager

Number (or size) of re-key O(log n) O(n) O(n) O(1)
messages distributed by a
control manager (or an
agent) on a join

Number (or size) of re-key O(k log n) O(n) O(n) O(n + m) in total;
messages distributed by a O(n/m) per each control manager
control manager (and or agent for the best case while
agents) on a leave O(n/m + m) for the worst case

Number (or size) of re-key O(log n) O(1) O(n) O(1)
messages received by the
new member on a join

Number (or size) of O(1) for the best case; O(1) O(n) O(1)
re-key messages received O(log n) for the worst
by each old/remaining case
member on a join/leave

Processing time for O(log n) (caused by O(1) O(n) (since size of O(di) (caused by key translation):
retrieving a group key decrypting a burst of secure lock is (O(1) for the best case;

subgroup keys) proportional to O(m) for the worst case)
the group size)

Cost of establishing a Medium Low Medium High
control manager and the
infrastructure of the system

Powerfulness of a user Medium Low Low Low
machine

Vulnerable to implosion No Yes (caused by initialization No No
process)

Symmetric or asymmetric Asymmetric key Symmetric key Asymmetric key Asymmetric key
group key?

Single point of failure Yes No (assume dynamic Yes Yes
control manager is used)

Reliable multicast required? Yes No Yes Yes

Applications A general multicast A multicast system with a A multicast system A general multicast system with
system with a mildly small group of members with a small group of widely (or globally) distributed
large group of and a less powerful server members members such as pay-per-view
members such as (or without a centralized international news and movie
Internet radio and server) such as video system.
stock quote service. conference.

Hierarchical key tree CLIQUES Secure lock Iolus

IEEE Network • September/October 2003 39

[6] A. Ballardie, P. Francis, and J. Crowcroft, “Core-Based Trees (CBT): An
Architecture for Scalable Inter-Domain Multicast Routing,” Proc. ACM SIG-
COMM, Oct. 1993, pp. 85–95.

[7] S. E. Deering et al., “An Architecture for Wide-Area Multicast Routing,”
Proc. ACM SIGCOMM, (London, UK), Sept. 1994, pp. 126–35.

[8] C. Shields and J. J. Garcia-Luna-Aceves, “KHIP: A Scalable Protocol for
Secure Multicast Routing,” Proc. SIGCOMM, Sept. 1999, pp. 53–64.

[9] W. Diffie, “Authenticated Key Exchange and Secure Interactive Communica-
tion,” Proc. SECURICOM, (Paris, France), 1990) pp. 399–406.

[10] D. M. Wallner, E. J. Harder, and R. C. Agee, “Key Management for Multi-
cast: Issues and Architectures,” RFC 2627, June 1999.

[11] C. K. Wong, M. Gouda, and S. S. Lam, “Secure Group Communication
Using Key Graphs,” IEEE/ACM Trans. Net., vol. 8, no. 1, Feb. 2000, pp.
16–29.

[12] R. Canetti et al., “Multicast Security: A Taxonomy and Some Efficient Con-
structions,” Proc. INFOCOM ’99, 1999, vol. 2, pp. 708–16.

[13] I. Chang et al., “Key Management for Secure Internet Multicast using
Boolean Function Minimization Techniques,” Proc. IEEE INFOCOM ’99,
Conf. Comp. Commun., vol. 2, 1999, pp. 689–98.

[14] D. Balenson, D. A. McGrew, and A. T. Sherman, “Key Establishment in
Large Dynamic Groups Using One-Way Function Trees and Amortized Ini-
tialization,” Internet Draft, 1999.

[15] R. Canetti, T. Malkin, and K. Nissim, “Efficient Communication-Storage
Tradeoffs for Multicast Encryption,” Proc. Advances in Cryptology — EURO-
CRYPT ’99 (Int’l. Conf. Theory and Applications of Cryptographic Tech-
niques), 1999, pp. 459–74.

[16] K.-C. Chan and S.-H. G. Chan, “Distributed Servers Approach for Large-
Scale Secure Multicast,” IEEE JSAC, special issue on network support for
multicast communications, vol. 20, no. 8, Oct. 2002.

[17] K.-C. Chan and S.-H. G. Chan, “Distributed Servers Networks for Secure
Multicast,” Proc. IEEE Globecom ’01, (San Antonio), TX, 25-29 Nov. 2001.

[18] W. Diffie and M. Hellman, “New Directions in Cryptography,” IEEE Trans.
Info. Theory, vol. IT-22, Nov. 1976, pp. 644–54.

[19] M. Just and S. Vaudenay, “Authenticated Multi-Party Key Agreement,” Proc.
Advances in Cryptology — ASIACRYPT: Int’l. Conf. Theory and Application
of Cryptology and Info. Security, LNCS, Springer-Verlag, 1996, pp. 36–49.

