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Chameleon: Survey-Free 
Updating of a Fingerprint 
Database for Indoor 
Localization

L ocation-based services (LBS) have 
been attracting attention in recent 
years. Despite much commercial 
success for outdoor LBS using GPS, 
indoor localization remains chal-

lenging due to the absence of GPS signals.1

With the ubiquitous deployment of wireless 
local area networks (WLANs), localization sys-
tems that use Wi-Fi signals as a “fingerprint” 

have recently attracted atten-
tion.2 The fingerprinting ap-
proach comprises two phases. 
In the survey phase, a site sur-
vey is conducted at different ref-
erence points (RPs) of known 
positions to create a fingerprint 
database. In the query phase, a 
mobile agent (user) collects sig-

nal measurements at its location. With these mea-
surements, the server then estimates the agent’s 
location.2–4

Clearly, localization accuracy hinges on how 
well the fingerprint database reflects the current 
signal environment. This environment is by no 
means static due to environmental changes, such 
as the introduction or removal of access points 
(APs), the establishment or tear-down of parti-
tions, or the adjustment of AP power (because  

of coverage extension, interference avoidance, 
wearing, and so on). Usually, the number of 
such altered APs is few compared to the total 
APs at a location (say 1–4 alterations out of ap-
proximately 10–20 signals collected). As AP sig-
nals change, the actual fingerprint then differs 
from the one previously collected at the same 
location and stored in the database. Long-term 
altered AP signals—those altered over days or 
even months—have a far larger impact on loca-
tion accuracy than short-term transient signal 
fluctuations (in seconds or minutes).

Figure 1 illustrates a heat map of two altered 
APs during two site surveys conducted in our 
campus atrium (2,000 m2) on 10 October and 
10 December 2014. During each site survey, we 
collected 520 RPs at 5 m grid density (with 28 
physical APs detected per RP on average). As 
the figure shows, the transmission power and 
installed locations of the APs changed due to an 
academic building renovation. If these altered 
APs aren’t known during location estimation, 
it can result in high localization errors.

To address this issue, we propose Chameleon, 
which offers novel and highly accurate finger-
printing localization when APs might have been 
altered. (If the environment experiences drastic 
change, a full site survey should be conducted.) 

In fingerprint-based indoor localization, keeping the fingerprint current 
is important for localization accuracy. Chameleon is a novel survey-
free approach to localize users and maintain an updated fingerprint 
database despite fingerprint signal changes. Extensive experimental 
trials confirm Chameleon’s potential.

Feature: Indoor Localization

Suining He, Bo Ji, and  
S.-H. Gary Chan
The Hong Kong University of 
Science and Technology



october–december 2016	 PERVASIVE computing� 67

Chameleon is transparent to users, 
employing implicit crowdsourcing to 
achieve survey-free updating of its da-
tabase to reflect the current AP signals. 
The basic idea is that users in the indoor 
space play the roles of both location 
“queriers” and “surveyors” at the same 
time (without their awareness). As their 
measured RSS samples capture the cur-

rent indoor signal characteristic, we use 
the samples to localize users and update 
the radio map in a timely manner.

A Novel Approach
Developing techniques that can re-
duce survey costs and update finger-
prints has long been of interest to 
researchers (see the “Related Work 

on Survey Reduction and Finger-
print Update” sidebar). In contrast 
to these works, Chameleon has sev-
eral strengths. It doesn’t need explicit 
user participation or user location 
inputs to collect current fingerprints. 
Furthermore, it doesn’t require any 
costly expert surveyors. We use only  
the measured RSS data of (naive) clients  

T o keep the radio maps up to date, the indoor site where a 

localization system is deployed has traditionally been sur-

veyed regularly1,2 and frequently to collect new signal signatures 

(fingerprints). In this surveyor approach, trained surveyors walk 

through the entire site to collect fingerprints and upload them 

and the associated locations to the database, which is laborious 

and time-consuming.

Some model-based approaches use signal propagation models 

and Wi-Fi monitors3-6 to predict the spatial distribution changes 

of signals and update the database. Because additional, special-

ized infrastructures are usually needed, these approaches might 

not be cost-effective for dense deployment in large indoor sites 

(such as airports).

