
Peer-to-Peer Netw. Appl.
DOI 10.1007/s12083-014-0297-8

Peer-to-peer error recovery for wireless video broadcasting

Bo Zhang · S.-H. Gary Chan · Gene Cheung

Received: 26 January 2013 / Accepted: 6 June 2014
© Springer Science+Business Media New York 2014

Abstract Wireless video broadcasting has experienced
much growth in recent years. In video broadcasting, packet
loss is inevitable due to dynamic channel condition. To
address this, we study peer-to-peer (P2P) error recovery. In
our system, a mobile station (MS) may generate some par-
ity packets based on its received source packets and share
them by broadcasting to its neighbors via a secondary chan-
nel (e.g., Wi-Fi or Bluetooth). With parity packets from
its neighbors, an MS can effectively repair its lost packets
locally. An important problem is to minimize the total num-
ber of parity packets generated while achieving a certain
residual loss rate at the MSs. We first formulate the problem
as a linear program which can be solved efficiently as the
optimal performance of the system. We then propose a novel
and fully distributed algorithm based on only local informa-
tion at clients. Simulation results show that our distributed
solution achieves high recovery efficiency and fast conver-
gence. It generates very low recovery traffic and high video
quality. Its performance is very close to the optimal solu-
tion based on centralized approach with complete network
information.

This work was supported, in part, by the HKUST Special Research
Fund Initiative (SRFI11EG15) and Hong Kong Research Grant
Council (RGC) General Research Fund (610713)

B. Zhang (�) · S.-H. Gary Chan
Department of Computer Science and Engineering,
The Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong
e-mail: zhangbo@cse.ust.hk

S.-H. G. Chan
e-mail: gchan@cse.ust.hk

G. Cheung
National Institute of Informatics, 2-1-2 Hitotsubashi,
Chiyoda-ku, 101-8430 Tokyo, Japan
e-mail: cheung@nii.ac.jp

Keywords Wireless communication · Wireless networks ·
Broadcast technology · Cooperative systems · Peer-to-peer
computing · Error compensation · Error recovery ·
Multimedia communication

1 Introduction

With the advance of mobile devices and networking, wire-
less video broadcasting to handhelds has become a reality
[1, 2, 20]. In wireless video broadcasting, packets are broad-
casted through a radio channel to mobile devices. During the
process, packet loss often occurs due to the dynamic nature
of wireless channel (i.e., random bit errors, burst errors or
transient outages). Timely loss recovery is hence important
to achieve good service quality.

In the traditional approach, a mobile station (MS) with
packet loss, the so-called errored MS, requests the server
for retransmission via a separate backward channel. This is
not scalable to a large pool of MSs due to the bandwidth
limitation of the wireless channel and at the server. With
the development of network coding (NC), another approach
lets the server perform network coding on source pack-
ets and broadcast coded packets to clients. This approach
requires the knowledge of network loss condition, and is
often designed for certain worst-case loss. In the case of
higher losses, clients are often not able to retrieve any source
packets due to the lack of NC packets received.

Given that nowadays MSs are often equipped with a
(free) secondary broadcast channel (e.g., Wi-Fi or Blue-
tooth), such channel may be used for cost-effective coop-
erative error recovery. The scheme we proposed is termed
Broadcast-based Peer-to-Peer Error Recovery, or BOPPER
for short. In contrast with previous approaches, BOP-
PER adapts recovery packets according to different loss

mailto:zhangbo@cse.ust.hk
mailto:gchan@cse.ust.hk
mailto:cheung@nii.ac.jp

Peer-to-Peer Netw. Appl.

conditions. It also reduces primary channel (e.g., 3G, LTE,
DVB) traffic load by utilizing secondary channels and
network coding.

A key issue in BOPPER is what type of packets to
relay to the neighbors. A straightforward way is to retrans-
mit the received source packets. However, because different
MSs may lose different packets, the benefit brought by
such retransmission is limited to the MSs losing the same
packets. To make the recovery more efficient, we study
a novel approach to generate parity packets for nodes to
share with neighbors, by means of linear network cod-
ing. A node generates parity packets based on the possibly
partial group of source packets received. When the num-
ber of received parity packets received from other peers
is no fewer than the number of lost source packets, these
source packets can be recovered with very high probability.
Our parity generation method enjoys the following unique
properties: 1) Neighborhood-based: An MS generates par-
ity packets based on the error status of its neighbors, and
hence the number of parity packets generated by an MS
adapts local loss condition; 2) Received-packets based: An
MS may generate parity packets based on the source pack-
ets it received via the primary channel. This is markedly in
contrast to many previous works where network coding is
also employed for primary channel data transmissions, and
nodes can either retrieve all data packets if the number of
incoming NC packets is large enough, or none of them. Fur-
thermore, by employing NC for local error recovery, MSs
with different losses may use the same parity packets for
recovery, which effectively reduces recovery traffic in the
secondary channel.

The basic idea of BOPPER is illustrated in Fig. 1. A
server broadcasts data packets to MSs through a infras-
tructure (primary) wireless channel, such as a 3G WWAN
network (the losses among mobiles are not likely to be
highly correlated, as shown in the works of [25]). Suppose

P2
P3

P4

P5

P6P1

Fig. 1 Wireless peer-to-peer error recovery by means of network-
coded packets

MSs P1 and P5 each loses a packet. P2 and P3 then generate
some recovery parity packets and broadcast them using the
device-to-device (secondary) channel. By receiving these
parity packets, P1 and P5 may recover their lost packets.

Given the cost of parity generation and transmission (in
terms of processing and bandwidth), we study in this paper
how to minimize the number of parity packets in the net-
work while meeting a certain level of recovery requirement.
We address the following issues in this paper:

– Problem formulation and exact solution for optimal
parity generation: We study the problem on the opti-
mal number of parity packets generated by each MS,
given network and MS information (e.g., connectivity
and pair-wise loss rates in the primary and secondary
channels). We formulate it as a linear program (LP)
which can be solved efficiently. The optimal solution
serves as the benchmark in our study.

– BOPPER, a fully-distributed peer-to-peer (P2P) recov-
ery algorithm: With above, we propose and study a
fully-distributed algorithm called BOPPER. Each MS
locally exchanges information with its neighbors and
dynamically decides the number of parity packets to
be generated. Simulation results show that BOPPER
converges fast and achieves high recovery with low
bandwidth consumption even in a dense network. It
achieves much better objective and subjective video
quality. Its performance is very close to our optimal
solution.

– Extensive numerical study: We conduct extensive
numerical study to evaluate the performance of BOP-
PER. We also use video sequences to compare the sub-
jective and objective quality. Simulation results show
that BOPPER achieves high recovery efficiency and
fast convergence. It generates very low recovery traf-
fic and high video quality. Its performance is very close
to the centralized optimal solution that based on the
complete network information.