[20] M. Burmester and Y. Desmedt, “A Secure and Efficient Conference Key Dis-
tribution System,” Proc. Advances in Cryptology — EUROCRYPT ’94, Wksp.
Theory and Application of Cryptographic Techniques, Springer-Verlag,
1995, pp. 275–86.

[21] G. Ateniese, M. Steiner, and G. Tsudik, “New Multi-Party Authentication
Services and Key Agreement Protocols,” IEEE JSAC, vol. 18, no. 4, Apr.
2000, pp. 628–39.

[22] M. Steiner, G. Tsudik, and M. Waidner, “Key Agreement in Dynamic Peer
Groups,” IEEE Trans. Parallel and Distributed Systems, vol. 11, no. 8, Aug.
2000, pp. 769–80.

[23] Y. Kim, A. Perrig, and G. Tsudik, “Simple and Fault-tolerant Key Agreement
for Dynamic Collaborative Groups,” Proc. ACM Conf. Comp. and Commun.
Security, Nov. 2000, pp. 235–44.

[24] K. Becker and U. Wille, “Communication Complexity of Group Key Distri-
bution,” Proc. ACM Conf. Comp. and Commun. Security, (New York, NY),
1998, pp. 1–6.

[25] G. H. Chiou and W. T. Chen, “Secure Broadcasting Using the Secure
Lock,” IEEE Trans. Software Eng., vol. 15, no. 8, IEEE Computer Society,
1989, pp. 929–34.

[26] A. Fiat and M. Naor, “Broadcast Encryption,” Proc. Advances in Cryptolo-
gy — CRYPTO ’93, Springer-Verlag, Berlin, Germany, 1994, pp. 480–91.

[27] C. Blundo et al., “Perfectly Secure Key Distribution for Dynamic Confer-
ences,” Info. and Computation, vol. 146, no. 1, Oct. 1998, pp. 1–23.

[28] D. R. Stinson, “On Some Methods for Unconditionally Secure Key Distribu-
tion and Broadcast Encryption,” Designs, Codes and Cryptography, vol. 12,
no. 3, 1997, pp. 215–43.

[29] B. Chor et al., “Tracing Traitors,” IEEE Trans. Info Theory, May 2000, vol.
46, no. 3, pp. 893–910.

[30] M. Abdalla, Y. Shavitt, and A. Wool, “Key Management for Restricted Mul-
ticast Using Broadcast Encryption,” IEEE/ACM Trans. Net., Aug. 2000, vol.
8, no. 4, pp. 443–54.

[31] S. Mittra, “Iolus: A framework for Scalable Secure Multicasting,” Proc. ACM
SIGCOMM’97, 1997, pp. 277–88.

[32] T. Hardjono, B. Cain, and I. Monga, “Intra-Domain Group Key Manage-
ment Protocol,” Internet Draft, IETF, 1998.

[33] T. Hardjono, B. Cain, and N. Dorawamy, “A Framework for Group Key
Management for Multicast Security,” Internet Draft, IETF, 1999.

[34] M. Waldvogel et al., “The VersaKey Framework: Versatile Group Key Man-
agement,” IEEE JSAC, vol. 17, no. 9, Sept. 1999, pp. 1614–31.

Biographies
KIN-CHING CHAN (ching@cs.ust.hk) received the B.Sc. and M.Phil. degree in com-
puter science from the Hong Kong University of Science and Technology, Hong
Kong, in 1999 and 2001, respectively. He is currently with Roctec Technology
Ltd., developing networking solutions for the company. In 1998-99, he was a
visiting student at the Computer Science Department, University of Minnesota at
Twin Cities, MN. His research interests include multimedia networking, multicast
protocols, computer security, cryptography, and coding theory.

S.-H. GARY CHAN [M’98] (gchan@cs.ust.hk) received the Ph.D. degree in electri-
cal engineering with a minor in business administration from Stanford University,
Stanford, CA, in 1999, and the B.S.E. degree (highest honor) in electrical engi-
neering from Princeton University, Princeton, NJ, in 1993. He is currently an
assistant professor with the Department of Computer Science, Hong Kong Univer-
sity of Science and Technology, Hong Kong, and an adjunct researcher with
Microsoft Research Asia in Beijing. He was a visiting assistant professor in net-
working at the Department of Computer Science, University of California, Davis,
from September 1998 to June 1999. He was a William and Leila Fellow at Stan-
ford University in 1993–94. At Princeton, he was the recipient of the Charles Ira
Young Memorial Tablet and Medal, and the POEM Newport Award of Excel-
lence in 1993. He is a member of Tau Beta Pi, Sigma Xi, and Phi Beta Kappa.