Recently, a crowdsourcing approach has been studied, where 

the fingerprint database is updated in an “organic” participa-

tory manner,7 relying on the feedback of users to record new 

fingerprint data at certain locations.7,8 Although this approach 

greatly reduces the survey cost, it requires explicit user partici-

pation and thus can be intrusive or inconvenient for users. It’s 

also difficult to expect normal users to have prior knowledge of 

the indoor site for collecting fingerprints.

More recent approaches try to involve unconscious users in col-

lecting fingerprints. WILL9 and Zee10 use dead reckoning in mobile 

devices to predict locations, associating the fingerprints collected 

by users with these locations. However, they require accurate mo-

tion sensor calibration and a known starting location for users.

Pattern-based approaches, such as UnLoc,11 EZ,12 and Walkie-

Markie13 propose using the Wi-Fi landmarks and signal propa-

gation to constrain the location estimation. They don’t rely on 

dense site-survey data and thus reduce labor-intensive efforts. 

However, they work best in a narrow indoor space, where the 

signal patterns are distinguishable.
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to update the stored radio map to the 
current signal environment.

On the surface, this approach seems 
counter-intuitive. After all, how can a 
client, without knowing his or her own 
location, be an unconscious surveyor at 
the same time, in the presence of possibly 
altered APs? To address this, Chameleon 
must answer two critical questions using 
only the measured RSS data of its clients:

•	How do you estimate indoor loca-
tion by identifying and filtering out 
altered APs?

•	How do you update the database con-
tinuously to adapt to environmental 
signal changes, reflecting the current 
fingerprint in a timely manner?

Chameleon is based on the insight 
that any arbitrary sizable subset of un-
altered APs can be used for accurate 
localization. Chameleon therefore fil-
ters out altered APs with an efficient 
clustering algorithm. Chameleon is in-
dependent of and amenable to any lo-
calization techniques. After the altered 
APs are filtered, any existing algorithm 
can localize the user. With the user lo-
cation, a database update algorithm 
is used to adapt the radio map to the 

collected RSS data. Although Chame-
leon is studied in the context of Wi-Fi 
signals, it can be applied to any finger-
print-based localization system, such as 
FM and channel state information.

We conducted an extensive simula-
tion and experimental study on our 
campus and at an international airport 
to evaluate Chameleon’s performance.

System Overview
Chameleon is based on the following 
observations:

•	Locations estimated from subsets of 
unaltered APs tend to be similar and 
thus cluster together, because these 
signal subsets are consistent with the 
fingerprints in the database, which 
leads to high localization accuracy.

•	Locations estimated from subsets 
consisting of altered APs tend to be 
dispersed in nature, because they’re 
inconsistent with the stored finger-
prints, and localization error is high 
in these cases.

Figure 2a shows a typical example of 
the locations estimated from random 
subsets of RSS based on our experiments 
on our campus. We randomly corrupt 

two of the APs by reducing their power 
and collect RSS at a known location (de-
tailed experimental settings will be de-
scribed later). With the 25 APs collected, 
we form random subsets, and with each 
subset, we estimated the position and 
represented it as a cross or circle.

It’s clear from Figure 2a that the 
locations estimated with the subsets 
formed by unaltered APs are consistent 
and cluster around the true user loca-
tion, while those estimated by the sub-
sets consisting of altered APs are scat-
tered and dispersed. We thus can apply 
a clustering algorithm. User location is 
at the “dense” cluster. Our approach is 
similar in spirit to the RANdom SAm-
pling Consensus (RANSAC)5 in iden-
tifying and filtering altered APs. Using 
it, Chameleon can transparently adapt 
the fingerprints and accurately localize 
users despite AP signal alterations.

Figure 2b shows the overall work-
flow process of Chameleon, which 
comprises the following three phases.

