
Achieving High-Bitrate Overlay Live Streaming
with Proxy Helpers

Dongni Ren S.-H. Gary Chan
Department of Computer Science and Engineering

The Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

Email: {tonyren, gchan} @cse.ust.hk

Abstract—Meeting a high bitrate requirement (say, 1 Mbps) in
overlay live streaming is challenging. We consider the design and
optimization of an overlay network formed by distributed proxies
for high-bitrate live streaming. The video stream is divided into
substreams and pushed via multiple trees to all the proxy servers
with users. To effectively overcome bandwidth bottlenecks, we
employ proxy helpers to provide rich path diversity. They do not
have any attached users, and hence may forward any arbitrary
subset of the substreams. In this way, the helpers serve as
“stepping stones” to provide full streams to the servers.

A critical issue is how to best use the proxy helpers to
minimize delay meeting a certain streaming rate requirement.
We first model the network by capturing various delay and
bandwidth components. We formulate the problem and show
that it is NP-hard. We then propose an efficient algorithm called
Stepping-Stones. Our results based on simulation on real Internet
topologies show that the algorithm outperforms other overlay
protocols by effectively making use of helpers to achieve low
delay and high streaming rate.

I. INTRODUCTION

Achieving overlay live streaming of high bitrate over global
public Internet is challenging. This challenge comes from two
factors. First, multimedia streaming requires high sustained
bandwidth overcoming network bottlenecks. Second, overlay
delay has to be minimized so that live streams can be delivered
to end users in a timely manner. Therefore, although we have
witnessed many successful stored streaming applications (such
as YouTube, Hulu, Youku, etc.), there is still much room for
improvement regarding the delivery of high bitrate live streams
over the global Internet.

In order to provide overlay live services, content or service
providers usually deploy proxies at different locations of
the Internet to serve end users, the so-called “media cloud”
[1]. These proxies are mostly stable, though they may be
introduced or removed at any time. They form an overlay to
receive live streams from the source or other proxies to serve
their local users. To achieve low delay, the stream is pushed
from the source to the proxies. The most challenging issue is
how to minimize the delay from the source to all the proxies
with users while meeting the streaming rate requirement.

This work was supported, in part, by the General Research Fund from the
Research Grant Council of the Hong Kong Special Administrative Region,
China (611209), and Proof-of-Concept Fund at the HKUST (PCF.005.09/10
& PCF.005/10/11).

User delay in the network is due to the aggregation of two
components on the overlay, scheduling delay and propagation
delay. Scheduling delay is defined as the time elapsed from a
parent node receiving a segment (or chunk) to the instant that
the segment is transmitted to its children. It is clear that the
more children a proxy serves, the higher the scheduling delay
is. Propagation delay is the time for the segment to travel from
one proxy to the next one. It is usually reflected by the “ping”
or round-trip time (RTT) distance. For push-based streaming
(i.e., typically with small segments) over global network, both
delays have to be considered. 1 Both delays accumulate with
the number of proxies and number of hops from the source. If
the overlay is not carefully designed, high overall delay will
lead to undesirable results.

Traditionally, proxies are deployed at where active users
are, which often leads to a relatively sparse network. Because
of the long-haul connections between proxies, the end-to-
end throughput would be limited. In order to support global
high bitrate streaming (e.g., higher than 1 Mbps), we need
to overcome such end-to-end bandwidth bottleneck [2]. Many
previous studies assume that network edge is the only bot-
tleneck. This assumption hence no longer holds for a global
network, where end-to-end bandwidth needs to be considered
as well.

In order to overcome bandwidth bottlenecks to support high
bitrate, we study the use of helpers. Helpers are proxies de-
ployed in the overlay with no (existing) end users. Therefore,
they do not have to receive the full stream to serve users.
Servers, on the other hand, are proxies with active users and
have to receive full streams. Previous work has not considered
enough the use of helpers for live streaming. In this paper, we
show how helpers can improve streaming performance through
the following:

• Providing rich path diversity: Helpers provide path
diversity in the network, by offering a rich set of alternate
paths as “stepping stones” from one server to another. As
bandwidth can be aggregated along multiple paths, this
overcomes bandwidth bottlenecks of end-to-end connec-
tions.

