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ABSTRACT
Internet service providers (ISP) apply traffic engineering (TE)
in the underlay network to avoid congestion. On the other
hand, content providers (CP) use different server selection
(SS) strategies in the overlay network to reduce delay. It has
been shown that a joint optimization of TE and SS is bene-
ficial to the performance from both ISP’s and CP’s perspec-
tives.
One challenging issue in such a network is to design a dis-

tributed protocol which achieves optimality while revealing as
little information as possible between ISP and CP. To address
this problem, we propose a distributed protocol termed PETS,
in which each router of ISP makes independent traffic engi-
neering decision and each server of CP makes independent
server selection decision. We prove that PETS can achieve
optimality for the joint optimization of TE and SS. We also
show that PETS can significantly reduce message passing and
enables ISP to hide important underlay network information
(e.g., topology) from CP. Furthermore, PETS can be easily
extended to handle the case of multiple CPs in the network.

Index Terms— traffic engineering, server selection, joint
optimization, distributed algorithm, link-state routing, per-
hop forwarding

1. INTRODUCTION

Internet service provider (ISP) owns the physical network and
offers Internet connectivities to its customers. Because the
network topology often contains multiple paths from a source
to a destination, ISP has to decide how to split the traffic over
different paths in order to achieve the best network perfor-
mance (delay, load, etc.). This problem is known as the traffic
engineering problem (TE).

Content provider (CP) utilizes Internet connectivities to
offer content services in the network. In contrast to ISP, CP
does not have the authority to change the routing in the under-
lying network. However, for each client request, CP can de-
cide which server to serve the client. This problem is known
as the server selection problem (SS).
Conventionally, ISP and CP solve TE and SS indepen-

dently without information sharing. In this non-cooperative
scenario, CP has to estimate the information of underlying
network. ISP may also choose to cooperate with CP by of-
fering CP such information. In either case, ISP and CP take
turns to solve TE and SS respectively so as to optimize their
own objectives. Because TE changes routing which affects
SS and SS changes traffic demand which affects TE, the inter-
action between TE and SS can be modeled as an two-player
game [2, 3]. Recent research has shown that the game con-
verges towards an equilibrium state which is not social op-
timum and neither non-cooperative nor cooperative scenario
results in optimal performance [1–3]. To resolve this problem,
it is necessary to have a joint design of TE and SS, which dif-
fers from the cooperative scenario in that ISP and CP interact
in a certain way to jointly optimize TE and SS rather than it-
eratively optimizing their own objectives. Such joint design is
beneficial to many applications in which server-client model
applies, such as video-on-demand services.
One challenging issue in the joint optimization of TE and

SS1 is to design a distributed protocol which achieves opti-
mality while revealing as little information as possible be-
tween ISP and CP. In [1], a modularized protocol COST has
been proposed. COST is guaranteed to achieve optimality.
However, it has two major limitations. Firstly, COST suffers
from slow converging speed and large amount of message ex-
change. This is because at each iteration, ISP has to solve a
TE problem, CP has to solve a SS problem, and they com-
municate iteratively by updating the price on each link in the
network. Secondly, COST requires ISP to share some key

1In this work, we use joint design of TE and SS and joint optimization of
TE and SS interchangeably.
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underlay network information (such as topology) with CP to
solve the SS problem. This requirement is often not desirable
for ISP. Besides, when there are multiple CPs in the network,
the requirement becomes even more problematic.
In this work, we address these limitations by proposing

a novel distributed protocol PETS (PEFT-based joint Traffic
Engineering and Server Selection) to jointly and efficiently
optimize TE and SS. Our contribution is as follows. First,
we present how to extend the Multi-Commodity Flow (MCF)
problem formulation (whose solution is traditionally used to
define the optimality of TE) to define the joint optimality of
TE and SS. The extension is done by adding virtual nodes
and virtual links to transform the network topology. Based on
the extension, we then propose a distributed protocol PETS
which utilizes link-state routing and per-hop forwarding to
achieve such optimality. PETS makes use of the traffic engi-
neering protocol PEFT [4], which originally is not intended
to handle the joint optimization of TE and SS. We modify the
Network Entropy Maximization (NEM) framework in PEFT
and formulate a NEMR problem to solve for the optimal link
weights. Using the link weights, we present how each router
of ISP can make independent traffic splitting and forwarding
decision to solve TE; and each server of CP can make inde-
pendent demand splitting and forwarding decision to solve SS
without knowing the underlay information such as topology
and link weights.
We prove that PETS can achieve optimality for the joint