The rest of this paper is organized as follows. We briefly
discuss related work in Section 2. We present the problem
formulation on optimal parity generation as a linear program
in Section 3. We propose BOPPER in Section 4. We present
illustrative simulation results in Section 5. We conclude in
Section 6.

2 Related work

There have been many erasure-resilient coding algorithms
studied, such as Reed-Solomon code and fountain codes
(e.g., Tornado code, Raptor code or Luby Transform (LT)
code [3, 18, 32]). Much work has been done using FEC to
recover errors [12, 13, 19, 23, 26]. FEC is normally designed

Peer-to-Peer Netw. Appl.

for a certain worst-case loss rate, which uses bandwidth
unnecessarily in a low loss condition, and is insufficient to
recover loss in a high loss condition. BOPPER is highly
adaptive to heterogeneous loss rates. It is complementary to
FEC, and can be applied after FEC to reduce transmission
overhead and to achieve lower residual loss rate. We review
linear network coding and discuss how it is effectively used
in our system in Appendix A.

There has been much work on server-retransmission (of
either source packets or network coded packets) based error
recovery for wireless video by feeding back loss informa-
tion to the server [5–10, 27, 28]. A common assumption
for all the above work is a feedback channel to the server,
so that ACKs or NAKs can be reported back to trigger
retransmission at the server. This approach is not scalable as
mentioned in Section 1. In comparison, BOPPER recovers
errors locally within the neighborhood, without the need of
a feedback channel to the server.

Cooperative loss recovery has been studied in [4, 15,
21, 22, 24, 30, 31]. Source packet sharing is adapted in
most of these works, reducing the recover effectiveness.
NC-based cooperative recovery is adapted in [4]. However
in the proposed approach, cooperative recovery is unicast
based, limiting the effectiveness of recovery packets to a
single receiver. An implementation of wireless cooperative
recovery over the Android platform is presented in [17],
though without the intension of optimizing any particular
metric. In BOPPER, parity packets are generated and NC-
coded according to both the loss of neighbors and their
protection levels, and are then broadcasted to all neighbors
through 1-hop broadcasting, allowing those parity packets
to be maximally utilized.

BOPPER, as many other peer-cooperative recovery
schemes, relies on sufficient number of neighboring nodes
with low loss correlation to perform effectively. Sufficiently
dense network can often be found in places such as in an
airport lounge, in stadiums, on a cruise ship etc., while pop-
ular contents may even find themselves requested by large
number of clients on streets. Antenna diversity (been uti-
lized by MIMO) assures low loss correlation in most cases
in many transmission networks such as 3G, LTE and DVB.
So we conclude that the cases where BOPPER can perform
effectively are not rare. If in extreme conditions where there
is insufficient number of neighboring nodes with low loss
correlation (consider single client case, or regional network
outage), server retransmission appears to be the only viable
method for recovery. So BOPPER, instead of a standalone
error recovery scheme, can be used as a complementary
scheme in addition to both FEC and source retransmission,
to achieve low residual loss rate more effectively and timely.

Some other error recovery schemes work in physi-
cal/data link layers [14, 16]. The limitations of cross-layer
algorithms lie in portability and deployment. Some schemes

try to extract useful data from error packets [11, 14, 29].
Although error recovery transmissions can be reduced, this
approach greatly increases computational load at receiver
end for data processing. BOPPER is an application layer
scheme, making it highly portable and easy to deploy. Fur-
thermore, BOPPER can be applied after these schemes to
further reduce loss.

As for the transport layer protocol, BOPPER assumes
UDP or similar protocol is used. Although TCP is able to
guarantee full recovery, its congestion control often severely
harm wireless transmission throughput, since packet losses
in wireless environment are not always due to conges-
tion, as assumed in TCP. Furthermore, UDP greatly eases
inter-device communication.

We focus on the issue of efficient content delivery in the
assumed scenario instead of a complete video distribution
system, while others aspects of the system such as security
and pricing strategies, are orthogonal to our work.

3 Problem formulation as a linear program

In this section, we formulate the problem of parity gener-
ation in BOPPER, given complete network knowledge and
independent packet loss.

In Table 1 we summarize the important symbols used in
this paper.

We model the network as a directed graph G(V, E),
where V is the set of all MSs and E is the set of links such
that (i, j) ∈ E if and only if MS j is in transmission range
of MS i in the secondary channel. Each coding window
consists of K source packets, and parity packets are gener-
ated based on the source packets received in each window.
Because each coding window is handled independently, the
following discussion is limited to one window.

For delay consideration, there is an upper bound for the
number of parities that can be broadcasted by each node,
denoted as nmax. The recovery delay is hence the window
size plus the transmission time of the nmax parities. Let ni
be the number of parity packets generated by MS i in one
window and R+ be the set of all positive real numbers. We
have

ni ∈ R+, 0 ≤ ni ≤ nmax, ∀i ∈ V . (1)

The total number of parities generated and transmitted is
then given by
∑

i∈V
ni . (2)

Note that the number of parities generated and transmit-
ted is proportional to the computational power, energy and
bandwidth used in the system. Our target is hence to min-
imize the total number of parities in the system. We show

Peer-to-Peer Netw. Appl.

Table 1 Symbols used in the
paper Symbol Description

K The number of source packets in a coding window

V Set of MSs in the network

E Set of transmission edges

Lj Set of lost source packets in a coding window at MS j before recovery

Rk The set of MSs which have successfully received source packet k before recovery

Nj Set of neighboring MSs of MS j

li,j Packet loss rate from i to j in the secondary channel

nmax Maximal number of parity packets broadcasted by each node in a coding window

ni The number of parity packets generated and broadcasted by MS i in a coding window

Ni,j Expected number of parity packets received by MS j and from MS i in a coding window

θj Target recovery level for MS j (in terms of the average number of parities)

Cj Set of correctly received source packets in a coding window at MS j before recovery

NAKj The set of MSs whose NAKs are heard by MS j

N̂i,j The number of parity packets received by MS j from MS i in a coding window

θ̄j The average recovery level achieved by MS j

θ̂j Recovery level achieved by MS j in a certain coding window

fj Current level of protection at MS j (= θ̄j /θj)

α A smoothing factor between 0 and 1 for computing θ̄j

ω Maximal waiting time at an MS before sending a NAK

Wmax A system-level upper bound (may not be strict) for ω

εp Packet loss rate in the primary channel

εr Residual loss rate

γ Number of parities generated per MS per source packet

in simulation that the control overhead in the secondary
channel is negligible.