1Consider a practical push-based streaming network with segment size of
100 kbits and end-to-end bandwidth of 500 kb/s. A proxy with two children
then has scheduling delay of 400ms. Given that typical ping distances in a
global setting are 50ms to 100ms, neither delays can be ignored.

2

Fig. 1: A high-bitrate live streaming network with helpers.

• Reducing scheduling delay: The worst-case scheduling
delay is proportional to the number of children that
a proxy (i.e., either server or helper) has. The use of
helpers can reduce the average number of children of the
proxies, and hence the scheduling delay. This reduction
may reduce the overall delay of the network.

• Increasing system throughput and capacity: The pres-
ence of helpers increases the available uploading band-
width of the network. This bandwidth can be used to
serve the servers in need. This increases system capacity
to accommodate more servers.

We show in Figure 1 the streaming network under consid-
eration. The video is divided into multiple substreams, which
are pushed from the source to all servers via multiple spanning
trees (which may overlap on overlay edges). The aggregation
of all the trees is hence a mesh. The servers have to receive all
the substreams, either from streaming source, other servers or
helpers, to aggregate as a full stream. Helpers also participate
in streaming and serve as stepping stones (intermediate nodes)
in one or more delivery trees so that the substreams can reach
servers meeting bandwidth requirement with low delay. For
examples, helper H1 receives both substream 1 and substream
2 (i.e., full stream in this example), and then delivers them to
proxy server S1. Helpers H2, H3 and H4 receive and forward
only partial stream (one substream in this example), while
some other helpers (H5 and H6) does not participate in the
stream distribution.

There has not been work studying the construction and
optimization of the helper-based streaming cloud as discussed
above. We investigate such a network, and our contributions
are as follows:

1) Problem formulation and complexity analysis: We
present a realistic delay model with helpers. The model
captures various important delay components and band-
width constraints for the streaming cloud, such as end-
to-end bandwidth, uplink bandwidth, scheduling delay,
propagation, etc. We formulate the optimization problem
of constructing overlay trees for each substream, which
is to minimize network diameter while meeting the
streaming rate requirement. We analyze its complexity
and prove that it is NP-hard.

2) A heuristic (Stepping-Stones): We propose an efficient
heuristic making use of helpers called Stepping-Stones
(SS) which meets bandwidth requirement while achiev-
ing low streaming delay.

3) Simulation studies: We conduct extensive simulation
study real Internet topologies to evaluate the perfor-
mance of our proposed algorithm. We show that helpers
can significantly reduce streaming delay, achieve high
streaming rate, and improve system capacity.

The rest of this paper is organized as follows. We first
review related work in Section II. Then we present the formu-
lation of the problem and its complexity analysis in Section III.
In Sections IV, we discuss the algorithm Stepping-Stones,
which is to construct a low-delay overlay streaming backbone
with helpers. Illustrative simulation results and comparisons
are presented in Section V. We conclude in Section VI.

II. RELATED WORK

To build an overlay for live streaming, one common ap-
proach is to use CDN (Content Distribution Network). There is
a large body of work on CDN, which may be broadly grouped
as follows: Data replication and cooperative caching [3]; User
request redirection [4]; CDN deployment and configuration
[5]. Despite this large body of work, there is little, if any, work
studying and optimizing CDN overlay to live streaming issues.
As opposed to caching static data content, live streaming
calls for a careful design of overlay to support sustained
connections between proxies so as to meet streaming rate
requirement with low delay.

There has been much work on peer-to-peer (P2P) streaming
[6], [7]. While this body of work addresses different aspects
of streaming issues, it has not addressed how to optimize
streaming delay making use of helpers while meeting a certain
bitrate requirement.