Fast Fingerprint-Integrity 
Detection
Normally, APs are altered only occa-
sionally, and such alteration wouldn’t 
affect large geographical scope. The 

Figure 1. Change of AP signals in The Hong Kong University of Science and Technology (HKUST) atrium (black crosses indicate 
the potential locations of two Wi-Fi APs): (a) media access control (MAC) address 19-BE-00-05-BO and (b) MAC address 
23-EB-3A-OC-35.
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fingerprint-integrity detection is too fast 
and early to detect whether the finger-
print measured by the client at a loca-
tion is integral. If so, localization can 
be conducted efficiently. Otherwise, 
the more costly AP filtering would be 
executed.

Altered-AP Filtering
In this phase, Chameleon randomly 
samples subsets of APs obtained from 
the RSS reported by the client, creat-
ing the RSS subset sampling. It then 
estimates a location for each of these 
subsets. For those subsets excluding 
altered APs, their estimated locations 
would cluster together. The remaining 
subsets generate locations spreading 
around the region. The clustering algo-
rithm (see Figure 3) and a fingerprint 
similarity check are then conducted on 
these locations to identify the cluster 
(or clusters) consisting of the unaltered 
APs. This yields the accurate location 
of the client.

Fingerprint Database Update
Traditionally, the measured RSS vec-
tor of the client is discarded after the 
localization decision. In Chameleon, 
the RSS is used in the fingerprint up-
date phase, where the RSS containing 
the altered AP (or APs), together with 
the estimated location, is used to up-

date the radio map as it captures new 
environmental signal characteristics.

Fast Detection for Fingerprint 
Integrity
AP signal alteration isn’t usually be-
yond noise level. Even when this hap-
pens, the affected area is only the area 
covered by the altered AP. Therefore, 
it’s more likely that the RSS received 
doesn’t contain altered APs. We thus 
need a fast algorithm to detect finger-
print integrity early on so that the user 
location is efficiently estimated and 
returned based on the collected RSS. 
However, the algorithm shouldn’t lead 
to frequent fingerprint updates when 
there are transient signal changes in a 
dynamic environment.

Under the relatively uncommon case 
that fingerprint inconsistency is de-
tected (altered APs exist in the mea-
sured RSS vector), then the computa-
tionally more expensive altered-AP 
filtering should be executed to find the 
user’s location. Here, we outline the 
process for fast fingerprint-integrity 
detection.

Simple RSS Subset Sampling
We first obtain a few sizable subsets 
(say, five or six) of the measured RSS, 
and we use these subsets to estimate the 
client’s location. Although any subsets 

will do, for simplicity, we use the fol-
lowing to cover all of the APs:

•	 the full original RSS vector;
•	 two subsets of similar size, obtained 

by dividing the measured RSS vector 
into two parts in the middle; and

•	 three subsets of similar size, obtained 
by dividing the measured RSS vector 
into three equal parts.

Therefore, only six subsets are involved 
in the location estimation step.

Location Estimation
Using the subsets generated, Chame-
leon estimates the user locations (based 
on any localization algorithm). In other 
words, a set of locations are generated.

Dispersion Detection
For the locations generated, Chameleon 
computes their pair-wise Euclidean dis-
tances. If the average distance is lower 
than a certain threshold, denoted as td, 
the estimated locations of the RSS sub-
sets are very close to each other, and 
Chameleon concludes there are no al-
tered APs. In this case, the centroid of 
the estimated locations is returned as 
the client position.

On the other hand, if the average dis-
tance is above td, the dispersion indi-
cates that some AP signals might have 

Figure 2. The core of Chameleon system: (a) an observation of subset location estimation, and (b) an overview of the Chameleon 
system.

Good cluster

True location

X-axis of the floor map

Client

y-
ax

is
 o

f t
he

 fl
oo

r m
ap

Location from subject excluding altered APs

Location from subject including altered APs

Observed
RSSs

Estimated
location

Estimated
location

Location
estimated

Simple RSS
subset sampling

Fast fingerprint
integrity detection

N

Y

Y
Dispersion

exists?

New AP(s)
exists?