Let li,j be the packet loss rate from MS i to j in the
secondary channel, ∀(i, j) ∈ E . Due to peer mobility and
collision condition, li,j may change over time. The expected
number of parity packets received by i from j , Ni,j , is then
given by

Ni,j = ni(1 − li,j), ∀(i, j) ∈ E . (3)

Let Lj be the set of lost packets in the coding window
at MS j before recovery. In order to recover all those pack-
ets, the number of parities has to be at least the number of
lost packets. As some parities may be linearly dependent or
lost, we require that the total parity packets received within
a window to be larger than θj |Lj |, for some θj ≥ 1. In other
words, let Rk be the set of MSs who received source packet
k before recovery, and Nj = {i|(i, j) ∈ E} be the set of all
neighbors of j . We require

∑

i∈Nj∩Rk

Ni,j ≥ θj |Lj |, ∀j ∈ V, k ∈ Lj . (4)

Given Eq. 3, our problem hence is to minimize Eq. 2 sub-
ject to Eqs. 1 and 4. This is a linear program problem and
can be solved efficiently.

4 BOPPER: Distributed and P2P error recovery

In this section, we describe BOPPER, a distributed algo-
rithm that minimizes the average number of parity packets
in the network while achieving a performance close to the
optimal solution given in Section 3 (based on centralized
and complete network information).

4.1 NAK suppression

In the algorithm, an errored MS j broadcasts a NAK that
contains the Lj value as a bitmap to indicate its lost pack-
ets, to all MSs in its neighborhood. Clearly, the number of
NAKs increases with the network size, which may over-
whelm the channel. To suppress NAKs, before j broadcasts
its NAK, it first checks whether Lj has already been covered
by the NAKs it heard from others, i.e., it checks whether
Lj ⊆ ⋃

i∈NAKj
Li , where NAKj is the set of MSs whose

NAKs are heard by j . If so, its neighboring MSs have
already requested all packets in Lj , and hence j suppresses
its own NAK.

The NAK suppression comes with some cost: a lost
packet may not be recovered. We illustrate that in Fig. 2.
Both MSs P2 and P3 have lost the same packet. Suppose
P2 broadcasts its NAK first. This suppresses P3’s NAK. On
the other hand, P4 does not receive the NAK from P2 due

Peer-to-Peer Netw. Appl.

P
4

P
1

P
3

P
2

Fig. 2 NAK suppression: dashed arrows denote NAKs; solid arrow
denotes recovery packets

to limited power range. P4 is hence not aware of the loss at
P3. Since the recovery packet broadcasted from P1 cannot
reachP3, P3 cannot recover its lost packet. Our simulation
results in Section 5 show that the suppression method could
significantly reduce the NAK number with only a small
penalty in recovery effectiveness.

4.2 Parity generation and error recovery

Besides Lj , an errored MS j also needs to provide another
parameter to help its neighbors determine the number of
parity packets to generate. We denote the parameter as fj
(given later in Eq. 7), which indicates the current level of
“protection” at j . If fj > 1, it is “over protected” with many
parity packets (e.g., in a low loss environment) and hence its
neighbors may reduce their parity generation. On the other
hand, if fj < 1, then j is “under protected” and hence its
neighbors need to generate more parities. The value of fj is
obtained as follows.

An errored MS j has a target recovery level θj as defined
in Eq. 4. Let N̂i,j be the number of parity packets received
by j from MS i. j calculates its current recovery level θ̂j as

θ̂j = min
k∈Lj

∑

i∈Nj∩Rk

N̂i,j

|Lj | . (5)

Here |Lj | ≥ 1 because errored MS j has lost packet(s).
As θ̂j fluctuates over time, we use exponential smoothing

to calculate its average θ̄j . That is, after calculated θ̂j for a
certain coding window, MS j sets

θ̄j ← αθ̄j + (1 − α)θ̂j , (6)

where α is a smoothing factor between 0 and 1. The value
of fj is then given by

fj = θ̄j

θj
, (7)

which will be contained in the NAK message together
with Lj .

Given the above, each MS runs the following distributed
algorithm. An MS successfully received all packets will skip
the NAK generation and Packet recovery steps.

– NAK generation: After packets transmission of a cod-
ing window, each errored MS waits for a random time
between 0 and ω before it sends its NAK with Lj and
fj , if not suppressed. Usually, an errored MS with low
protection (i.e., with a low fj) should send its NAK
soon and its NAK should not be suppressed. There-
fore, ω is chosen to be an increasing function in fj . An
example is

w = fj

fj + g
Wmax, (8)

for some constant g. Here Wmax is a system-level upper
bound for the maximum waiting time. In our simula-
tions, we set g = 1. Clearly, ω may be defined in terms
of other functions of fj . It will be our future work to
study more efficient functions.

– Parity generation: After the transmission of packets in
a coding window, Nodes spend an “NAK collection”
period to both advertise and collect NAKs to and from
neighbors. For node i, this period expires when either
|Ni |(1 − (1 − εp)

K) number of NAKs, the number of
expected NAKs from the neighbor set Ni , are received,
or a max delay h(TNAK + Wmax), h times the time
that a single NAK transmission is needed plus Wmax is
expired. In parity generation, our algorithm adaptively
adjusts the recovery level. An MS with higher loss (i.e.,
with a low fj) will require more parity packets. Let Cj
be the set of source packets in a coding window that are
correctly received by j before recovery. A NAK from j

is ignored by MS i if Ci ∩ Lj = ∅. This means that i
cannot offer any help to j . After NAK collection period,
a node uses the smallest received fj from NAKs that
Ci ∩ Lj
= ∅ to adjust the parity number according to

ni ←

⎧
⎪⎨

⎪⎩
min

(
ni

min
j∈NAKi

fj
, nmax

)
, fj > 0;

nmax, otherwise.

(9)

Thus, if fj < 1, ni increases so as to increase the
average number of parity packets received at j , and vice
versa. MS i then generates ni parity packets from Ci and
broadcasts them.

If ni in Eq. 9 is not an integer, i broadcasts �ni�
parity packets with probability {ni}, and ni� packets
with probability (1 − {ni}), where {ni} ≡ ni − ni� is
the fractional part of ni . Thus, the expected number of

Peer-to-Peer Netw. Appl.

broadcast packets is exactly ni , which is shown in the
following equation:

�ni�(ni − ni�)+ ni�(1 − (ni − ni�))
= (ni� + 1)(ni − ni�)+ ni�(1 − (ni − ni�))
= (ni − ni�)+ ni�
= ni . (10)

– Packet recovery: After received a parity packet from i

(with the information of Ci) error j checks whether it
could achieve recovery from the parity. If Ci ∩ Lj = ∅,
the parity is discarded since no lost source packet at j
can be recovered from it. Otherwise, j conducts pro-
gressive decoding based on Gauss-Jordan elimination.