The concept of helper has been mentioned in the context
of P2P Video on Demand (VOD), where nodes with residual
bandwidth are used to reduce server loads, increase streaming
capacity and distribute video resources [8]. However, how
to make use of helpers to support live streaming has not
been addressed, where meeting bandwidth requirement with
minimum delay is the major concern. While much of the
traditional work constructs the overlay in a rather ad hoc
manner, ours focuses on its optimization to support high
streaming rate and low delay. Our study shows that helpers
can substantially improve streaming rate, reduce user delay
and increase system capacity.

III. PROBLEM FORMULATION AND COMPLEXITY

A. The Problem of Minimum-Delay Streaming with Helpers

We formulate the overlay as a directed graph G = (V,E),
where V is the set of vertices containing the overlay nodes
of servers, helpers, and the streaming source. Let S be the
streaming source, H be the set of helpers and P be the set
of servers; therefore, V = {S} ∪ P ∪H . E = V × V is the
set of possible overlay connections between nodes in V (does
not have to be complete). For every edge ⟨i, j⟩ ∈ E, there is

3

a propagation delay dpij from node i to node j in the physical
network.

We consider that the bandwidth is normalized to some unit
equal to the streaming rate of a substream denoted as bs (e.g.,
bs = 400 kb/s). Let s ∈ Z+ be the streaming rate in that
unit, i.e., s is the number of substreams of the video stream.
Each unit of stream (hence a substream) is delivered to all
the nodes in P by a spanning tree and there are a total of s
delivery trees. Denote the spanning tree of the kth substream
as Tk.

For every node i in V , it has an uplink bandwidth of Ui

units, Ui ∈ Z+, which represents the maximum total number
of children it can serve in all spanning trees. The end-to-end
throughput of the edge ⟨i, j⟩ is denoted as wij ∈ Z+, which is
the maximum number of substreams that can simultaneously
accommodate in edge ⟨i, j⟩. For any node in V , if it gets an
aggregate stream of s units from its parents, we call the node
fully served. In other words, if node i receives streams from
all s spanning trees, it is fully served and can play back the
video with continuity. Note that S has an uplink bandwidth of
US units and has no parent.

For every node i ∈ P , we define the incidence matrix A =
[aik] indicating whether node i is on tree k, i.e.,

aik =

{
1, if i ∈ Tk;
0, otherwise. (1)

Therefore, ai1 = ai2 = . . . = aik = 1 if and only if node i
is fully served. For the streaming session to be feasible, the
total uplink bandwidth must be larger than the total streaming
bandwidth, i.e., ∑

i∈V

Ui ≥ (|V | − 1)× s, (2)

where the “1” is due to the source (which does not need
to be supplied with any substream). The aggregate incoming
bandwidth of each node must be larger than the streaming rate,
i.e., ∑

∀i∈V

min(wij , Ui) ≥ s, ∀j ∈ P. (3)

Note that the maximum throughput between two node is
min(wij , Ui), which is bound by the minimum of edge band-
width of node i and core bandwidth of edge ⟨i, j⟩.

The worst-case scheduling delay from node j to node i,
denoted as dsji, is given by

dsji =
∑

k∈C(j)

L

min(wjk, Uj)bs/tjk
, (4)

where L (bits) is the segment size used in streaming, C(j) is
the set of children of node j in all spanning trees, and tjk is
the number of concurrent substreams on edge ⟨j, k⟩.

Denote the source-to-end delay of node i in spanning tree
Tk as Dk

i , which equals to the delay of its parent j in tree
Tk plus the propagation delay and scheduling delay between
j and i, i.e.,

Dk
i = Dk

j + dpji + dsji. (5)

The total delay Di of node i is given by its maximum source-
to-end delay Dk

i among all spanning trees, i.e.,

Di = max
k∈[1,s]

Dk
i . (6)

We state below the problem of our study:
Minimum-Delay Streaming with Helpers (MDSH) problem:

The MDSH problem is to find an overlay which minimizes the
maximum of the server delay (i.e., minimizes the streaming
diameter),

minmax
i∈P

Di (7)

subject to the streaming rate requirement, i.e., all servers
receive an aggregate incoming stream of s units, i.e., A =
[aik] = 1, ∀i ∈ S.

