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Abstract—Site survey cost has become a major deployment
challenge for large-scale wireless systems. Some previous ap-
proaches require explicit user inputs to label the locations of
crowdsourced signals, which is inconvenient in practice. Others
may rely on intensively-calibrated specialized sensors. Further-
more, the locations of crowdsourced signals are usually random
and sparse, making it difficult to build a complete signal map.

To address these, we propose Surecose, a novel signal map
construction system by implicit crowdsourcing and interaction
of low-cost cooperative sensors. Surecose is initialized with the
light-weight sparse signal map collection. Having the background
application on, the naive users are implicit surveyors unknow-
ingly uploading crowdsourced signals. Phones may detect each
other (mobile sensors), or beacons (fixed sensors). To label their
locations, Surecose measures the mutual sensor proximity of the
IoT devices. Via joint location labeling and sensor calibration,
Surecose transparently locates the users despite devices used.
Then Surecose constructs the database with a directionally and
environmentally adapted Gaussian process, which scales the
labeled locations and RSSIs anywhere into a complete signal
map. Extensive experiments in diverse environments, including a
campus hall, an international airport and a premium shopping
mall, have validated that Surecose can adaptively and accurately
construct the Wi-Fi signal map (often more than 20% reduction
in RSSI construction error), with low survey cost (around 70%
survey reduction) and little human intervention.

Index Terms—Sensor interaction; implicit crowdsourcing; sig-
nal map construction; automatic location labeling; sensor cali-
bration; adaptive directional signal regression.

I. INTRODUCTION

In many wireless systems, received signal strength indicator
(RSSI) exhibits spatial variation, forming the so-called signal
map (or the heat map) in the site. Knowledge of the signal
map is essential for many applications. For instance, in a
WLAN network, the signals of the access points (AP) may
vary with respect to wall partition and furniture obstruction.
System administrators would be interested in the signal map so
as to understand the installed Wi-Fi coverage, or to adjust/tune
Wi-Fi settings. In fingerprint-based localization, constructing
its signal database would be essential for its deployment.

Despite its wide application, traditional signal map construc-
tion is often conducted via the laborious and tedious site survey
or so-called fingerprinting. For spacious indoor sites like the
international airport or the large shopping mall, traditional
survey is costly and infeasible.
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2) Signal Heat Map Construction

Labeled Locations 
(with Wi-Fi RSSI)

Fig. 1: Illustration of (1) automatic location labeling with crowdsourc-
ing and sensor interaction, and (2) adaptive signal map construction.

Survey reduction may be achieved via low-cost crowd-
sourcing. A signal map can be generated by the participatory
sensing by naive ILBS users. However, in most of the recent
studies, two major challenges have not been well addressed
before the crowdsourcing system is deployable: 1) how to
estimate the locations of these RSSI vectors without intrusive
user intervention: Traditional fingerprinting is to manually
associate (or label) the signals with their ground-truth lo-
cations (say, reference points or RPs). We cannot always
expect naive users to explicitly input her/his locations, which,
however, is often assumed by many existing crowdsourcing-
based systems; 2) how to construct a complete signal map
of the site: Crowdsourced locations may be randomly and
sparsely distributed, rather than in regular grid for practical
use. Adaptively scaling the crowdsourced data to a complete
signal map (of reasonable coverage and quality) will definitely
benefit the deployment of large-scale wireless systems.

To address above issues, we illustrate in Figure 1 a new
framework for survey reduction and signal map construc-
tion [1]. We only need sparse signal map (with data points
or RPs in large grid size) beforehand via simple and fast site
survey. Beyond that, recent boom in Internet of things (IoT)
has enabled the communication and cooperation (interaction)
among various off-the-shelf IoT devices. These sensors can be
either fixed (like iBeacons and Wi-Fi sniffers), or mobile (peer
smartphones) with the users. They interactively measure the
mutual proximity. These proximity readings and crowdsourced
RSSIs jointly help label these user locations without their
explicit location inputs. Afterwards, given the RSSIs and
estimated locations crowdsourced anywhere, we can scale
them into a signal map of the site by a certain learning and
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Fig. 2: System flow of our proposed survey-reduction framework.

prediction approach. The initial sparse signal map is then
further updated and improved into a more complete one.

Two important issues have to be addressed such that above
framework can be realized: 1) Location labeling needs to be
implicit and IoT devices are heterogeneous in signals. How to
jointly address both is important for the signal map labeling. 2)
Survey environments may be complex and partitioned. How to
achieve adaptive and accurate signal map prediction is critical.