Database
update

RSS
subset

sampling

Location
estimation
for subset

Location
clustering

Similarity
check

Server

Altered AP filtering

(a) (b)



70	 PERVASIVE computing� www.computer.org/pervasive

Feature: Indoor Localization

changed. Chameleon then moves to the 
more expensive phase, altered-AP filter-
ing, to compute the location of the users. 
In our deployment, we set the threshold  

as  t e     ·d η= , where h is a predefined 
parameter and e  is the mean localiza-
tion error of offline training target sam-
ples (without altered APs).

Discovery of New APs
For a client location, if his or her RSS 
consists of an AP that has not been in the 
fingerprint database, a new AP is found. 
In this case, we need to update the data-
base by adding the newly discovered AP 
and its signal into the database.

Indoor Localization by 
Filtering Altered Aps
Given the decision from fast detection 
that there might be altered APs, Chame-
leon further conducts subset localiza-
tion and clustering to locate the target  
and filter out altered APs.

RSS Subset Sampling
Let N be the total number of APs detected 
in the whole site, and set A = {1, …, N} be 
the index of the APs. We denote the mea-
sured RSS sample of the target (client) as

V = {f1, f2, …, fl, …, fL},

where L is the number of APs re-
ceived by the target (1 ≤ L ≤ N), and 

A l L{ : T }(1        )l l  Al
φ = ≤ ≤  is the couplet 
indicating the received AP index Al ∈ A  
and its corresponding signal strength 
T (mW)Al

. Given V, we further define 
its extended signal vector V by pad-
ding those undetected APs with very 
low value (say, 0)—that is,

T T T T[ , ,..., ,..., ]i N1 2
V = ,

where Ti = 0 if i ≠ Al for ∀l ∈ {1, …, L).
To filter altered APs in the measured 

RSS sample, we first generate RSS sub-
set Vs by randomly selecting APs from 
V—that is, Vs ⊂ V. For each generated 
RSS sample Vs, we then form its ex-
tended vector s

V  analogously as V to 
V.

For efficiency, we can’t generate all 
the possible subsets of V. Therefore, we 
generate a certain number of subsets 
that are random samples of the exhaus-
tive set (that is, uniformly chosen from 
the power set). This linear sampling 
works as follows. For each detected AP, 
we toss a fair coin to decide whether to 
include it into the subset. As the subsets 
will be used for localization, each subset 
shouldn’t consist of too few APs (we used 

Figure 3. The Chameleon system’s altered access point (AP) filtering algorithm. For 
a received RSS sample V, multiple subsets Vs are first generated by random sampling 
(lines 1–14). The K-Nearest-Neighbor (K-NN) algorithm is implemented to estimate 
the locations for these subsets (lines 15–19). Clustering is then conducted on these 
locations based on k-means algorithm (line 20). By checking cluster similarity, 
Chameleon identifies the good cluster, where the target is likely located (lines 21–29).

Input: Received RSS vector v from client.
Locations of RPs.
Signal vectors of all RPs.
Number of RSS subsets  M to be generated.
Output: Location estimation ˆ ˆ,x y for client.
/*     RSS subset sampling. */
1      Set of RSS subsets Ψ ← { }.
2      while |Ψ| ≤ M do 
3 RSS subset vs ← {}.
4 for each received AP Al  do
5 Toss a coin for Al .
6 if the coin is head then
7 Add {Al  : Tl } into Vs .
8 end
9                end
10              if |vs | ≥ γ  then
11 
12 Add Vs into Ψ. 

Extend vs  into Vs
%

%

13              end 
14       end 
/*       Location estimation. */
15      Set of location estimations Ω ← { }.
16      for each RSS subset  vs  in Ψ do 
17 %Compute estimated location <xs , ys> for Vs .
18 Add <xs , ys> into Ω.
19       end
/*       Clustering the location estimations. */
20       Apply clustering algorithm on locations Ω.
/*       Cluster similarity check. */
21       Set of cluster similarities Θ ← { }.
22       for each cluster c in formed clusters do 
23 Calculate centroid location <xc , yc > of cluster c.
24 Calculate location distance between <xc , yc > and the RPs.
25 Pick Q nearest RPs from <xc , yc >.
26 Calculate cluster similarity θc between RSS subsets in cluster c and

these Q nearest RPs.
27. Add θc into Θ.
28.       end 
29.       Pick  C * with maximum cluster similarity in Θ. 
30. ˆ ˆ,x y ← Centroid of C *

%
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a minimum of three APs in our study). 
Otherwise, the subset will be discarded.