B. Problem Complexity

We show in this section that the complexity of our problem
is NP-hard. MDSH is obviously in P. This is because we can
compute the maximum delay of a given streaming cloud in
polynomial time. Given a graph G(V,E) and its corresponding
optimal delay, we hence can verify whether the constructed
overlay is the optimal overlay.

The well-known NP-hard Travelling salesman problem
(TSP) is reducible to MDSH problem in polynomial time.
Let G′(V ′, E′) be the graph of a TSP instance. We transform
G′(V ′, E′) into G′′(V ′′, E′′) by adding a vertex Send and
edges from all the vertices to Send. In this way, the vertices
in V ′′ represent proxy servers and the weight on the edges are
the propagation delay plus the transmission time of a segment
between the two adjacent servers. We let S be the source,
and consider the special case that the streaming rate is 1 unit
of substream, uplink bandwidth of each peer is also 1 unit,
and Send has zero uplink bandwidth. In this way the resulting
overlay topology must be a chain starting at S and ending at
Send. Dmax is equal to the delay of Send, which is the sum of
all delays preceding it. Hence, it is obvious that Dmax in G′′

is minimum if and only if the cost of the Hamiltonian cycle
in G′ is minimum. Therefore TSP is polynomially reducible
to MDSH.

IV. STEPPING-STONES ALGORITHM

In this section we present our heuristic called Stepping-
Stones (SS), which constructs a streaming overlay given net-
work information (i.e. the inter-proxy distances and band-
widths). We first present the details of the heuristic in Sec-
tion IV-A, followed by its complexity analysis in Section IV-B

A. Algorithmic Details

To construct an overlay with minimum delay, we need to
determine which helpers to include in the streaming overlay,
how many substreams each helper receives, and which proxies
it forwards to. To do that, Stepping-Stones (SS) uses two steps
to construct s delivery trees. It first constructs s delivery trees
spanning all servers through iterations. In each iteration, it
adds one server into one partially constructed delivery tree.
After s delivery trees are constructed, helpers are then added

4

to the trees in order to reduce delay. The intuition behind SS
is that we only include those useful helpers in each substream
tree, and hence helpers only participate in streaming if they
improve streaming. Furthermore, helpers may only receive
partial stream. This is in remarkable contrast with previous
work, where helpers either receive full stream or not at all.

In the tree construction step, each delivery tree is initialized
containing only the streaming source S. For every node i that
is not in Tk, we calculate the potential delay of node i in tree
Tk as

D̂k
i = min

∀j∈Tk

Dk
i (j), (8)

where Dk
i (j) is the delay of node i in tree k if it connects

to node j as its parent. Let dij = dsij + dpij . Recall that each
connection ⟨i, j⟩ ∈ E has a maximum transmission rate wij ,
which is the value that the total number of substreams from i
to j cannot exceed. Let tij be the existing traffic (in number
of substreams) from i to j and rij be the residual bandwidth
from i to j. rij clearly can be written as

rij = wij − tij . (9)

Since the link between node j and i may not have sufficient
throughput to support the substream, in this case we employ
helpers to bypass the bottleneck link, and Dk

i (j) can be
calculated as

Dk
i (j) =

Dk
j + dji if rji > 0,

min
∀h∈H,rjh>0,rhi>0

(Dk
j + djh + dhi) otherwise.

(10)
We then choose the node i with lowest potential delay and
connect it to the corresponding tree Tk, i.e.,

arg{i,k}(min
∀i/∈Tk,∀k

D̂k
i). (11)

We continue this process until every server is connected to all
delivery trees.