To address above, we propose Surecose, a novel survey
reduction and signal map construction system with implicit
crowdsourcing and cooperative sensors. Our major contribu-
tions are in three folds as follows:

∙ Joint Location Labeling & Sensor Calibration for Crowd-
sourced Signals: To automatically label the locations of the
crowdsourced RSSIs, we propose a novel joint optimization-
based algorithm which localizes all the targets given their
RSSIs and mutual distances. To our best knowledge, Sure-
cose is the first framework which jointly calibrates the
received signal strength (RSS) of interactive sensors such
that the target locations are estimated implicitly despite
different IoT devices used.

∙ Environmentally-Adaptive Signal Map Construction: The
estimated user locations (with radio signals) are usually
sparse and random in the site. Without any preprocessing,
they cannot scale to the complete signal map for practical
use. To address this, we adapt the Gaussian process (GP)
to construct signal points anywhere. Based on the labeled
crowdsrouced signals, Surecose adaptively predicts signals
(virtual signal points) at the regular grids of RPs, and builds
up the complete signal database beyond the sparse one. Our
adapted GP considers the directions of the received signals
with respect to the APs, which adapts to the complex and
partitioned indoor environments.

∙ Extensive Experiment & Prototype Studies: We have con-
ducted large-scale experiments in distinct environments,
including our HKUST campus hall, the Hong Kong In-
ternational Airport (HKIA) and a premium shopping mall
of the Hong Kong Olympian City (HKOC). Results have
shown that Surecose adapts to different signal environments
and accurately constructs the signal map with low initial
cost (often achieving more than 70% workload reduction in
offline survey cost).

The overall system flow of Surecose is shown in Figure 2.

In the offline (initialization) phase, Surecose is initiated with
a sparse signal map. ⟨RSSI,Location⟩’s are sparsely collected
and stored in the signal database. Then in the online (data
collection) phase, smartphones of the naive users (client side)
implicitly sample RSSIs in the WLAN (say, Wi-Fi). Mean-
while, the clients may detect proximity from IoT devices (fixed
or mobile), or obtain occasional GPS fixes (with confidence
range) as locational constraints. Sampled data may be stored
in the client phones and uploaded later to server side. Joint
Location Labeling & Sensor Calibration module (Section II)
locates the crowdsourcing users, and implicitly calibrates the
sensor readings. Surecose associates the crowdsourced loca-
tion labels with the Wi-Fi RSSI vectors. Finally, given the
crowsourced inputs and RPs, Environmentally-adaptive Signal
Map Construction (Section III) returns the newly constructed
signal map to the database, and updates the sparse one. With
the crowdsourcing and transparent sensor interaction, Surecose
gradually builds up the signal map with low cost.

This paper is organized as follows. In Section II, we
first present joint location labeling and sensor calibration to
estimate crowdsourcing locations. Given crowdsourced data,
we present how to adaptively construct the signal map for
different environments in Section III. Experimental results are
illustrated in Section IV. Afterwards, we discuss the related
works in Section V, and finally conclude in Section VI.

II. JOINT LOCATION LABELING & SENSOR CALIBRATION

The first task of Surecose is to label locations of the
crowdsourced signals, given only a sparse signal map and
mutual sensor proximity. We propose a novel joint opti-
mization scheme to locate the users automatically despite
different devices used. We first present the preliminaries of
the formulation (Section II-A), followed by the novel objective
function and constraints (Section II-B). Finally, we present the
formulation and its complexity analysis (Section II-C).

A. Preliminaries of Signals & Location Estimation

Recall that Surecose is initialized with a sparse signal map
(say, with 𝑄 reference points on regular grid) in the site, which
can be obtained by surveyors via low-cost site survey (say,
fingerprinting [2]). The survey grid size of reference points
(RPs) can be large, say, in 10 to 15 m, depending on the site
size and expected location labeling accuracy. Denote 𝑓 𝑙

𝑞 as the
mean of RSSI samples (dBm) at RP 𝑞 from AP 𝑙, and we form
the reference vector at RP 𝑞 as

𝑭𝑞 =
[
𝑓1
𝑞 , 𝑓

2
𝑞 , . . . , 𝑓

𝐿
𝑞

]
, (1)

whose 2-D coordinate in the indoor map is denoted as s𝑞 .
Then in the online signal map construction phase, the

users (targets) implicitly contribute their Wi-Fi RSSI signals.
Surecose labels the locations of these mobile users (targets).
Let V = {1, 2, . . . ,𝑀} be the index of crowdsourcing users,
and x̂𝑚,𝑚 ∈ V be the location of user 𝑚 to be estimated.
Let 𝑡𝑙𝑚 be the RSSI (dBm) at target 𝑚 from AP 𝑙. Then we
have the target RSSI vector at 𝑚 as

𝑻𝑚 =
[
𝑡1𝑚, 𝑡2𝑚, . . . , 𝑡𝐿𝑚

]
, (2)
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which is fed to our joint location labeling and sensor calibra-
tion, and later used in the signal map construction.