Note that because the subset size and 
the included APs are random, some 
subsets will likely exclude altered APs. 
These subsets would result in a cluster, 
providing accurate location estimation 
for the client.

Localization Algorithm
We perform location estimation for all 
generated RSS subsets. As mentioned 
before, Chameleon is independent of—
and thus can be integrated with—any 
fingerprint-based localization algo-
rithms. For concreteness, we use the  
K-Nearest-Neighbor (K-NN) to estimate  
the user location for each RSS subset.

In K-NN, we find the K nearest RPs 
whose signal strengths closely match s

V .  
That is, it finds the K RPs that have the 
smallest Euclidean distances from s

V .  
Mathematically, we denote the RSS sam-
ple at an RP as U, and we denote its cor-
responding extended vector , U  given by

R R R= , ,..., .N1 2
 [ ]U

With  U  and V, their Euclidean distance 
D is defined as

D T R .
l

N

l l
2

1

2∑ )(= −
=

After finding the K RPs, we normalize 
their signal strength distances as weights 
of the corresponding RPs. The location is 
then estimated as the weighted average of  
these RP locations. More precisely, let 
Dq be the distance between RP q and 
the client signal (1 |≤| q |≤| K). The esti-
mated location x yˆ , ˆs s  for a subset Vs is 
expressed as

x y x yˆ , ˆ   , ,s s
q

K

q q q
1

∑ω=
=

where <xq, yq> is the RP q’s position, 
and wq is the normalized weight of  
RP q given by

∑
ω =









=

D

D

1

1
.q

q

q
q
K

1

Location Clustering
The locations estimated from RSS 
subsets without any altered AP tend 
to cluster together and are called the 
good cluster. The locations of subsets 
consisting of some altered APs tend to 
disperse on the floor map. To identify 
the cluster excluding altered APs, we 
use a clustering algorithm on the calcu-
lated locations of the subsets.

We employ the k-means cluster-
ing algorithm to find the cluster that 
excludes altered APs. (Chameleon is 
independent of, and thus compatible 
with, other clustering algorithms, such 
as the algorithm proposed by Brendan 
Frey and Delbert Dueck6). Given a set 
of 2D data points, we partition them 
into k clusters based on their Euclidean 
distance.

Similarity Check to Find the Client 
Location
After the clustering algorithm, we use 
the similarity check to distinguish the 
good cluster from the other clusters, 
thereby identifying the client’s location. 
Because most RSS subsets in the good 
cluster exclude altered APs, they show 
stronger similarity with the fingerprint 
in the database. Therefore, by calculat-
ing the similarity between the cluster 
and the fingerprint database (called 
cluster similarity), we can determine 
which cluster is the good one for client 
localization.

During this stage, we implement co-
sine similarity to measure the closeness 
of two vectors. Given any two extended 
signal vectors  U  and s

V , we compare 
their cosine similarity, defined as

,  s
s

s

 

 

 

θ )( = ⋅
⋅

U V U V
U V

.� (1)

For each cluster, we select several 
nearest RPs according to the cluster’s 
centroid location. Then, for each RSS 
subset in the cluster, we sum up its 
cosine similarity with all these RPs. 
Finally, we compute cluster similar-
ity between all subsets in the cluster 
and RPs—that is, the average of all 
the similarity between subsets and 

the nearest RPs. For cluster c, denote 
the fingerprints of the nearest Q RPs 
as |1   q   Q ,q

c
{ }≤ ≤U  and its sth RSS 

subset as s S1        c
s
c
 )( ≤ ≤V . Then, based 

on Equation 1, the cluster similarity qc 
is calculated by

S
 

1
,c

c
s

S

q

Q

q
c

s
c

1 1

c

 ∑∑θ θ )(=
= =

U V .

The cluster with the highest similarity 
qc will be selected as the good one, and 
its centroid will be returned as the po-
tential client location.