optimization of TE and SS. PETS has the following strengths.
First, PETS solves a single TE-alike problem, which is unlike
the previous iterative approach and thus significantly reduces
the convergence time and the number of message passing in
the system. Second, ISP does not need to reveal its key un-
derlay network information such as topology and link weights
because the servers of CP can make decision distributively
based on minimal information obtained from their connected
routers. Moreover, PETS can be easily extended to handle the
scenario where multiple CPs coexist.
The remainder of the paper is organized as follows. In

Section 2, we define optimality for the joint design of TE
and SS. In Section 3, we present the novel protocol PETS
and prove that PETS can achieve optimality for the joint de-
sign. We present illustrative simulation results in Section 4
and conclude in Section 5.

2. DEFINING OPTIMALITY

Optimality of a TE protocol is defined through a Multi-
Commodity Flow (MCF) problem. In Section 2.1, we review
the Multi-Commodity Flow problem. In Section 2.2, we
show that an optimal joint design of TE and SS should real-
ize the link flows in the solution of a MCF problem with an
augmented set of optimization variables. We then introduce
the graph transformation technique that will be useful in the
rest of the paper.

2.1. Multi-Commodity Flow Problem

We represent the network by a directed graphG(V,E), where
V and E are the set of nodes and links, respectively. Each
node represents a router. Some nodes may be attached by a
server, which will handle the requests from CP clients. For
each pair of adjacent nodes u and v, let (u, v) ∈ E be the link
directed from u to v. Define the capacity of link (u, v) by
cu,v . The traffic demand between a source s and a destination
t is defined asD(s, t). Denote fu,v the aggregated traffic flow
on link (u, v). We further define f

t
u,v
the (partial) flow on link

(u, v) destined to t. Clearly, we have

fu,v =
∑
t∈V

f
t

u,v
, ∀(u, v) ∈ E, (1)

and

fu,v ≤ cu,v. (2)

For flow conservation, we must have∑
(s,v)∈E

f
t

s,v −
∑

(u,s)∈E

f
t

u,s = D(s, t), ∀s ∈ V, t ∈ V. (3)

Let the link cost be a function of link capacity and its aggre-
gated flow, i.e., Φ(fu,v, cu,v). Here we consider the general
case that Φ as a convex function which strictly increases with
fu,v and satisfies

Φ(fu,v, cu,v) → 0, if cu,v → ∞. (4)

The MCF problem is to minimize∑
(u,v)∈E

Φ(fu,v, cu,v), (5)

with variables fu,v and f
t
u,v , subject to Equations (1), (2) and

(3). Given the traffic demand matrix D, the MCF problem
is an convex optimization problem which can be solved in
polynomial time. It outputs the optimal flow on each link. An
optimal TE protocol should realize the flow either by link-
state traffic splitting (e.g. PEFT [4]) or dividing traffic over
different paths (e.g. MPLS [5]).

2.2. Optimal Link Flows for Joint Design of TE and SS

In order to find optimal link flows for TE, the demand matrix
D is often assumed to be constant. However, in the context
of joint design of TE and SS, this assumption is obviously
invalid. This is shown as follows. Denote Vs the set of nodes
attached by the servers belonging to the CP. Assume a client
request is initiated at a destination t and has required a total
rate of dt. The traffic from each server node si ∈ Vs to t is
denoted as D

cp(si, t). Each D
cp(si, t) is a variable in server

selection problem, and they add up to the required traffic rate,
i.e., ∑

si∈Vs

D
cp(si, t) = dt, ∀t ∈ Vs. (6)
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Denote the background traffic from si to t by D
bg(si, t). We

have

D(si, t) = D
cp(si, t) + D

bg(si, t), ∀si ∈ Vs. (7)

Clearly,D is no longer a constant due to CP trafficD
cp(si, t).