RPs s𝑞’s in the sparse signal map are used to locate the
mobile users. Each sparse RP is given a weight variable 𝜔𝑚𝑞 in
the formulation. Specifically, we estimate the user 𝑚’s location
with weights {𝜔𝑚𝑞} and all RPs {s𝑞}, i.e.,

x̂𝑚 =

𝑄∑

𝑞=1

𝜔𝑚𝑞s𝑞, where
𝑄∑

𝑞=1

𝜔𝑚𝑞 = 1, 𝜔𝑚𝑞 ≥ 0, (3)

for ∀𝑞 ∈ {1, 2, . . . , 𝑄}. In other words, the better the RP is
in satisfying the objectives and constraints in the formulated
optimization problem, the higher value 𝜔𝑚𝑞 is given, and the
more likely the user is estimated near this RP.

B. Objective Function & Constraints

The objectives of our location labeling are in two folds: 1)
minimizing distance errors of cooperative sensors (measured
between users’ mobile sensors, or between mobile and fixed
sensors); 2) maximizing the similarity matching between the
target RSSIs and the sparse signal map. As solving the bi-
objective optimization is difficult, we keep one objective and
set another as the constraint to satisfy both criteria above [3].

In terms of mutual distance, we consider the relatively
small proximity (say, less than 8 m) for cooperative sensor
communication in Surecose, which provides more reliable
indication of nearby mobile or fixed devices. Let 𝑃𝑚𝑛 be the
received signal strength (RSS in dBm) between IoT devices
𝑚 and 𝑛. Similar to [4], [5], the relationship of their mutual
distance 𝛿𝑚𝑛 and the RSS value 𝑃𝑚𝑛 can be approximated as

𝛿𝑚𝑛 = 𝛼𝑚𝑛𝑃𝑚𝑛 + 𝛽𝑚𝑛, 𝛼𝑚𝑛 < 0, 𝛽𝑚𝑛 < 0. (4)

Many empirical studies [4], [5] have shown that in the indoor
LOS conditions with short range, a simple linear law may offer
sufficient match with experimental data instead of the standard
log-distance path loss model. This can be partly related to
wave guiding effects characterizing indoor propagation along
corridors and narrow space [5]. We set the bound constraints
as 𝛼𝑚𝑖𝑛 ≤ 𝛼𝑚𝑛 ≤ 𝛼𝑚𝑎𝑥, 𝛽𝑚𝑖𝑛 ≤ 𝛽𝑚𝑛 ≤ 𝛽𝑚𝑎𝑥. Calibrating
𝜽 helps Surecose to adapt to different cooperative IoT devices.

For each user 𝑚, we denote the index set of her/his detected
devices (including mobile sensors of peer phones and fixed
sensors) as Ω𝑚. Note that for the sensors 𝑛 ∈ Ω𝑚, some
may be fixed sensors with known locations, while others
may be from mobile peer smartphones with location x𝑛 to
be estimated. Our first objective of the location labeling in
Surecose is to find the weights of RPs, 𝜔𝑚𝑞’s, and parameters
𝜽, which jointly minimize the distance errors, i.e.,

arg min
{𝜔𝑚𝑞},𝜽

𝑀∑

𝑚=1

∑

𝑛∈Ω𝑚

Θ𝑚𝑛 (∥x̂𝑚 − x𝑛∥2 − 𝛿𝑚𝑛)
2
, (5)

where Θ𝑚𝑛 = 1 if two sensors have mutual distance mea-
surement and 0 otherwise. Note that in practice, the users
usually form a graph which is not fully connected and the
total computation is not high.

To meanwhile maximize the signal matching for loca-
tion estimations (the second objective), we further constrain
weights 𝜔𝑚𝑞’s. Specifically, let 𝑐𝑜𝑠(𝑻𝑚,𝑭𝑞) be cosine sim-
ilarity between 𝑻𝑚 and 𝑭𝑞 (the larger, the more similar).
For each 𝑚, we characterize the matching between target
signals and the sparse RPs (signal points) by weighted sum of
cosine similarity, i.e., 𝑠𝑖𝑚(T𝑚) =

∑𝑄
𝑞=1 𝑐𝑜𝑠(𝑻𝑚,𝑭𝑞) ⋅ 𝜔𝑚𝑞

(0 ≤ 𝑠𝑖𝑚(T𝑚) ≤ 1). We set a lower bound constraint as

𝑀∑

𝑚=1

𝑠𝑖𝑚(T𝑚) ≥ 𝛾 ⋅𝑀 (0 ≤ 𝛾 ≤ 1), (6)

where 𝛾 is a tunable parameter (evaluated in Section IV)
representing the tradeoff between mapping accuracy and com-
putation efficiency.