Database Update with the 
Client RSS
After estimating the client’s location, 
we use the RSS collected by the client 
to update the database. This is possible 
because the collected signal strengths—
in particular, the altered ones—have 
captured environmental changes. The 
measured RSS, along with the location, 
can be used to update that location’s 
signature (fingerprint).

We update the fingerprint database 
as follows. We denote the distance be-
tween the estimated client location and 
his or her nearest RP as d. Let tu be a 
threshold distance (say, a few meters) 
for the update, above which the signal 
doesn’t observably change.

If d < tu, we conclude that the near-
est signature has been changed due to 
altered APs. In such a case, we use the 
measured RSS vector α from the cli-
ent to update the RP’s signal strength. 
If a new AP is detected, a new entry is 
initiated at the RP and its correspond-
ing RSS is added to the vector. For the 
other identified APs, let 0 ≤ α ≤ 1 be the 
weight indicating how likely the new 
data affects the stored signature (α = 0 
means that a new incoming RSS doesn’t 
affect the signature, and vice versa).

Then we denote the current signature 
as  V̂ and update it based on the new cli-
ent data V such that

V V Vˆ 1     ˆ .α α)(← − +V V Vˆ 1     ˆ .α α)(← − +

For the case that d > tu, V is discarded 
and the radio map isn’t updated.
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Experimental Results
We implemented Chameleon and 
evaluated its performance through 
experiments on our campus, The  
Hong Kong University of Science and 
Technology (HKUST), and at the Hong 
Kong International Airport (HKIA).

Experimental Settings  
and Comparison Metrics
We developed an Android APP to pro-
vide indoor localization service at both 
HKUST and HKIA. During data pre-
processing, we filtered out the mobile 
APs tethered by smartphones and com-
bined virtual APs (VAPs).7 For the lo-
calization decision, we filtered out the 
APs whose RSS in the whole survey site 
was lower than minus 90 dBm.

We conducted experiments on two 
sites, the first of which was the HKUST 
campus atrium, an indoor atrium 
(2,700 m2) in which data from 239 RPs 
was collected (on 18 May 2014). The 
RPs were taken at three-meter intervals. 
Client RSSs were taken in the middle of 
RPs. Overall, 140 physical APs were se-
lected for testing. At each RP, a client 
could measure 28 distinctive physical 
APs on average (5 APs of signals above 
-60 dBm). Each target could detect 16 
physical APs on average.

The second experiment site was the 
HKIA departure gate floor, a 27,300 m2  
area in which data from 1,364 RPs 
was collected on 2 January 2014. The 
RPs were taken at five-meter inter-
vals. We selected 350 physical APs in 
the survey site for experiment. Many 
of the installation points of the APs 
were outside our survey area (though 
we detected their signals in the area). 
Each RP measured 47 distinctive APs 
on average (4 APs of signals above  
−60 dBm), and each target could detect 
28 APs. (Details of the floor plans ap-
pear elsewhere.8)

During the site survey and target 
collection, the detected APs were un-
der uncoordinated deployment from 
various parties at different floors or lo-
cations. The experimental sites in the 
airport and campus atrium included a 

large open indoor space, where the sig-
nal attenuation was relatively low com-
pared with office buildings. Thus, we 
could measure many APs in both sites.

Unless otherwise stated, we used 
the following parameters in our 
experiments:

•	We set K to 10 in K-NN location 
estimation (based on our empirical 
studies, which found that K = 10 
resulted in few errors and required 
little computation).

•	We selected nine nearest RPs for each 
cluster in cluster similarity calculation.

•	We used four clusters for k-means 
clustering.

•	We set the threshold of fast finger-
print-integrity detection to h = 1.5 
for both HKUST and HKIA (e 3.9=
m for 1,200 offline training samples 
in HKUST and e 9.95=  m for 1,600 
samples in HKIA).

•	We generated 200 subsets for each 
subset sampling.

•	We set a to 0.5 in the database update.
•	The distance threshold was tu = 8 m 

for the database update.

In HKUST, after we collected the fin-
gerprint, we reduced the power of two 
APs in the whole survey site to study 
Chameleon performance. For HKIA, 
four APs were altered for evaluation. 
The altered APs were introduced by 
setting the power P to bP (mW), where 
b was 0.4 (by default); we conducted 30 
trials overall at each client position.