In order to define optimality for the joint design, we pro-
pose the following approach that finds the optimal link flows
by solving a MCF problem with transformation on its input
topology G and demand matrixD. We add a new node Ns in
graph G, and connect each server si ∈ Vs to the new node by
a directed virtual link with infinite capacity. We denote this
new graph by G

∗. All CP traffic D
cp(si, t) is assigned to Ns

in G
∗. Therefore, we have

D(Ns, t) = d
t
. (8)

Figure 1 illustrates such transformation. There are 3
servers labeled as s1, s2 and s3, and one destination t. A
dashed arrow represents the traffic demand between two
nodes, while a solid arrow represents a new virtual link added
to the graph. Clearly, after the transformation, the traffic
demand D(si, t) only contains constant background traffic
D

bg(si, t). Besides, all CP traffic is assigned to Ns, which
adds up to a constant dt. In other words, the demand matrix
in G

∗ becomes constant after the transformation, and the
problem becomes a standard MCF problem.
The optimal solution of MCF problem on G

∗ contains
optimal flow on physical links as well as virtual links (i.e.,
∀(Ns, si) ∈ G

∗). The flow on a virtual link (Ns, si) repre-
sents the aggregated CP traffic at server si, i.e.,

fNs,si
=

∑
t∈V

D
cp(si, t). (9)

Theorem 1: An optimal joint design of TE and SS should
realize the link flows in the optimal solution of the Multi-
Commodity Flow problem on G

∗.
Proof: See Appendix A.1.

3. AN OPTIMAL PROTOCOL: PETS

In this section, we propose a novel protocol PETS (PEFT-
based joint Traffic Engineering and Server Selection) for joint
design of TE and SS which achieves the MCF optimality.
In Section 3.1, we first review PEFT [4]. In Section 3.2,
we present the details of PETS. We further show that PETS
achieves optimality for the joint design. In Section 3.3, we
discuss other properties of PETS.

3.1. PEFT Review

PEFT is an optimal TE protocol that uses link-state routing
and per-hop forwarding [4]. There are 3 major steps in PEFT.
It first solves a MCF problem to get the optimal link flows.
Then, based on the link flows, it obtains a set of link weights.

�
��

��

��

�

��

��

����

Fig. 1. Illustration of the transformation.

In the final step, each router splits the traffic based on link
weights to realize the optimal flow. The first step has been
shown in Section 2.1; we present the details on the remaining
steps here.
Given optimal link flows, PEFT solves the following Net-

work Entropy Maximization problem (NEM) to find out a set
of optimal link weights:

NEM

Maximize:
{xi

s,t}

∑
s,t∈V

D(s, t)

(∑
i

−x
i

s,t
log x

i

s,t

)
,

subject to
∑

s,t,i:(u,v)∈P i
s,t

D(s, t)xi

s,t
≤ fu,v, ∀(u, v),

∑
i

x
i

s,t = 1, ∀s, t ∈ V,

(10)

where P
i
s,t
is the i

th path from s to t, while x
i
s,t
is the fraction

of the traffic D(s, t) that is routed along P
i
s,t.

The partial Lagrangian of NEM by relaxing the inequality
constraint can be written as

∑
(u,v)∈E

λu,vf
t

u,v +
∑

s,t∈V

D(s, t)

(∑
i

−x
i

s,t log x
i

s,t

)

−
∑

(u,v)∈E

λu,v

⎛
⎝ ∑

(u,v)∈P i
s,t

D(s, t)xi

s,t

⎞
⎠ ,

(11)

where λu,v are the Lagrangian multipliers and also the vari-
ables in Lagrange dual problem. Optimal λu,v and x

i
s,t max-

imize the Lagrangian subject to the equality constraint. Note
that the optimal λu,v can be used as link weights to realize the
optimal flow, i.e.,

w(u, v) = λ
∗

u,v
. (12)
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Given link weights, a router at u splits the incoming traffic
using the following equation:

f
t

u,v
= f

t

u

Γ
(
h

t
u,v

)
∑

(u,j)∈E
Γ

(
ht

u,j

) , (13)

where f
t
u is the aggregation of all incoming traffic at u which

is destined to t and f
t
u,v
is the amount of the traffic split to an

outgoing link (u, v). Let dt
u
be the shortest path length from

u to t. Obviously, dt
v + w(u, v) is the length of shortest path

from u to t passing v. Denote h
t
u,v
the difference between the

length of the two paths, which is obviously given by

h
t

u,v
= d

t

v
+ w(u, v) − d

t

u
. (14)