Note that the larger 𝑠𝑖𝑚(T𝑚) is, the more matched the es-
timated target location (Equation (3)) are with the RPs nearby
(those of high 𝜔𝑚𝑞). Equation (6) ensures that the weighted
signal similarity between the target RSSIs and the sparse
signal map is lower bounded. The optimizer enlarges 𝜔𝑚𝑞’s of
RPs with more similar signals to satisfy this bound, and our
second objective is hence jointly satisfied. With Equations (5)
and (6), the distance errors and the signal matching are jointly
considered in Surecose to label the crowdsourcing locations.

Besides, given all 𝑄 RPs in the sparse signal map, as the
crowdsourcing users are more likely surrounded by sparse
RPs than exactly on one of them, we constrain the location
estimations to be between RPs, i.e.,

𝜔𝑚𝑞 ≤ 𝜆, 𝜆 ≜ max 𝑐𝑜𝑠(𝑻𝑚,𝑭𝑞)
∑𝑄

𝑞=1 𝑐𝑜𝑠(𝑻𝑚,𝑭𝑞)
, (7)

which adaptively prevents large weight assignment (i.e., with
some 𝜔𝑚𝑞 close to 1) on an RP. Note that other signal simi-
larity metrics (say, Euclidean distance) can be also applied.

Users may occasionally obtain a GPS location fix x̂𝑚𝑔 and
a confidence range 𝛿𝑚𝑔 (for example, near the building gates
or close to outdoor). It may provide an optional constraint (a
rough region), i.e., ∥x̂𝑚 − x̂𝑚𝑔∥22 ≤ 𝛿2𝑚𝑔 .

C. Problem Formulation & Complexity Analysis

Our novel joint location labeling and sensor calibration finds
the crowdsourced locations such that the mutual distance errors
are minimized given signal similarity constraints, i.e.,

arg min
{𝜔𝑚𝑞},𝜽

Objective (5),

s.t. Constraints (3), (4), (6), (7).
(8)

The above formulation can be efficiently solved by some
convex optimization solvers [3]. {𝜔𝑚𝑞}’s are then used for
location labeling by Equation (3). Labeling crowdsourced
locations is conducted automatically at the background (might
be returned to users as byproducts), and ⟨RSSI, location⟩’s are
used in the next phase to construct the complete signal maps.

We briefly analyze the computational complexity. Given 𝑀
crowdsourcing users and 𝑄 sparse RPs, Formulation (8) takes
𝒪(𝑄3𝑀3) [3]. The location labeling and sensor calibration
can be conducted at the server side and therefore the user
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Fig. 3: Directional difference
in signal propagation (campus,
RSSI in dBm).

Fig. 4: Spatial difference in sig-
nal propagation (campus, RSSI in
dBm).

Fig. 5: Floor difference in signal
propagation (campus, RSSI in
dBm).

Fig. 6: RPs of an AP clustered
by affinity propagation cluster-
ing w.r.t. directions (campus).

experience at mobiles is not affected. The computation can be
further reduced via region partitioning and mapping [6].

III. ENVIRONMENTALLY-ADAPTIVE SIGNAL MAP

CONSTRUCTION

The second task here is to construct the virtual signal points
as the RPs of regular grids, and form a complete signal map for
wireless applications. It is because the labeled crowdsourced
locations are usually random and sparse, which may not cover
all the areas of interest in the site. Using a regular grid
increases the scalability of survey reduction so that the indoor
areas (including locations of the predefined RPs) unexplored
in crowdsourcing can be effectively covered by the signal
map. Surecose formulates an adaptive Gaussian process (GP)
to construct the complete signal map. We further preprocess
the data so that GP predicts more adaptively the signal points
according to the radio direction and regions.

In Section III-A, we first identify the heterogeneity (di-
rectional and regional) of signal propagation in complex
environment, and how to preprocess input data (i.e., ⟨RSSI,
location⟩’s) correspondingly. Then we show in Section III-B
how we regress the RSSI spatial distribution based on GP, tak-
ing into account the signal properties at various directions and
environments. We then discuss the hyperparameter learning in
GP and provide complexity analysis in Section III-C.