After the delivery trees span all servers, helpers are added
to the overlay trees in order to reduce delay of the servers.
Recall from Equation 4 that the worst-case scheduling delay
is proportional to the number of children that a proxy serves.
Therefore we use helpers to offload the busy proxies by taking
over their children in each delivery tree. Figure 2 shows an
example of the offload process and the adaptation of the
delivery tree. Node M serves 6 nodes in delivery tree T1

(solid lines) and 3 nodes in delivery tree T2 (dashed lines)
before offload. All 9 children of M have the same worst-case
scheduling delay. In Figure 2B we employ 3 helpers, H1,H2
and H3, each of which serves a subset of M ’s children, and
the scheduling delay of the nodes are significantly reduced.
Therefore in the helper adding step, we iterate through every
proxy in the delivery trees and check whether employing new
helpers is benificial or not. If offloading the proxy leads to
a reduce of overall delay, we connect the new helpers to the
proxy, and then let the helpers serve the children of the proxy.

(a) Before offload. (b) After offload.

Fig. 2: An example of adding helpers.

TABLE I: Baseline parameters in our simulation.

Parameter Baseline value
Number of proxies 200
Number of servers Half of proxies

Streaming rate 1.2 Mbps
Substream bandwidth 400 kbps

Proxy uplink bandwidth 3 Mbps
Edge bandwidth 3 Mbps

B. Algorithmic Complexity

The complexity of the SS algorithm is O(s2|V |2|H||P |).
In the tree construction step, adding one server to one de-
livery tree takes O(s|V |2|H|) time and there are O(s|P |)
iterations in total. Therefore the tree construction step takes
O(s2|V |2|H||P |) time. In the helper adding step, we iterate
through every node in the trees and it needs O(s|V ||H|) time.
Therefore the total complexity of SS is O(s2|V |2|H||P |).

V. ILLUSTRATIVE SIMULATION RESULTS

In this section we present illustrative simulation results
on the performance of our algorithm SS. The simulation is
carried out on a real Internet topology provided by CAIDA,
which was collected on June 12th, 2011 and contains 1,747
routers and 3,732 links. The round trip times (RTTs) between
inter-connected routers are also given in the topology. We
use Distance-vector routing to compute the latencies between
any two router nodes in the network. Proxies (servers and
helpers) are attached to the routers randomly and their uplink
bandwidth is normally distributed with mean µ = 3 Mbps
and standard deviation σ = 1.2 Mbps (accepting only the
positive values). We set the segment size as 100 kbits and the
streaming rate of a substream as 400 kbps. Unless otherwise
stated, the baseline parameters used in our simulation is shown
in Table I. We have also run our simulations on 10 different
two-levels top-down hierarchical Internet topologies generated
by BRITE. The results of those simulations are qualitatively
the same as what is presented here, and hence are not shown
for brevity.

We evaluate the performance of our proposed algorithms
with following metrics:

• Worst-case delay: The worst-case delay is the maximum
time taken for a packet to travel from the streaming source

5

50 100 150 200 250
1.5

2

2.5

3

3.5

4

4.5

5

Number of proxies

W
or

st
−

ca
se

 d
el

ay
 (

se
co

nd
s)

All nodes
Server only
Pull−based (server only)
SS

Fig. 3: Worst-case delay versus number of proxies with of
them servers.

to the servers in the overlay network. Our algorithms is
to minimize this delay while meeting bandwidth require-
ment.

• Delay components and distribution: Besides the worst-
case delay, we are also interested in the delay distribution
of the servers, and delay components for scheduling and
propagation.

• Helper involvement: The use of helpers leads to a better
streaming cloud with the cost of additional machines and
resources. We study the number of helpers involved in
Stepping-Stones.