The decoding process could start as early as the
arrival of the first parity packet. Detailed decoding
process using Gauss-Jordan elimination is reviewed in
Appendix A.

In Appendix B, we illustrate with numerical exam-
ples how a peer recovers packets with parities received in
BOPPER.

5 Illustrative numerical results

In this section, we present our illustrative simulation setup
and discuss the simulation results.

5.1 Environment and performance metrics

In our simulations, peers are uniformly distributed in a
1500×1500 m2 area. Each peer has a transmission range of
250 m. Let εp and εs be the link loss rate in primary chan-
nel and secondary channel, respectively. Note that εp may
be the loss rate after some error recovery mechanism such
as FEC has been applied. We assume 802.11 mac with colli-
sion avoidance and exponential back-off is employed in the
secondary channel. We set the bandwidth limit to 10mbps,
within the data rate of the 802.11n standard. Our results
show that the bandwidth used for recovery in BOPPER
is far less than the available bandwidth. UDP protocol is
assumed for video data transmission in both primary chan-
nel and secondary channel for efficiency purpose. Unless
otherwise stated, we use the following baseline parameters:1

|V | = 500, εp = 0.1, εs = 0.1, K = 10, nmax = 2, θ = 1.1
and α = 0.5. Other parameters settings have also been
studied, with qualitatively same results obtained. The video
sequence used in testing is Foreman cif sequence with res-
olution of 352 × 288 and the streaming rate of 440kbps.

1Though we consider random loss in our simulations, our algorithm
and results are applicable to other loss model such as pseudo-stationary
time-dependent losses.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 100 200 300 400 500 600 700 800 900 1000P
a

r
it
ie

s
 p

e
r
 p

e
e

r
 p

e
r
 s

o
u

r
c
e

 p
a

c
k
e

t

Number of peers

BOPPER

Optimum

Fig. 3 Average γ vs. |V|

We assume the primary channel bandwidth is sufficient for
video broadcasting, and focus on the cooperative recovery
phase. We will show later, by analyzing our results, that the
recovery traffic is low.

To evaluate the optimum solution, we use the parameters
obtained from the linear programming solution and simu-
late peer actions accordingly. We also apply BOPPER under
the same setup. Finally, we compare BOPPER with its pre-
vious version in which source packets are used for recovery
instead of NC-coded parities.

We study the following metrics to evaluate BOPPER:

– Number of parities generated per peer per source
packet (γ), defined as the total number of parities gen-
erated in a coding window divided by the total number
of peers and the window size, i.e.,

γ = 1

K · |V |
∑

i∈V
ni . (11)

– Residual loss rate (εr), defined as the loss rate after
recovery at a peer, given by

εr = # of lost packets after recovery

of broadcast packets in the primary channel
.

(12)

 0

 0.5

 1

 1.5

 2

 2.5

 100 200 300 400 500 600 700 800 900 1000

R
e

s
id

u
a

l
lo

s
s
 r

a
te

 (
%

)

Number of peers

BOPPER

Optimum

Fig. 4 Residual loss rate εr vs. |V|

Peer-to-Peer Netw. Appl.

 0

 20

 40

 60

 80

 100

 100 200 300 400 500 600 700 800 900 1000

T
o

ta
l
n

u
m

b
e

r
 o

f
p

a
r
it
ie

s

Number of peers

BOPPER

Optimum

Fig. 5 Total number of parities in a coding window versus |V|

– PSNR (Peak Signal-to-Noise Ratio): We evaluate video
quality resulted using PSNR for each GOP (group
of pictures) at the receiver side. Besides this objec-
tive measure, we also show its subjective (visual)
quality.

– Total number of NAKs transmitted in a coding window.
We compute this metric to evaluate our suppression
method. The number of NAKs without NAK suppres-
sion is equal to the number of errored MSs, which is
given by

(1 − (1 − εp)
K)|V |. (13)

5.2 Illustrative results

Figure 3 shows the average (γ) value versus the network
size. γ decreases as |V | increases because a parity packet
may reach, and hence be shared by, more error peers in a
denser network. From the figure, the gap between BOPPER
and the optimum is small. Both of them keep γ at a low
level.

Figure 4 shows the residual loss rate εr versus |V |. For
BOPPER, εr decreases as |V | increases. Because in a denser
network, there are more neighbors available to help an
errored MS. For the case of optimum, εr is rather insensitive

 0

 20

 40

 60

 80

 100

 0 0.01 0.02 0.03 0.04 0.05

P
e
r
c
e
n
ta

g
e
 o

f
p
e
e
r
s
 (

%
)

Number of parities per source packet

Fig. 6 Distribution (indicated by the bars) and CDF (indicated by the
curve) of ni/K

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700 800 900 1000

N
u

m
b

e
r
 o

f
N

A
K

s

Number of peers

without NAK suppression

with NAK suppression

Fig. 7 Number of NAKs in a coding window vs. |V|

to |V |, since with the complete knowledge, a peer can easily
identify appropriate neighbors for parity retrieval.

Figure 5 shows that as |V | increases, the total number
of parities also increases. However the sharing of parities
greatly reduces the increasing speed. The NAK suppression
method in BOPPER further helps reducing the number of
parities.

Figure 6 shows the distribution and cumulative distribu-
tion function (CDF) of the number of parities per source
packet in BOPPER. From the figure, the majority of peers
generate very few parities (around 0.02) for each source
packet. Most peers therefore experience low recovery loads.
A few peers generate slightly more parities (around 0.05).
Since the number of parities generated by a peer is deter-
mined by the neighborhood loss rate, peers with different
densities experience different recovery loads.

Figure 7 shows the number of NAKs in a coding win-
dow with or without suppression with respect to the network
size. Without suppression, the number of NAKs increases
linearly with |V |, because the number of errored MSs lin-
early increases with |V |. With suppression, the number of
NAKs increases much slower. This shows that our NAK
suppression method is highly efficient, even in a dense net-
work. Figure 8 shows the number of NAKs in a coding
window with or without suppression with respect to the pri-
mary network loss rate. Without suppression, the number

Fig. 8 Number of NAKs in a coding window vs. |V|

Peer-to-Peer Netw. Appl.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 10 20 30 40 50 60

P
a
r
it
ie

s
 p

e
r
 p

e
e
r
 p

e
r
 s

o
u
r
c
e
 p

a
c
k
e
t

Time (Sequence number of packet block)

BOPPER

Optimum

Fig. 9 Time evolution of average γ

of NAKs increases very fast when primary network loss
rate is initially small and start increasing, as more nodes
start to experience loss. The number of NAKs finally con-
verges to |V |, as every single node sends out an NAK.
Note that many of those NAKs are duplicates. With sup-
pression, the number of NAKs again increases much slower.
This result shows that NAK suppression can successfully
suppress those duplicated NAKs.