Γ
(
h

t
u,v

)
is the traffic splitting function for link (u, v), which

can be calculated using the equivalent number γt
v
, i.e.,

Γ
(
h

t

u,v

)
= e

−h
t
u,vγ

t

v
. (15)

We call Γ
(
h

t
u,v

)
in the above equation as exact traffic split-

ting function. To prevent loops in routing, we can use down-
ward packet forwarding scheme where at each node, the traf-
fic is split to those nodes with shorter distance to the destina-
tion. The resulting traffic splitting function is then

Γ
(
h

t

u,v

)
=

{
e
−h

t
u,vγ

t
v
, if dt

u
> d

t
v
,

0, otherwise.
(16)

Similar to OSPF [6, 7], each router should have complete
information on the network topology and the link weights in
order to compute the shortest path and traffic splitting func-
tion. Although PEFT achieves optimal TE, it cannot be used
to jointly optimize traffic engineering and server selection
since traffic matrix is assumed to be fixed and given. In the
next section, we show how PETS makes use of PEFT to
achieve the joint optimization.

3.2. PETS

We propose PETS to jointly optimize TE and SS by modify-
ing PEFT in each of its three steps to incorporate new vari-
ables and constraints posed by the joint design. Firstly, ISP
solves a standard MCF problem based on transformed topol-
ogy G

∗ (See Section 2.2). The solution defines the optimal
link flows which can be realized by the next steps.
In this step, we find link weights by solving a “relaxed”

form of NEM (Equation (10)), denoted by NEMR. The new
problem relaxes the inequality in NEM for each virtual link
(Ns, si). Using to Equation (8), the original inequalities in
Equation (10) for virtual links can be rewritten as

∑
s,t,i:(Ns,sj)∈P i

Ns,t

d
t · xi

s,t
≤ fNs,si

,∀ sj ∈ Vs. (17)

Because the aggregated flow on a virtual link is no larger than
the total CP traffic, we can relax the inequalities as∑

s,t,i:(Ns,sj)∈P i
Ns,t

d
t · xi

s,t
<

∑
t

d
t + δ, ∀ sj ∈ Vs, (18)

where δ is some positive constant.
Because NEM is strictly feasible, NEMR must be strictly

feasible as well. As a result, strong duality holds for NEMR.
We can solve NEMR by dual decomposition. Denote the so-
lution to the dual problem by

{
λ
∗

u,v

}
. We claim the following

two theorems.
Theorem 2: The optimal dual variables associated with

each virtual link λ
∗

Ns,si
equal 0.

Proof: See Appendix A.2.
Theorem 3: The optimal link flows can be realized by

link-state routing and per-hop forwarding, if 1) we use the
optimal dual variables given by NEMR as link weights; and
2) each node (including virtual node) splits traffic using traffic
splitting functions as specified in PEFT.
Proof: See Appendix A.3.
By Theorem 3, we use the optimal dual variables given by

NEMR as link weights, i.e.,

w(u, v) = λ
∗

u,v. (19)

In the final step, we use the above set of link weights to re-
alize the optimal link flows and solve the joint optimization of
TE and SS in a distributed manner. Given link weights, each
node computes the traffic splitting function to realize the opti-
mal link flows as specified in Section 3.1. Regarding TE, each
router independently computes the traffic splitting function at
its associated physical node. It then splits and forwards traffic
according to the function to solve TE problem as specified in
PEFT.
On the other hand, regarding SS, each server of CP inde-

pendently computes the traffic splitting function at the virtual
node Ns. Each server then uses the function to split the in-
coming CP traffic and forwards certain portion of traffic to
other servers to solve SS. The detail is as follows. We first
show how to compute traffic splitting function at the virtual
node. Referring to Equation (14) and Theorem 2, we have

h
t

Ns,si
= d

t

si
− d

t

Ns
. (20)

The shortest path from Ns to t passes through one of the vir-
tual links. Therefore,

d
t

Ns
= min

si

{
d

t

si

}
. (21)