We evaluated the localization perfor-
mance and signal adaptivity using the 
following metrics.

The first metric was the accuracy of 
fast fingerprint-integrity detection. 
Given overall E testing cases (targets), 
we let TP (true positive) be the number 
of correct classifications with actually 
changed APs, and TN (true negative) 
be that with unchanged APs. Similarly, 
we let FP (false positive) be the number 
of misclassifications whose measured 
APs were actually unchanged and FN 
(false negative) be that with actually 
changed APs. Then, E = TP + TN + 

FP + FN. We defined the true detection 
rate (TDR) as

TP TN
E

TDR   ,= +

while the false alarm rate (FAR) was 
defined as

FP
FP TN

FAR   .=
+

The true positive rate (TPR) was given 
by

TP
TP FN

TPR   ,=
+

while true negative rate (TNR) was

TN
TN FP

TNR   .=
+

The next metric was the localization 
error e, given by the Euclidean distance

x ye     x    ˆ     y    ˆ ,2 2 2)) ((= − + −

where (x, y) is the true location and 
x yˆ , ˆ )(  is the estimated location.

The third metric was the localiza-
tion weight of AP l—that is, the per-
centage of subsets with AP l over all 
the subsets. Ml was the number of 
subsets in the cluster including AP l, 
and |Vs| was the total number of APs 
included in the sth RSS subset. We de-
noted the number of subsets to be gen-
erated as M. Then the weight of AP l 
was defined as

W
M

  .l
l

s
M

1∑
=

= Vs

We compared Chameleon with the 
Bayesian method and Cosine similar-
ity algorithms. Bayesian algorithm le-
verages the maximum likelihood to es-
timate the location.2 It first calculates 
the probability distribution of the RSS 
value at each RP. Given a target RSS 
vector, it computes the overall prob-
ability of the vector at each RP and 
finds the one with the maximum like-
lihood to determine the target loca-
tion. The Cosine similarity algorithm 
uses signal similarity to estimate loca-
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tion. The similarity between a received  
signal vector and the RP fingerprint 
is calculated according to Equation 1. 
Then the location is computed based on 
the K-NN algorithm.1,9

Illustrative Results
Figure 4 shows the overall performance 
of Chameleon at HKUST. Figure 4a 
shows TPR, TDR, and TNR versus the 
distance threshold parameter h in fast 
fingerprint-integrity detection. We con-
ducted the testing over 1,200 targets 
collected at the HKUST campus, half of 
which were positive cases (we randomly 

altered two of the detected APs at each 
target). By varying h on some offline 
samples, we found the threshold td with 
the optimal dispersion detection.

In general, TDR first increased and 
then decreased, while TPR decreased 
and TNR increased. When h was small, 
td was small. The fast detection was sensi-
tive, and many targets were classified as 
“AP alteration,” leading to high FP. TPR 
was thus high while TNR was low. As td 
increased, the influence of transient signal 
fluctuation decreased and FP was thus re-
duced. As td further increased, TDR de-
creased, because a loose threshold could 

also classify AP alteration as “unaltered,” 
leading to more FN and lower TPR. In 
HKUST, the optimal TDR was 93.3 per-
cent, and FAR was 6.8 percent.

We also collected 1,600 targets at HKIA 
and conducted a similar experiment. The 
optimal TDR and FAR at HKIA was 
93.5 percent and 7.7 percent, respec-
tively. For HKUST and HKIA, we set h 
= 1.5 as the default during deployment.

Figure 4b shows the cumulative prob-
ability of localization error. Chameleon 
achieved much better localization accu-
racy than the other two algorithms, be-
cause it pruned the altered APs before 

Figure 4. Overall performance of Chameleon at The Hong Kong University of Science and Technology (HKUST): (a) the true 
positive rate (TPR), true detection rate (TDR), and true negative rate (TNR) versus the distance threshold parameter; and (b) the 
cumulative probability distribution of localization error in fast fingerprint-integrity detection.
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Figure 5. Experimenting with the AP number (at HKUST): (a) the localization error versus the number of APs at the site, and (b) 
the number of APs received at the client’s location versus the number of APs at the site.
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localization. The other approaches suf-
fered from higher error because altered 
APs led to a dispersed set of matching 
RPs, and the client was less likely to be 
mapped to the correct region.