A. Environmentally-Adaptive Data Preprocessing

In our deployment, we have observed the signal propagation
is environmentally heterogeneous due to complex indoor set-
tings. We first characterize the directional and regional radio
propagation via some signal maps. Figures 3, 4 and 5 show
the signal maps of 3 different APs at our university atrium
hall. We collect totally 520 RPs in 5 m density for this 2, 000
m2 survey site. We can observe that signal path loss around
the red peak (potential AP location) is markedly anisotropic
(heterogeneous) w.r.t. directions (Figure 3), while showing
shows various distribution patterns across corridors (Figure 4)
and floors (Figure 5). If we only uniformly regress and predict
signals despite the directions and regions [7], [8], [9], large
errors still exist as RF propagation parameters may still vary
accordingly. We hence need to consider above properties in
construct a signal map reflecting the ground-truth distribution.

To address this, we first estimate the AP locations like [7],
based on the input signals (i.e., sparse signal points 𝑭𝑞’s
and the crowdsourced 𝑻𝑚’s) which detect this AP. Given

the relative directions of these signal points w.r.t. the AP
location, we apply affinity propagation clustering [10] to
adaptively partition the input locations into multiple clusters.
This efficient clustering algorithm requires no explicit cluster
number like 𝑘-means clustering. Hence we can cluster the data
into groups of adaptive size for each AP. Figure 6 shows 4
groups of sparse RPs in the offline phase are formed w.r.t.
their relative directions from the estimated AP peak (red dot).

Suppose after the clustering, the signal data of each AP
indexed by 𝑙, including sparse signal points and the crowd-
sourced ones, are partitioned into 𝐶𝑙 sets (data are first
partitioned at each floor if collected in a multi-storey building).
Each set of input locations X𝑙

𝑐 and their corresponding RSSI
vectors 𝑭 𝑙

𝑐 , indexed by 𝑐 (1 ≤ 𝑐 ≤ 𝐶𝑙), are fed to the GP for
database construction. Then at each RP in grid, the AP RSSI
is predicted locally based on the signals in the corresponding
cluster (with similar propagation direction) at that floor.

B. Signal Prediction via Adaptive Gaussian Process

After grouping the data into different clusters, we present
how to scale them into a signal map. Given training data X𝑙

𝑐

and 𝑭 𝑙
𝑐 of AP 𝑙, we are to predict the RSSIs at any arbitrary

location x∗ in a grid (new RPs). We first regress the parameters
in a path loss model. Then given the signal propagation
model and crowdsourced RSSI samples, the Gaussian process
predicts the RSSIs at predefined regular grids to form the
virtual signal points. Surecose then stores them in database
for ILBS or signal map monitoring. Note that in our GP,
the path loss is used to reflect overall signal propagation
trend, while the additional terms upon the path loss capture
local signal distribution in complex none-line-of-sight (NLoS)
environment. Therefore, GP is adaptive to the complex NLOS
indoor environments with wall partitioning [11], [1].

We first regress the path loss model based on input signals
to reflect the overall signal trend. GP utilizes RSSIs in 𝑭 𝑙

𝑐

to regress the signal propagation parameters and AP 𝑙’s 2-D
location x𝑙. Given the input < X𝑙

𝑐,𝑭
𝑙
𝑐 >, denote 𝑚(X𝑙

𝑐) as
the predicted mean RSSI using log-distance path loss model.
Based on the path loss model, for each x∗ ∈ X𝑙

𝑐, we have

𝑚(x∗) = 𝑃 𝑙
𝑐 − 10Γ𝑙

𝑐 log10

(∥x∗ − x𝑘∥2
𝑑0

)
, (9)

where 𝑃 𝑙
𝑐 and Γ𝑙

𝑐 (𝑃 𝑙
𝑐 < 0 and Γ𝑙

𝑐 > 0) are the parameters
for signal propagation within the RP cluster 𝑐. 𝑑0 = 1 m in
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our setting. In regressing the path loss model, let e𝑙𝑐 be the
difference between measured RSSIs 𝑭 𝑙

𝑐 and 𝑚(X𝑙
𝑐), i.e.,

e𝑙𝑐 =
∣∣𝑭 𝑙

𝑐 −𝑚(X𝑙
𝑐)
∣∣ . (10)

GP regression here is to find 𝑃 𝑙
𝑐 , Γ𝑙

𝑐 and x𝑙 such that the sum
of differences with all inputs is minimized. This can be solved
via traditional gradient descent method [3].