Given d
t
si
at each si, according to Equations (13) and (15),

the traffic split to server si is

f
t

Ns,si
= f

t

Ns

e
−h

t
Ns,si γ

t
si∑

si
e
−ht

Ns,si γt
si

. (22)
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Using Equation (22), each server independently splits the CP
traffic demand which it receives from the clients. It forwards
the portion of demand f

t

Ns,si
to si (if the server itself is not

si). Note that the forwarded demand will not be split again.
The CP traffic demand is then satisfied independently at the
each server. Because all servers use the same traffic splitting
function, it is clear that the total CP traffic demand is split cor-
rectly according to the splitting function at the virtual node.
Clearly, the computation of Equation (22) only requires the
shortest path lengths d

t
si
and equivalent number γ

t
si
for each

si. Because each router has a complete knowledge of all dt
si

and γ
t
si
, each server of CP simply polls the information from

its connected router. In this way, important information of
ISP such as topology and link weights will not be revealed to
CP.
Since traffic splitting at each physical node (which is done

by a router) or at the virtual node (which is due to the joint ef-
forts of the CP servers) is according to the splitting function
definition in PEFT, we confirm that PETS is able to realize
the optimal link flows given by MCF by Theorem 3. Further-
more, by Theorem 1, we show that PETS achieves the joint
optimality of TE and SS.
PETS achieves MCF optimality at the cost of some rout-

ing loops (because of the use of PEFT). To prevent looping,
we propose PETS-D which stands for PETS using downward
packet forwarding. Each router calculates the traffic splitting
function according to Equation (16). Because the virtual node
Ns only has outgoing links, there is no routing loops passing
Ns. Thus we do not have to apply downward forwarding at
Ns. Hence, traffic splitting at each CP server remains un-
changed. Clearly, PETS-D prevents routing loops at some
sacrifice of optimality. We show in section 4 that the cost is
negligible.

3.3. PETS Properties

PETS is a fully distributed protocol for joint optimization of
TE and SS. To solve TE, Each router independently splits the
incoming traffic over outgoing links. To solve SS, Each server
of CP independently splits its CP requests and forwards a cer-
tain portion of the requests to the other servers. It has been
proved that, in this distributed manner, the joint optimality of
TE and SS can be achieved.
PETS is a fast converging protocol which does not re-

quire large amount of message exchanging in the network. As
PETS modifies the steps in PEFT, the total processing time
and message exchanging is comparable to solving a single
TE problem with PEFT. Recall that previous approach (i.e.,
COST [1]) requires an iterative approach which ISP solves a
TE problem and CP solves a SS problem, and ISP and CP
interact through link prices updated in each iteration. Since
PETS does not take this iterative approach, it has faster con-
vergence speed and less messages to be passed in the system.
PETS lets ISP hide its key information from CP, which is

important because ISP and CP may come from different enti-
ties. In PETS, each server of CP computes its traffic splitting
function by polling shortest path lengths and equivalent num-
bers from its connected router. As a result, ISP needs not to
provide CP its underlying network information such as topol-
ogy and link weights.
PETS can be easily extended to handle several CPs. For

each CP, we can add a virtual node and a set of virtual links to
the graph. ISP uses the new graph to compute the link weights
and configure traffic splitting at routers. Servers of each CP
polls adjacent routers for necessary information to split the
CP traffic. Clearly, each CP is independent of each other and
there is no need for centralized management.

4. SIMULATION RESULTS

We have simulated PETS and PETS-D (PETS with downward
packet forwarding, Section 3.2) on the network topology il-
lustrated in Figure 2. Each physical link has the same link
capacity. Two servers are attached to Node 1 and Node 4,
respectively. The CP traffic demand is initiated at Node 3.
There is background traffic from Node 2 to Node 3. As de-
scribed before, we add a virtual node 6 to the graph and con-
nect it to Nodes 1 and 4 by two virtual links l17 and l18. As
a simple illustration, we use two types of link cost function
in the simulation: Φ1(fu,v, cu,v) =

fu,v

cu,v−fu,v
, which is the

M/M/1 link queuing delay, and Φ2 is a piecewise linear func-
tion commonly used as ISP link cost [6]. Figure 3 illustrates
the two link cost functions.
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Fig. 2. Illustration of network topology. Servers are attached
to Node 1 and Node 4. Demand is initiated to node 3. Node
6 is the virtual node. All links except l17 and l18 are physical
links.