Figure 5 shows the impact of the AP 
number on localization accuracy. We 
randomly turned on some of the APs 
to conduct experiments. Figure 5a 
shows the average localization error 
versus the number of APs on the site. 
Clearly, localization error decreased 
with the number of APs, because more 
APs mean better differentiation of fin-
gerprints and thus better localization.

Chameleon achieved much lower lo-
calization error because of its altered-AP  
filtering. By clustering the estima-
tions and finding the good cluster, it 
reduced the chance of mapping the 
client to a wrong location. There was 
diminishing return as we increased  

the number of APs in the site (approxi-
mately 80 to 100 in this experiment), 
because signal measurement noise 
became the limiting factor as the AP 
number increased.

Figure 5b shows the average AP num-
ber received by a client versus the number 
of APs on the site. The greater the number 
of APs, the more APs there are for the cli-
ent to detect. We see that a low localiza-
tion error can be achieved when there is a 
sufficient number of APs (approximately 
20) near the client. Too few detectable 
APs would lead to poor performance.

We also conducted experiments to 
study the learning process or data-
base update of Chameleon. Figure 6a 
shows the localization error versus the 
number of altered APs. Localization 
errors of both Cosine and Bayesian 
increased quickly with the increase of 
altered APs. Chameleon showed better 

robustness against altered APs, mainly 
because it filtered out the altered APs 
through clustering.

Figure 6b shows the weight (impor-
tance) of APs in localization versus the 
user update index. We show the weights 
of the two altered APs—AP 1 and AP 
2—and an unaltered AP 3 over time. 
Initially, only the unaltered APs were 
used for localization. The localiza-
tion weights of altered APs were low 
at the beginning, because the APs were 
filtered out in the good cluster. The 
weights of AP 1 and AP 2 gradually 
increased with more incoming user re-
cords, showing that the database grad-
ually adapted to the altered signals. 
Chameleon was effective, because it 
identified the altered APs and updated 
the database accordingly.

Figure 6c shows the localization er-
rors against the index of fingerprint 

Figure 6. Experiment on adaptivity to signal change (HKUST): (a) the localization error versus the number of altered APs, (b) the 
localization weight of APs versus the user index, and (c) the localization error with updated fingerprints.

0 2 4 6 8 10 12
2

(a)

(c)

(b)

4

6

8

10

12

14

Number of altered APs

M
ea

n 
lo

ca
liz

at
io

n 
er

ro
r (

m
)

Bayesian
Cosine
Chameleon

1 2 3 4 5 6 7 8
0

0.01

0.02

0.03

0.04

0.05

0.06

User index

Lo
ca

liz
at

io
n 

w
ei

gh
t

 

 
Unaltered AP
Altered AP 1
Altered AP 2

0 10 20 30 40 50 60 70 80 90

4

5

6

7

User index

Lo
ca

liz
at

io
n 

er
ro

r (
m

)

Bayesian

Cosine

Chameleon



october–december 2016	 PERVASIVE computing� 75

updates. We observed remarkable im-
provement with the Cosine and Bayes-
ian algorithms when the fingerprint da-
tabase was updated by the Chameleon 
scheme. For Chameleon, the fingerprint 
update reduced the discrepancy be-
tween the database and the environment.  
It reduced the dispersion of fast detection 
in subsequent user localization, thereby 
reducing the need for the more expensive 
second phase of subset sampling.

We also conducted various other 
experiments at HKIA. As the results 
were quite qualitatively similar, we 
don’t include them here due to space 
constraints. Further details appear 
elsewhere.8

I n our future research studies, we 
will further integrate Chameleon 
with large-scale crowdsourcing 
systems for more ubiquitous lo-

calization scenarios. In this way, the 
fingerprint-based localization system 
will evolve over time and adapt to the 
environmental changes. 
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