We compare SS with three other schemes. The All nodes
scheme is a common one with all proxies, servers or helpers,
receiving full streams. It is implemented as applying SS
algorithm with all helpers treated as servers. The Servers only
scheme means that no helpers is involved in the streaming,
and hence only servers help each other in the overlay. It is
implemented as applying the SS algorithm on the servers only
(which is half of the proxies). The pull-based algorithm has
been commonly implemented nowadays in overlay networks,
where the servers periodically exchanges its buffermap with
other servers. They randomly pull the available segments from
their neighbors and then reassemble a full stream.

Figure 3 shows the worst-case delay of SS algorithms versus
number of proxies where the the number of servers is the
same as the number of available helpers. From the figure,
we see that as the number of proxies (and hence servers)
increases, the worst-case delay increases. This is because of
more servers and hence more hops in the network. SS performs
the best because it uses a partial set of helpers depending
on the network condition to achieve low delay. “Pull-based”
algorithm performs worst since the overlay is not optimized
and helpers are not involved in the streaming network. “All
nodes” scheme also has long delay because all helpers are
included in all substream trees and a large portion of system
bandwidth is wasted delivering redundant data to the helpers.
SS decides whether a helper node would help in a specific
substream tree, and then places it to an optimal position in
the tree. Because the participating helpers provide additional
throughput to the system and reduce the scheduling delay, SS
achieves better delay than “Servers only.”

<1.2 1.6 2.0 2.4 >2.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Delay (seconds)

F
ra

ct
io

n
of

 n
od

es

Pull−based (only servers)
SS

Fig. 4: Delay distribution.

0 50 100 150 200
0

5

10

15

20

25

30

Number of available helpers

N
um

be
r

of
 a

ct
iv

e
he

lp
er

s

Active helpers

Fig. 5: Activated helpers versus available helpers.

Figure 4 compares the delay distribution of servers with
different schemes (for 200 proxies and 100 servers). Clearly,
servers in SS achieve low delay as compared with the pull-
based algorithm. SS tries to arrange the overlay in a way that
most of the servers share rather similar delays, and the worst-
case delay is not much larger than the average delay.

We next study the number of helpers actually participate in
streaming by plotting in Figure 5 the number of helpers ac-
tively involved in forwarding substream(s) versus the number
of available helpers for SS (with number of servers equal to
100). Clearly, not all helpers are involved in streaming. Only
a low fraction of the helpers (about 10-15% in the figure) are
needed to be activated to help delivering the substreams.

We show in Figure 6 the worst-case delay versus the number
of helpers in the streaming cloud (with number of servers
equal to 100). As the number of helpers increases, the delay
decreases. This is because more helpers means that there are
more space to optimize the delay. The marginal benefit of
adding more helpers, however, decreases with the number of
helpers. This is because there is no need to add more helpers
if the helpers are dense enough.

We show in Figure 7 the components of scheduling and
propagation delays in the worst-case delay (for SS). Our results
show that scheduling delay is the major component, though
propagation delay also plays a significant role. This validates
that both delays have to be considered in order to optimize

6

0 20 40 60 80 100 120 140 160 180 200
1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

Number of available helpers

W
or

st
−

ca
se

 d
el

ay
 (

se
co

nd
s)

SS

Fig. 6: Worst-case delay versus the number of helpers.

50 100 150 200 250
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Number of proxies

W
or

st
−

ca
se

 d
el

ay
 (

se
co

nd
s)

Total delay
Scheduling delay
Propagation delay

Fig. 7: Delay components.

the network. Normally, as observed in other experimental
studies [9], the scheduling delay increases more quickly than
propagation delay because whenever a proxy serves a new
child, such increase in scheduling delay affects all of its
existing descendants in all substream trees. As the increase
in both scheduling and propagation delays is not sharp, SS
effectively controls both delays.

We show in Figure 8 the maximum streaming rate SS can
support given the number of available helpers (with number of
servers equal to 100). The result shows that with more helpers
available in the cloud, the maximum streaming rate s improves
significantly. The helpers increase the total bandwidth and
capacity of the system, and at the same time offer a richer set
of alternate paths between nodes. Given the path diversity in
the network, servers can aggregate bandwidth along multiple
paths and overcomes bandwidth bottlenecks of end-to-end
connections.