Two parameters are varied in the simulation. One is the
link capacity. When traffic is fixed, increasing the link ca-
pacity will lead to smaller link utilization. The other is the
percentage of CP traffic in the total traffic. The performance
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Fig. 3. Comparison of link cost functions Φ1 and Φ2.

metric is the sum of link cost of each link, using either Φ1 or
Φ2.
We have compared PETS and PETS-D with two other

schemes. One is the optimal joint design of TE and SS, de-
noted as OPT. The other is the non-cooperative scheme in
which OSPF is used for TE and a heuristic based on delay
measure is used for SS, denoted as NON-COOP. The NON-
COOP scheme is similar to the common practice and is equiv-
alent to Model 1 in [1], in which ISP and CP solves TE and
SS iteratively and ISP does not reveal underlay information to
CP.
Figure 4 shows the sum of link cost versus link capac-

ity given different schemes. Link cost Φ1 is used in Fig-
ure 4(a) while Φ2 is used in Figure 4(b). The sum of link
cost decreases with link capacity because the link utilization
decreases. PETS and PETS-D achieve the same optimum
given by OPT. Their performance are much better than the
NON-COOP scheme. The performance gap is more signif-
icant when the link capacity is small. In other word, PETS
and PETS-D have more advantage when network becomes
congested. In order to see how the link utilization decreases
with link capacity, we plot the corresponding maximum link
utilization versus link capacity in Figure 5. As the simulation
results on Φ1 and Φ2 show the similar trend, we only show
result of Φ1 in the remaining part.
We show in Figure 6 the sum of link cost Φ1 versus CP

traffic percentage given different schemes. The sum of link
cost first decreases and then increases with CP traffic percent-
age. The cost is large when CP traffic percentage is small
because the paths for background traffic becomes congested.
Similarly, the cost is large when CP traffic percentage is large
because the paths for CP traffic becomes congested. PETS
and PETS-D achieve the same optimum given by OPT, and
they outperformNON-COOP scheme significantly, especially
when the network is congested.
We show in Figure 7 the traffic splitting of PETS given

different CP traffic percentage. For each node, the percentage
on each outgoing link represents the ratio of incoming traffic
that is split to that link. Note that the percentage on virtual
links shows how the CP client requests is split to different
servers. The left plot illustrate the scenario when CP traffic
percentage is high. The servers at node 1 and node 4 have
similar load because background traffic (which is from node 2
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Fig. 4. Sum of link cost versus link capacity given different
schemes.

to node 3) is low. The right plot illustrates the scenario when
CP traffic percentage is low. Majority of CP traffic is sent
from server at node 4. This is because the high background
traffic makes the paths from node 1 to node 3 become more
congested.
The link weights on the virtual links always have zero

value, which justifies Theorem 2. Table 1 shows the set of op-
timal link weights of PETS. The set corresponds to the point
in Figure 4(a) with link capacity of 1.5. Note that the virtual
links (index 17 and 18) have zero link weights.

Table 1. Link weights of PETS.
Index 1 2 3 4 5 6
Weight 139.4 100.0 60.7 100.0 80.4 100.0
Index 7 8 9 10 11 12
Weight 80.4 100.0 139.4 100.0 60.4 100.0
Index 13 14 15 16 17 18
Weight 80.2 100.0 80.2 100.0 0 0
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Fig. 5. Maximum link utilization versus link capacity given
different schemes.

5. CONCLUSION

We propose a distributed protocol PETS to jointly optimize
traffic engineering and server selection. In PETS, we first
use a novel approach to define optimality for the joint opti-
mization by solving a Multi-Commodity flow problem with
transformed topology. We further propose a NEMR problem
which can be solved for optimal link weights. We then design
how a router of ISP makes distributed traffic splitting decision
and how a server of CP makes distributed demand splitting
decisions to jointly optimize TE and SS.
PETS advances the joint design of traffic engineering and

server selection in several ways. First, PETS is a fully dis-
tributive protocol which does not need centralized manage-
ment system. Second, it has faster convergence speed and
less message exchange. Moreover, PETS does not need ISP to
reveal its key underlying network information. Finally, PETS
can be easily extended to handle a network with multiple CPs.
We prove that PETS can achieve optimality for the joint

design and illustrate numerically by simulation. In particu-
lar, the simulation results shows that PETS with downward
forwarding can prevent routing loops with negligible perfor-
mance cost. The advantage of PETS and PETS-D over cur-
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Fig. 6. Sum of link cost Φ1 versus CP traffic percentage given
different schemes.
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Fig. 7. Illustration of traffic splitting of PETS given different
CP traffic percentage. The left figure illustrates the scenario
when CP traffic percentage is high. The right figure illustrates
the scenario when CP traffic percentage is low.