From the above figures, we can roughly estimate the
recovery traffic in BOPPER. With 250 m transmission
radius, a peer covers an area of π × 2502 = 196, 350m2.
Let’s consider the case that εp = 10%, and that there
are 500 peers uniformly distributed in a square area of
1500 × 1500 = 2, 250, 000m2. There are then around
500 × 196, 350/2, 250, 000 = 43.6 neighbors for each
peer (a dense network). From Fig. 5, the total number of
parities in a coding window is around 60 for a 500-peer
network. From Fig. 7, the total number of NAKs in a win-
dow is around 140 (with NAK suppression). Each peer
therefore generates 0.4 NAK messages or parity packets
on average. Given the coding window size K = 10, each
peer hence generates 0.04 messages or packets for each
source packet on average. As a result, there are in total
0.04 × 43.6 = 1.74 NAK messages or parity packets for
each source packet within a neighborhood. Suppose the

 0

 0.5

 1

 1.5

 2

 0 10 20 30 40 50 60

R
e

s
id

u
a

l
lo

s
s
 r

a
te

 (
%

)

Time (Sequence number of packet block)

BOPPER

Optimum

Fig. 10 Time evolution of εr

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 5 10 15 20

R
e

s
id

u
a

l
lo

s
s
 r

a
te

 (
%

)

Block size K

BOPPER

Optimum

Fig. 11 Residual loss rate εr vs. K

data stream is of 200kbps (for a typical wireless video),
the recovery traffic is then about 200 × 1.74 = 348kbps,
which is considered a low load for secondary channels such
as Wi-Fi (ranges from 1Mbps of 802.11b to 433Mbps of
802.11ac, single antenna) and Bluetooth (with data rate of
1Mbps, 3Mbps or 24Mbps). We therefore conclude that col-
lision probability on the secondary channel is low, even for
a very dense network. We could therefore expect that losses
can be recovered efficiently with low delay.

Figure 9 shows the evolution and convergence of γ over
time (in terms of the sequence numbers of coding win-
dows). In BOPPER, we start with an arbitrary initial value
ni = 0.2, ∀i ∈ V with γ = (|V | · ni)/(K · |V |) = 0.02.
From the figure, γ of BOPPER starts to decrease very soon.
This is because we have used a relatively large ni (and hence
a large γ value) to ensure that every errored MS receives
enough parities. So γ decreases to a lower value in the
steady state. BOPPER approaches its steady state after only
a few windows. It hence achieves high convergence speed
and is adaptive to network environment change. The line
corresponding to the optimum shows the optimal γ value
given complete network knowledge.

Figure 10 shows the convergence of εr over time (in
terms of sequence numbers of coding windows). In BOP-
PER, εr converges to a stable value after around 10 coding

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 100 200 300 400 500 600 700 800 900 1000R
e

c
o

v
e

r
y
 p

a
c
k
e

ts
 p

e
r
 p

e
e

r
 p

e
r
 s

o
u

r
c
e

 p
a

c
k
e

t

Number of peers

Source packet recovery

BOPPER

Fig. 12 Average recovery packets generated

Peer-to-Peer Netw. Appl.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 100 200 300 400 500 600 700 800 900 1000

R
e

s
id

u
a

l
lo

s
s
 r

a
te

 (
%

)

Number of peers

Source packet recovery

BOPPER

Fig. 13 Residual loss rate εr

windows. This again shows its high efficiency and high
adaptiveness. Note that in the first several windows, the dis-
tributed algorithm achieves lower εr than the optimum. This

is because in the first several windows, BOPPER generates
much more parities than the optimum with the high start-
ing γ value. Later, BOPPER adaptively reduces its γ value,
leading to a increase of its εr value.

Figure 11 shows residual loss rate εr versus window size
K . In BOPPER, When K increases, εr keeps decreasing.
This is because with a larger K , a parity packet may be used
to recover more different losses. We do not need a large K

value to achieve low loss as shown in the figure. It is suffi-
cient to set K to between 5 and 10. Clearly, smaller K leads
to lower recovery delay in the system.

Figure 12 compares the numbers of recovery packets
using network coding (as in BOPPER) and using source
packet recovery. For source packet recovery, the only dif-
ference is that instead of network coding, it shares source
packets for cooperative recovery. After receiving NAKs
from the neighbors, a peer randomly selects a source packet

Fig. 14 Objective and
subjective video quality

Peer-to-Peer Netw. Appl.

that has been requested by some NAK. The peer then
repeats this process for ni times to select in total ni source
packets and re-transmits them. As shown in the result,
BOPPER generates much fewer recovery packets. We also
compare the two schemes in terms of the residual loss rate
in Fig. 13. The result shows that BOPPER achieves lower
residual loss rate than source packet recovery.

Objective and subjective video quality is shown in
Fig. 14. With different recovery efficiencies, source packet
recovery and BOPPER result in two different residual
losses. Thus the two algorithms result different residual
losses. We record a instance of losses and introduce the loss
into the video stream to calculate corresponding PSNR val-
ues. As shown in Fig. 14a, while the optimum is able to
achieve nearly full PSNR (37.824dB for the original stream
source), the performance of BOPPER quickly rises as the
network get denser due to P2P effect. Figure 14b shows the
subjective visual quality for a few consecutive I frames sam-
pled from received video stream in a 500-peer network. The
source stream is encoded using H.264 codec with a PSNR
of 37.824dB. We can see that subjectively, the visual qual-
ity difference between BOPPER and the optimum is small,
while both schemes outperform the source packet recovery
version. From Fig. 14 we can see that BOPPER results bet-
ter video quality than the source packet recovery version,
both objectively and subjectively.

6 Conclusion

In order to repair the lost packets in wireless video broad-
casting, we study in this paper a relay-based error recovery
scheme. The scheme makes use of a broadcast-based sec-
ondary wireless channel to share parity packets, which
are generated by mobile peers from their received source
packets using linear network coding.

We seek to minimize the parity packets generated so as
to reduce the processing and bandwidth cost in the network.
We first formulate the problem on optimal parity generation
as a linear programming problem, given complete knowl-
edge of the network. The problem can be solved efficiently
and its optimal solution serves as the benchmark in our
comparison. We then present a fully distributed algorithm
called BOPPER which generates parity packets based on
only local information at peers.

We have conducted simulations to evaluate our schemes.
Our results show that BOPPER achieves low recovery
traffic (in parity generated), low residual loss rate, fast con-
vergence, and low overhead (efficient NAK suppression).
It performs close to optimal solution as obtained by com-
plete and centralized network knowledge. With its use of
linear network coding to generate parity packets, BOPPER
performs much better than the traditional schemes based

on source packet retransmissions. It achieves much better
objective and subjective video quality.