VI. CONCLUSION

In this paper we address the design and optimization of a
global live streaming network to achieve high streaming rate.
In order to achieve low delay and high bitrate, we use helpers
(i.e., proxies which have no attached users) to provide rich
path diversity, reduce scheduling delay and increase system
throughput and capacity. They work as “stepping stones” to
forward substreams to the servers (i.e., proxies with attached
users).

We present a realistic delay model of the network and
formulate the delay optimization problem making use of

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

8

9

10

Number of available helpers

M
ax

im
um

 s
tr

ea
m

in
g

ra
te

 (
un

its
)

Streaming rate

Fig. 8: Streaming rate versus number of available helpers.

helpers. We show that the problem is NP-hard. We propose
a efficient algorithm Stepping-stones, or SS, to address the
problem for a proxy live streaming network.

We conduct extensive simulation studies on real Internet
topologies to evaluate the performance of our proposed al-
gorithms. The results show that SS efficiently utilize helpers
as “stepping stones” to achieve low delay and high streaming
rate. The use of helpers can substantially improve streaming
delay and bitrate.

In the future we will study the use of proxy helpers
in streaming networks with multiple sources and multiple
channels. We will also implement Stepping-Stones and carry
out experimental studies on a global network to show the
benefits of proxy helpers.

REFERENCES

[1] W. Zhu, C. Luo, J. Wang, and S. Li, “Multimedia cloud computing: Di-
rections and applications,” Special Issue on Distributed Image Processing
and Communications, IEEE Signal Processing Magazine, vol. 28, May
2011.

[2] J. Chen, S.-H. Chan, and V. Li, “Multipath routing for video delivery over
bandwidth-limited networks,” Selected Areas in Communications, IEEE
Journal on, vol. 22, no. 10, pp. 1920 – 1932, dec. 2004.

[3] S. Sivasubramanian, M. Szymaniak, G. Pierre, and M. van Steen, “Repli-
cation for web hosting systems,” in ACM Computing Surveys (CSUR),
vol. 36, Sep. 2004.

[4] A. Su, D. R. Choffnes, A. Kuzmanovic, and F. E. Bustamante, “Drafting
behind akamai: inferring network conditions based on CDN redirections,”
in IEEE/ACM Transactions on Networking (TON), vol. 17, 2009.

[5] R. Krishnan, H. V. Madhyastha, S. Srinivasan, S. Jain, A. Krishnamurthy,
T. Anderson, and J. Gao, “Moving beyond end-to-end path information to
optimize CDN performance,” in Proceedings of the 9th ACM SIGCOMM
conference on Internet measurement conference, ser. IMC ’09. New
York, NY, USA: ACM, 2009, pp. 190–201.

[6] Y. Zhou, D.-M. Chiu, and J. C. S. Lui, “A simple model for chunk-
scheduling strategies in P2P streaming,” IEEE/ACM Trans. Netw., vol. 19,
pp. 42–54, Feb. 2011.

[7] D. Ren, Y.-T. H. Li, and S.-H. G. Chan, “On reducing mesh delay for
peer-to-peer live streaming,” in IEEE INFOCOM. Phoenix, Arizona:
IEEE, Apr. 2008.

[8] Y. He and L. Guan, “Solving streaming capacity problems in P2P
voD systems,” in IEEE Transactions on Circuits and Systems for Video
Technology, vol. 20, 2010, pp. 1638–1642.

[9] W. Jiang, S.-H. G. Chan, M. Chiang, J. Rexford, K.-F. S. Wong, and
C.-H. P. Yuen, “Proxy-P2P streaming under the microscope: Fine-grain
measurement of a configurable platform,” in Proceedings of the 19th
International Conference on Computer Communications and Networks
(ICCCN) (Invited paper), 2-5 Aug. 2010.