After regressing the path loss model, we form GP to predict
RSSIs at unexplored locations of interest (new RPs). Let 𝑁 𝑙

𝑐 be
the number of all the signal points in cluster 𝑐 for AP 𝑙. Based
on GP, Wi-Fi RSSIs at different locations are considered as
correlated [12], and the covariance between two signal points
𝑓 𝑙
𝑖 , 𝑓

𝑙
𝑗 ∈ 𝑭 𝑙

𝑐 depends on the distance of 𝑖 and 𝑗. Based on the
GP formulation [12], we have the covariance as

𝑐𝑜𝑣(x𝑖,x𝑗) = (𝜏 𝑙𝑐)
2 exp

(
−∥x𝑖 − x𝑗∥22

2(𝑔𝑙𝑐)
2

)
, (11)

where the hyperparameters (𝜏 𝑙𝑐)
2 and 𝑔𝑙𝑐 are the signal vari-

ance and scaling factors, respectively. 𝑐𝑜𝑣(x𝑖,x𝑗) means that
the closer two locations (say, the crowdsourced RPs) are
in physical space, the more correlated their signals would
be. Considering the RSSI noise, we further formulate the
covariance function between 𝑓 𝑙

𝑖 and 𝑓 𝑙
𝑗 as

𝑐𝑜𝑣(𝑓 𝑙
𝑖 , 𝑓

𝑙
𝑗) = 𝑐𝑜𝑣(x𝑖,x𝑗) + (𝜎𝑙

𝑐)
2Δ𝑖𝑗 , (12)

where Δ𝑖𝑗 is 1 if 𝑖 = 𝑗 and 0 otherwise. Given AP 𝑙 and
signal point locations X𝑙

𝑐 =
[
x𝑙
1, . . . ,x

𝑙
𝑁𝑐

]
, covariance of the

observed RSSIs 𝑭 𝑙
𝑐 =

[
𝑓 𝑙
1, . . . , 𝑓

𝑙
𝑁𝑐

]
becomes [12]

K𝑭 = K𝑙
𝑐 + (𝜎𝑙

𝑐)
2I, (13)

where K𝑙
𝑐 is the 𝑁 𝑙

𝑐 × 𝑁 𝑙
𝑐 covariance matrix of the input

locations, i.e., K𝑙
𝑐[𝑖, 𝑗] = 𝑐𝑜𝑣(x𝑖,x𝑗).

Then posterior of the predicted RSSI 𝑓 𝑙
x∗ at a location x∗

is distributed with mean 𝜇𝑙
x∗ and covariance 𝜎𝑙

x∗ , i.e.,

𝑝
(
𝑓 𝑙
x∗ ∣x∗,X𝑙

𝑐,𝑭
𝑙
𝑐

)
= 𝒩 (𝜇𝑙

x∗ , (𝜎
𝑙
x∗)2 + (𝜎𝑙

𝑐)
2
)
, (14)

where (𝜎𝑙
𝑐)

2 represents their corresponding observation noise.
Then the predicted mean RSSI, denoted as 𝜇𝑙

𝒙∗ (dBm), and
signal variance (𝜎𝑙

𝒙∗)2 (dB) are given by

𝜇𝑙
x∗ = 𝑚(x∗)− 𝑐𝑜𝑣(x∗,X𝑙

𝑐)
𝑇K−1

𝑭 e,

(𝜎𝑙
x∗)2 = 𝑐𝑜𝑣(x∗,x∗)− 𝑐𝑜𝑣(x∗,X𝑙

𝑐)
𝑇K−1

𝑭 𝑐𝑜𝑣(x∗,X𝑙
𝑐).
(15)

Existing wireless applications require a complete signal map.
We find the unexplored locations between sparse points and
form new RPs as x∗’s in Equation (15). Say, given 10 m
preliminary survey density, we complement the predefined
grids into 5 m, and predict virtual RF RSSIs upon them to
form the signal map. These new x∗’s are also clustered as
those in Section III-A. Then x∗’s are fed to the corresponding
GP for that cluster (Equation (15)) to predict 𝑓 𝑙

x∗ .
Finally, we obtain

[
𝜇𝑙
x∗ , (𝜎

𝑙
x∗)2

]
, and store them in the

database as the predicted signal mean and variance. As the
RSSIs are dynamically fed by crowdsourced data stream, for
each signal 𝑓 𝑙

𝑞 at RP 𝑞, we use the autoregressive moving av-
erage to update signals, i.e., 𝑓 𝑙

𝑞 = 𝜌𝑓 𝑙
𝑞+(1−𝜌)𝜇𝑙

𝑞 (0 ≤ 𝜌 ≤ 1),

and reduce temporal fluctuation. In our experiment, 𝜌 is set
as 0.5 empirically. RSSI device dependency can be further
calibrated via linear regression or maximum likelihood [4]. Via
GP, we predict the RSSIs on dense and regular RPs beyond
the initial sparse ones. If a new AP is detected, we can add it
into our database.