Appendix A: Linear network coding and its decoding
in BOPPER

Given a group of source packets, a parity packet is a linear
combination of these source packets with certain coeffi-
cients. Suppose that K source packets in a coding window
are M1, . . . ,Mk . A peer may select a set of coding coeffi-
cients [cj1 , , cjk] for parity packet j . It then generates
a parity packet as
{
xj =

K∑

i=1

c
j

i ·Mi

}
, forj ∈ [1, h]. (14)

Note that a coefficient cji could be 0. In other words, if
a source packet in the coding window is missing, we can
simply set its coefficient to 0. This is a fundamental differ-
ence from FEC and fountain codes. Similarly, the peer can
select another set of coefficients for another parity packet.
If all peers share a common pseudo random number gener-
ator, only the random seed used to produce a corresponding
coefficient series need to be embedded in the header of the
parity packet. Therefore, a parity packet is of the same size
as a single source packet, excluding a few bytes for the seed.

For decoding, suppose a peer has lost d source packets in
a coding window. When it receives h parity packets, it needs
to solve (14).

Here the unknowns are the lost source packets Mi .
Clearly, this is a linear system with h equations and d

unknowns. We can use Gauss-Jordan elimination to solve
the system. We need h ≥ d to have a chance of recovering
all unknowns. Note that h ≥ d is not a sufficient condition,
as some of the coefficient combinations might be linearly
dependent.

We use a simple example to illustrate the progressive
decoding. Suppose there are 3 source packets in a coding
window, which are denoted as M1, M2 and M3. For sim-
plicity, we use a numerical value to represent the value of a
source packet or a parity packet. Suppose error peer j only
correctly received M1 in the coding window. It knows that
M1 = 10, but not the values of M2 and M3. Suppose the
first parity packet arriving at j has the value 1220, with a
coefficient set (5, 18, 27). It indicates that

5M1 + 18M2 + 27M3 = 1220. (15)

The equations can be written in the augmented matrix
form as
[

1 0 0 | 10|
5 18 27 | 1220

]
. (16)

Peer-to-Peer Netw. Appl.

We use R1 and R2 to represent row 1 and row 2 in the
matrix, respectively. We will use elementary row operations
to transform this matrix into reduced echelon form. Let
R2 ← (R2 + (−5)R1)/18. We have
[

1 0 0 | 10|
0 1 1.5 | 65

]
. (17)

Later, the second parity packet arrives at j with a value
570 and a coefficient set (34, 4, 5). It indicates that

34M1 + 4M2 + 5M3 = 570. (18)

Hence, the matrix can now be written as
⎡

⎢⎣

1 0 0 | 10|
0 1 1.5 | 65|

34 4 5 | 570

⎤

⎥⎦ . (19)

Let R3 ← R3 + (−34)R1 + (−4)R2. We have
⎡

⎢⎣

1 0 0 | 10|
0 1 1.5 | 65|
0 0 −1 | −30

⎤

⎥⎦ . (20)

Let R2 ← R2 + 1.5R3, and R3 ← (−1)R3. We have
⎡

⎢⎣

1 0 0 | 10|
0 1 0 | 20|
0 0 1 | 30

⎤

⎥⎦ . (21)

This reduced echelon form matrix indicates that

M1 = 10, M2 = 20 and M3 = 30. (22)

Therefore, with two linearly independent parity packets,
error peer j could recover its lost source packets M2 and
M3.

Appendix B: An illustrative example of error recovery
in BOPPER

In this section, we illustrate with numerical examples to
show how BOPPER achieves error recovery. Suppose each
coding window consists of 5 source packets, i.e., K =
5. In a window, the server transmits five source packets
{M1,M2,M3,M4,M5}.

We first consider the full recovery case. Suppose MS P1

has received packets {M3,M4,M5} while its neighbors P2

and P3 received packets {M2,M3,M4,M5} and
{M1,M3,M4,M5}, respectively. So now we have
⎧
⎨

⎩

C1 = {M3,M4,M5},
C2 = {M2,M3,M4,M5},
C3 = {M1,M3,M4,M5};

(23)

and
⎧
⎨

⎩

L1 = {M1,M2},
L2 = {M1},
L3 = {M2}.

(24)

Assume that this is the very first coding window. We have
θ̂i = 0, θ̄i = 0, fi = 0, ∀i.

Suppose MS P1 broadcasts its NAK with L1 and f1 to the
neighbors P2 and P3. When P2 receives the NAK from P1,
it finds that its own lost packets is only a subset of the lost
packets at P1, i.e., L2 ⊆ L1. Hence, P2 suppresses its own
NAK broadcasting. Similarly, P3 also suppresses its NAK
broadcasting.

Meanwhile, P2 finds that C2 ∩ L1
= ∅. It means that
P2 holds some source packets which are required by P1. P2

hence selects nmax sets of random coefficients to generate
parity packets from its C2 (since f1 = 0) and broadcasts
them. Similarly, P3 also generates nmax number of parity
packets and broadcasts them for P1 (hopefully P2 could
overhear them). After P1 receives both of P2’s and P3’s par-
ity packets, P1 can use Gauss-Jordan elimination to solve
the linear system to recover M1 and M2. Meanwhile P2 and
P3 can also recover lost packets from each other’s parity
packet.

After parity recovery, each peer i then updates fi . Take
P1 for example. For M1 it receives nmax number of parities
from P2; for M2 it receives the same number of parities from
P3. We also have |L1| = 2. Suppose we set nmax = 2,
α = 0.5 and θ1 = 1.1. We have

θ̂1 = min

((
2

2
+ 0

)
,

(
0 + 2

2

))
= 1, (25)

θ̄1 = 0.5 × 0 + (1 − 0.5)× 1 = 0.5, (26)

and hence

f1 = θ̄1

θ1
= 0.5

1.1
. (27)

In the next round, if P1 needs to send a NAK, the above f1

value will be sent together.
We next consider the partial recovery case. Suppose now

we have
⎧
⎨

⎩

C1 = {M3,M4,M5},
C2 = {M2,M3,M4,M5},
C3 = {M4,M5};

(28)

and correspondingly,
⎧
⎨

⎩

L1 = {M1,M2},
L2 = {M1},
L3 = {M1,M2,M3}.

(29)

P3 broadcasts its NAK with L3 to P1 and P2, both of
which suppress their NAKs after received P3’s NAK. P1 and

Peer-to-Peer Netw. Appl.

P2 then generate independent parity packets for P3. M2 and
M3 can then be recovered from P1’s and P2’s parities. How-
ever none of the three MSs is able to recover M1. Hence the
residual loss after parity recovery is

⎧
⎨

⎩

L1 = {M1},
L2 = {M1},
L3 = {M1},

(30)

which is clearly better than the loss before cooperative
recovery.