rent practice can be significant especially when network is
congested.
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A. APPENDIX

A.1. Proof of Theorem 1

Let MCF-G denote the Multi-Commodity flow problem on G

with additional equality constraints (6) and (7). And let MCF-
G∗ denote the Multi-Commodity flow problem on G

∗. We
aim to prove that the solution of MCF-G is equivalent to that
of MCF-G∗ with one to one correspondence on their decision
variables.
The objective of MCF-G∗ can be written as,∑

(u,v)∈G

Φ(fu,v, cu,v) +
∑
si

Φ(fNs,si
, cNs,si

). (23)

Because all the virtual links have infinite capacity, combining
Equation (4), we have,∑

(u,v)∈G∗

Φ(fu,v, cu,v) =
∑

(u,v)∈G

Φ(fu,v, cu,v). (24)

Note that the right-hand side is the objective for MCF-G.
Therefore, the two problem has the same objective.
Moreover, we can make one-to-one correspondence be-

tween the variables in the two problems. Each flow on physi-
cal link in MCF-G corresponds to the flow on the same physi-
cal link in MCF-G∗. Each variable D

cp(si, t) in MCF-G cor-
responds to fNs,si

in MCF-G∗. With this correspondence, it
is easy to see that the constraints in two problems are equiva-
lent.
Therefore, the two problems must have equivalent solu-

tions. For each physical link, its flow in MCF-G is equal to
that in MCF-G∗. Because a joint design of TE and SS should
realize link flows in MCF-G, it must also realize the link flows
in MCF-G∗.

A.2. Proof of Theorem 2

The optimal primal variables x
i∗
s,t and dual variables λ

∗

u,v

maximize the Lagrangian of NEMR and satisfy Karush-
Kuhn-Tucker (KKT) condition [8]. As required by comple-
mentary slackness in KKT condition, we have,

λ
∗

Ns,si
·

⎛
⎝ ∑

s,t,i:(Ns,sj)∈P i
Ns,t

d
t · xi

s,t
−

∑
t

d
t − δ

⎞
⎠ = 0. (25)

Since inequalities in (18) always hold strictly, we must have,

λ
∗

Ns,si
= 0,∀si ∈ Vs. (26)

Proof ends.

A.3. Proof of Theorem 3

Following the proof in [4], the two conditions ensures that the
link flows from the solution of NEMR can be realized by link-
state routing and per-hop forwarding. However, we have to
prove that aggregated flows in NEMR are equal to that given
by the Multi-Commodity flow problem on G

∗. Denote the
aggregated flow on link (u, v) by f̃u,v . By definition,

f̃u,v =
∑

s,t,i:(u,v)∈P i
s,t

D(s, t)xi

s,t
. (27)

Therefore, as required by inequalities on physical links, we
have,

f̃u,v ≤ fu,v,∀u, v �= Ns. (28)

Because the link cost function Φ(fu,v, cu,v) is a strictly in-
creasing with fu,v , we have,∑

(u,v)∈G

Φ(f̃u,v, cu,v) ≤
∑

(u,v)∈G

Φ(fu,v, cu,v) (29)

Therefore, if there exists a f̃u,v less than fu,v , we have a strict
inequality, i.e.,∑

(u,v)∈G

Φ(f̃u,v, cu,v) <

∑
(u,v)∈G

Φ(fu,v, cu,v). (30)

Combining (24) and (30), we have,∑
(u,v)∈G∗

Φ(f̃u,v, cu,v) <

∑
(u,v)∈G∗

Φ(fu,v, cu,v), (31)

which is contradicting to the fact that {fu,v} are the optimal
solution for Multi-Commodity flow problem. Therefore, f̃u,v

must be equal to fu,v . The proof is complete.
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