C. Hyperparameter Estimation & Complexity Analysis

Before GP is applied, the hyperparameters for the GP, 𝜽𝑙
𝑐 =

{𝜏 𝑙𝑐, 𝜎𝑙
𝑐, 𝑔

𝑙
𝑐}, are calculated by maximum likelihood estimation

(MLE) [12]. Wi-Fi signals in the crowdsourced and sparse
signal points within the cluster 𝑐 are used as training samples,
which are considered as jointly Gaussian distributed [12], i.e.,

𝑭 𝑙
𝑐 ∼ 𝒩 (𝑚(X𝑙

𝑐),K𝑭 ), (16)

and the log-likelihood of all input RSSI signals 𝑭 𝑙
𝑐 with

hyperparameters 𝜽𝑙
𝑐 is given by

log 𝑝
(
𝑭 𝑙
𝑐 ∣X𝑙

𝑐,𝜽
𝑙
𝑐

)
= −1

2
e𝑇K−1

𝑭 e− 1

2
log ∣K𝑭 ∣ − 𝑁 𝑙

𝑐

2
log 2𝜋.

Based on the MLE, we minimize the error function (log-
likelihood) from input data 𝑭 𝑙

𝑐 , i.e.,

𝐸(𝑭 𝑙
𝑐 ∣X𝑙

𝑐,𝜽
𝑙
𝑐) ≜ − log 𝑝(𝑭 𝑙

𝑐 ∣X𝑙
𝑐,𝜽

𝑙
𝑐). (17)

The above MLE problem can also be efficiently solved using
gradient-descent algorithm [3]. By calculating the closed forms
of gradient decent, we can find the corresponding 𝜽𝑙

𝑐 and feed
them to the GP model. After that, we can predict the signals
at new data points correspondingly.

We briefly summarize complexity of signal map con-
struction. Clustering 𝑁 𝑙 signal points for each AP 𝑙 takes
𝒪((𝑁 𝑙)2) [10]. Given 𝑁 𝑙

𝑐 data points in the cluster 𝑐, the
calibrated mean function takes 𝒪(𝑁 𝑙

𝑐). Each iteration in the
gradient descent (hyperparameter estimation) takes 𝒪((𝑁 𝑙

𝑐)
3)

due to the matrix inversion (K−1
𝑭 ). Empirically, gradient

descent usually takes only 5 iterations. The GP prediction
can efficiently be conducted at the server side, after users
upload their data. Given 𝑁 𝑙

𝑢 unexplored locations for RSSI
construction, the signal prediction takes 𝒪(𝑁 𝑙

𝑐𝑁
𝑙
𝑢). To sum-

marize, given 𝐿 APs and 𝐶 clusters, the overall complexity of
our GP signal map construction is 𝒪(𝐿𝐶((𝑁 𝑙

𝑐)
3 + 𝑁 𝑙

𝑐𝑁
𝑙
𝑢)).

IV. ILLUSTRATIVE EXPERIMENTAL EVALUATION

In this section, we first describe our experimental settings
(Section IV-A). Then we illustrate the evaluation results in
these sites to validate performance of Surecose (Section IV-B).

A. Experimental Settings & Comparison Schemes

Figure 7 shows the test site of a 5, 000 m2 campus atrium
(HKUST). From the floor map we can observe clear wall
partitioning and none-line-of-sight (NLoS) measurements are
expected. Locations of Wi-Fi sniffers and iBeacons are also
shown in the map. We filter away the mobile APs tethered by
smartphones, merge virtual APs, and focus on the officially
deployed ones to construct signal map. These Wi-Fi APs in
the site are installed by independent bodies of the site, and
we know neither their transmission power nor actual locations.
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Fig. 7: The map of our university atrium, where blue dots represent
the sparse RPs (signal points) with grid size of 10 m.

Besides four Open-WRT-based sniffers adapted from TP-Link
routers, we also deploy several iBeacons (with TI CC2541).
Compared with Wi-Fi sniffers, iBeacon has smaller coverage
and faster signal degradation, which helps differentiate the user
location. We combine iBeacons and Wi-Fi sniffers to balance
between accuracy and site coverage. Note that the installation
locations of the sniffers and beacons can follow the existing
WLAN indoors for well-planned coverage. Figure 8 shows
the experimental devices including iBeacons, and a connected
sniffer (with a laptop server) adapted from a commercial Wi-
Fi router (TP-Link). Like the sniffers, iBeacons are similarly
attached with the wall. HTC One X and Google Nexus 5 are
used for the implicit device interaction (within 15 m) of the
naive volunteer users [13].