References

1. Digital multimedia broadcasting. http://www.worlddab.org/
2. Digital video broadcasting. http://www.dvb.org/
3. Abdullah NF, Piechocki RJ, Doufexi A (2010) Raptor code

for wireless ad hoc vehicular safety broadcast. In: GLOBE-
COM workshops (GC Wkshps), 2010 IEEE, pp 1087–1091.
doi:10.1109/GLOCOMW.2010.5700102

4. Alnuweiri H, Rebai M, Beraldi R (2012) Network-coding based
event diffusion for wireless networks using semi-broadcasting. Ad
Hoc Netw 10(6):871–885

5. Amer A. B., Gebali F. (2008) Quality of service support and
backoff strategies in wireless networks with error control pro-
tocol. In: PM2HW2N ’08: Proceedings of the 3nd ACM work-
shop on performance monitoring and measurement of heteroge-
neous wireless and wired networks, ACM, New York, pp 83–90.
doi:10.1145/1454630.1454643

6. Bajic IV (2006) Non-causal error control for wireless video
streaming with noncoherent signaling. IEEE Trans Multimed
8(6):1263–1273

7. Bajic IV (2007) Efficient error control for wireless video multi-
cast. IEEE Trans Broadcast 53(1):276–285

8. Chachulski S, Jennings M, Katti S, Katabi D (2007) Trading
structure for randomness in wireless opportunistic routing. In:
Proceedings of the 2007 conference on applications, technolo-
gies, architectures, and protocols for computer communications
SIGCOMM ’07, ACM, pp 169–180

9. He T, Chan S-H, Wong C-F (2008) HomeMesh: a low-cost indoor
wireless mesh for home networking. IEEE Commun Mag 46:79–
85

10. Wu X-X, Chan S-H, Mukherjee B, Bhargava B (2004) MADF:
mobile-assisted data forwarding in wireless data networks. J Com-
mun Netw 6(3):216–225

11. Chen B, Zhou Z, Zhao Y, Yu H (2012) Efficient error estimat-
ing coding: Feasibility and applications. IEEE/ACM Trans Netw
20(1):29–44. doi:10.1109/TNET.2011.2157357

12. Gomez-Barquero D, Aguilella AF, Cardona N (2008) Mul-
ticast delivery of file download services in 3G mobile net-
works with MBMS. In: IEEE international symposium on
broadband multimedia systems and broadcasting, pp 1–6.
doi:10.1109/ISBMSB.2008.4536640

13. Hartung F, Horn U, Huschke J, Kampmann M, Lohmar T,
Lundevall M (2007) Delivery of broadcast services in 3G
networks. IEEE Trans Broadcast 53(1):188–199

14. He J, Yang J, An C, Li X (2009) BPR: a bit-level packet recovery
in wireless sensor networks. In: SAC ’09: Proceedings of the 2009
ACM symposium on applied computing, ACM, New York, pp 59–
65. doi:10.1145/1529282.1529293

15. Hou F, Ho PH, Shen X (2006) A novel differentiated retransmis-
sion scheme for MPEG video streaming over wireless links. Int J
Wirel Mob Comput 1(3):260–267

16. Jamieson K, Balakrishnan H (2007) PPR: Partial packet recovery
for wireless networks. In: ACM SIGCOMM, Kyoto

17. Keller L., Le A., Cici B., Seferoglu H., Fragouli C., Markopoulou
A. (2012) Microcast: cooperative video streaming on smart-
phones. In: Proceedings of the 10th international conference on
Mobile systems, applications, and services, MobiSys ’12, ACM,
New York, pp 57–70. doi:10.1145/2307636.2307643

18. Lee D, Song H (2011) A robust luby transform encoding
pattern-aware symbol packetization algorithm for video stream-
ing over wireless network. IEEE Trans Multimed 13(4):788–796.
doi:10.1109/TMM.2011.2124448

19. Lee JW, Chen CL, Horng MF, Kuo YH (2011) An efficient
adaptive FEC algorithm for short-term quality control in wire-
less networks. In: 13th international conference on advanced
communication technology (ICACT), pp 1124–1129

20. Leu JS, Tsai CW, Yi CW (2009) Improving adaptive streaming
service across wired&wireless networks. In: Proceedings of the
2009 10th international conference on mobile data management:
systems, services and middleware, pp 614–618

21. Li S, Chan SHG (2007) BOPPER: Wireless video broadcast-
ing with peer-to-peer error recovery. In: Proceedings of IEEE
international Conference on Multimedia & Expo (ICME), Beijing

22. Li Y, Huang Q, Huang W (2011) A cooperative retransmission
strategy for error-prone wireless networks. In: Eighth international
conference on wireless and optical communications networks
(WOCN), pp 1–5

23. Li Y, Wang Z, You X, Lie Liu Q, Daneshmand M (2010) Error
recovery based on FEC in network-layer for intermittently con-
nected mobile networks. In: 5th international ICST conference
on communications and networking in China (CHINACOM),
pp 1–6

24. Liu X, Cheung G, Chuah CN (2009) Structured network cod-
ing and cooperative wireless ad-hoc peer-to-peer repair for
WWAN video broadcast. IEEE Trans Multimedia 11(4):730–741.
doi:10.1109/TMM.2009.2017636

25. Liu X, Sridharan A, Machiraju S, Seshadri M, Zang H (2008)
Experiences in a 3G network: interplay between the wire-
less channel and applications. In: MobiCom ’08: Proceed-
ings of the 14th ACM international conference on mobile
computing and networking, ACM, New York, pp 211–222.
doi:10.1145/1409944.1409969

26. Nguyen H, Tran LN, Hong EK (2011) On transmission efficiency
for wireless broadcast using network coding and fountain codes.
IEEE Commun Lett 15(5):569–571

27. Rozner E, Iyer AP, Mehta Y, Qiu L, Jafry M (2007) ER: efficient
retransmission scheme for wireless lans. In: Proceedings of the
2007 ACM CoNEXT conference, CoNEXT ’07, ACM, pp 8:1–
8:12

28. Schier M, Welzl M (2012) Optimizing selective ARQ for
H.264 live streaming: A novel method for predicting loss-
impact in real time. Multimed IEEE Trans 14(2):415–430.
doi:10.1109/TMM.2011.2178235

29. Sen S, Schmitt S, Donahue M, Banerjee S (2009) Exploiting
“approximate communication” for mobile media applications. In:
HotMobile ’09: Proceedings of the 10th workshop on mobile
computing systems and applications, ACM, New York, pp 1–6.
doi:10.1145/1514411.1514420

30. Sinkar K, Jagirdar A, Korakis T, Liu H, Mathur S, Panwar S
(2008) Cooperative recovery in heterogeneous mobile networks.
In: 5th annual IEEE communications society conference on sen-
sor, mesh and Ad Hoc communications and networks, SECON
’08, pp 395–403. doi:10.1109/SAHCN.2008.55

http://www.worlddab.org/
http://www.dvb.org/
http://dx.doi.org/10.1109/GLOCOMW.2010.5700102
http://dx.doi.org/10.1145/1454630.1454643
http://dx.doi.org/10.1109/TNET.2011.2157357
http://dx.doi.org/10.1109/ISBMSB.2008.4536640
http://dx.doi.org/10.1145/1529282.1529293
http://dx.doi.org/10.1145/2307636.2307643
http://dx.doi.org/10.1109/TMM.2011.2124448
http://dx.doi.org/10.1109/TMM.2009.2017636
http://dx.doi.org/10.1145/1409944.1409969
http://dx.doi.org/10.1109/TMM.2011.2178235
http://dx.doi.org/10.1145/1514411.1514420
http://dx.doi.org/10.1109/SAHCN.2008.55

Peer-to-Peer Netw. Appl.

31. Wu H, Zheng J (2011) CoRET: a network coding based multicast
retransmission scheme for mobile communication networks. In:
IEEE international conference on communications (ICC), pp 1–5.
doi:10.1109/icc.2011.5962911

32. Yuan X, Sun R, Ping L (2010) Simple capacity-achieving ensem-
bles of rateless erasure-correcting codes. IEEE Trans Commun
58(1):110–117. doi:10.1109/TCOMM.2010.01.050175

Bo Zhang received his
B.Sc.degree in computer sci-
ence from the Southampton
University, UK in 2006, and
the M.Sc. degree in data
communication networks
and distributed systems from
University College London in
2007. He is currently pursuing
the Ph.D. degree at the Depart-
ment of Computer Science
and Engineering in HKUST,
supervised by Prof. S.-H. G.
Chan. His research interest
includes wireless video live
broadcasting technologies,

multimedia networking, overlay, and wireless peer-to-peer networks.

Dr. S.-H. Gary Chan received
MSE and PhD degrees in Elec-
trical Engineering from Stan-
ford University (Stanford, CA)
in 1994 and 1999, respec-
tively, with a minor in business
administration. He obtained
his B.S.E. degree (highest
honor) in Electrical Engineer-
ing from Princeton Univer-
sity (Princeton, NJ) in 1993,
with certificates in Applied
and Computational Mathemat-
ics, Engineering Physics, and
Engineering and Management
Systems. He is currently an

Associate Professor of the Department of Computer Science and
Engineering, Director of Sino Software Research Institute, and Co-
director of Risk Management and Business Intelligence program, The
Hong Kong University of Science and Technology (HKUST), Hong
Kong. His research interest includes multimedia networking, overlay
streaming and technologies, and wireless communication networks.

Dr. Chan is a member of Tau Beta Pi, Sigma Xi, and Phi Beta
Kappa. He has been an Associate Editor of IEEE Transactions on
Multimedia (2006-11), and is a Vice-Chair of Peer-to-Peer Network-
ing and Communications Technical Sub-Committee of IEEE Comsoc

Emerging Technologies Committee. He has been Guest Editors of
IEEE Transactions on Multimedia (2011), IEEE Signal Process-
ing Magazine (2011), IEEE Communication Magazine (2007), and
Springer Multimedia Tools and Applications (2007). He was the
TPC chair of IEEE Consumer Communications and Networking Con-
ference (CCNC) 2010, Multimedia symposium in IEEE Globecom
(2007 and 2006) and IEEE ICC (2007 and 2005), and Workshop on
Advances in Peer-to-Peer Multimedia Streaming in ACM Multimedia
Conference (2005).

Dr. Chan is a member of Tau Beta Pi, Sigma Xi, and Phi Beta
Kappa. He has been an Associate Editor of IEEE Transactions on Mul-
timedia (2006-11), and is a Vice-Chair of Peer-to-Peer Networking and
Communications Technical Sub-Committee of IEEE Comsoc Emerg-
ing Technologies Committee. He has been Guest Editors of IEEE
Transactions on Multimedia (2011), IEEE Signal Processing Maga-
zine (2011), IEEE Communication Magazine (2007), and Springer
Multimedia Tools and Applications (2007). He was the TPC chair
of IEEE Consumer Communications and Networking Conference
(CCNC) 2010, Multimedia symposium in IEEE Globecom (2007 and
2006) and IEEE ICC (2007 and 2005), and Workshop on Advances in
Peerto- Peer Multimedia Streaming in ACM Multimedia Conference
(2005).

Dr. Gene Cheung received
the B.S. degree in electrical
engineering from Cornell
University, Ithaca, NY, in
1995, and the M.S. and Ph.D.
degrees in electrical engi-
neering and computer science
from the University of Cal-
ifornia, Berkeley, in 1998
and 2000, respectively. From
2000 to 2009, he was a Senior
Researcher with Hewlett-
Packard Laboratories Japan,
Tokyo, Japan. He is currently
an Assistant Professor with
the National Institute of Infor-

matics, Tokyo. He has published over 15 international journals and 70
conference publications. His research interests include media repre-
sentation and network transport, single-/multiple-view video coding
and streaming, and immersive communication and interaction.

Dr. Cheung has been serving as the Associate Editor of the IEEE
TRANSACTIONS ON MULTIMEDIA since 2007 and as the Asso-
ciate Editor of the Digital Signal Processing Applications Column in
the IEEE Signal Processing Magazine since 2011. He has also served
as the Area Chair in the IEEE International Conference on Image Pro-
cessing 2010 and the Technical Program Cochair of the International
Packet Video Workshop 2010. He serves as the Track Cochair for the
Multimedia Signal Processing track in the IEEE International Confer-
ence on Multimedia and Expo 2011. He was a corecipient of the Top
10% Paper Award in the IEEE International Workshop on Multimedia
Signal Processing 2009.

http://dx.doi.org/10.1109/icc.2011.5962911
http://dx.doi.org/10.1109/TCOMM.2010.01.050175

	Peer-to-peer error recovery for wireless video broadcasting
	Abstract
	Introduction
	Related work
	Problem formulation as a linear program
	BOPPER: Distributed and P2P error recovery
	NAK suppression
	Parity generation and error recovery

	Illustrative numerical results
	Environment and performance metrics
	Illustrative results

	Conclusion
	Appendix A: Linear network coding and its decoding in BOPPER
	: An illustrative example of error recovery in BOPPER
	Appendix B: An illustrative example of error recovery in BOPPER
	References