The experiment consists of two phases: the preliminary
site survey (only around 15 min over 30 sparse RPs by two
dedicated surveyors) and the crowdsourced RSSI collection (by
cooperative sensors). As density of preliminary signal map and
cooperative sensors is low in our setting, the initial cost of
Surecose is very small. In the preliminary signal collection, we
conduct sparse site survey of 10 m grid size (i.e., the distance
between two neighboring RPs) to collect Wi-Fi RSSI vectors.
During the preliminary signal collection, a surveyor stands
on each RP and collects 15 RSSI samples when he/she is
facing each of the four directions (east, south, west and north).
In the online phase, ten users’ RSSIs and cooperative sensor
information are utilized to construct the 126 signal points of
3 m grid size, which cover the site of interest. Note that both
phases are conducted at working hours with crowds nearby,
and noisy measurements are expected in the data.

Besides crowdsourced data from users and the preliminary
sparse signal map, we collect following signals in evaluation:

1) Comparison data (signal map construction evaluation): the
ground-truth Wi-Fi RSSI vectors at locations which are not
explored in sparse site survey. We evaluate the signal map
construction quality based on the Wi-Fi RSSI prediction
error (or the mean error at all RPs), which is given by the
absolute difference between ground-truth RSSIs and the
predicted (virtual) or regressed ones.

2) Query data (online positioning evaluation): We collect Wi-
Fi RSSI vectors from random locations after each signal
map construction. We use them as location queries and
locate them with the constructed signal map. Totally 100

RSSI vectors are collected as query data.

To further validate the Wi-Fi signal map construction quality
and the location labeling accuracy, we leverage traditional
localization and signal prediction schemes as comparison:

∙ WKNN [14]: a weighted 𝑘 nearest-neighbor localization
algorithm based on traditional signal collection. Signal
vectors are compared based on Euclidean distance.

∙ EZLoc [9]: which uses the Wi-Fi RSSIs at known and
unknown locations to linearly regress the path-loss model
and form the signal database [4]. The signal propagation
from APs are leveraged as constraints over target location.
Then EZLoc locates the target position by minimizing the
distance errors from all detected APs.

∙ Matrix Completion (MC) [15]: which leverages the matrix
completion algorithm to recover the missing signal mea-
surement of signal map in the site [15].

∙ Linear Signal Regression (LDPL) [4], [16], [17]: which
uniformly predicts RSSIs of all propagation directions and
environments through least square linear regression of the
log-distance path loss (LDPL) model.

During location labeling, we also compare Surecose with the
minimum mean squared error (MMSE) algorithm [18], which
minimizes distance errors from cooperative sensors to estimate
locations. Given the constructed signal map by Surecose,
WKNN is also used to validate the signal map quality.

We have also conducted studies in the premium shopping
mall (HKOC, 25, 000 m2) and the international airport (HKIA,
10, 000m2). In the mall, the initial sparse site survey is
conducted on 27 RPs in 8 m grid, followed by signal map
construction over 94 RPs in 4 m grid with Surecose. In the
airport, 74 RPs in 10 m grid are initially collected, and then
signal map construction is conducted over 278 RPs on 5 m
grid. In these two sites, we also collect Wi-Fi RSSIs in 4
m and 5 m density respectively (upon the constructed RP
locations) as comparison data to evaluate the virtual signal
map prediction quality. We can detect around 24 APs on
average at each sparse RP on campus, while 48 APs in the
mall and 50 APs in the airport (as shown in Figure 9). Most of
detected APs at each RP are in fact weak. We also show the
linear approximation of RSS-proximity relationship between
the mobile IoT devices from iBeacons in Figure 10. Given
extensive empirical studies, we set by default [𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥] =
[−3.5,−2.5], [𝛽𝑚𝑖𝑛, 𝛽𝑚𝑎𝑥] = [−60,−55] and 𝛾 = 0.94 in
Equations (4) and (6) .

B. Illustrative Experimental Results

Figure 11 shows the CDF of location labeling error (query
data, campus) with different algorithms given only sparse
signal map. As Surecose jointly optimizes the estimations
fusing the reference signals and cooperative sensor distances,
it can achieve much higher accuracy than WKNN, EZLoc and
sensor-based MMSE. Surecose adapts the device parameters
to those shown in Figure 10. WKNN relies on the nearest
neighbor matching, which is often prone to signal noise.
EZLoc and MMSE only consider the proximity from APs
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Fig. 8: Illustration of the beacon
and Wi-Fi sniffer device settings.

Fig. 9: Illustration of the detect-
ed AP histogram in three experi-
mental sites.
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Fig. 17: Mean location labeling
errors in meters (w/ std) vs. 𝛾.

Fig. 18: Mean location labeling
time in seconds (w/ std) vs. 𝛾.

or beacons in localization. By fusing mutual distances, signal
map matching and device adaptation, we mitigate the noise
and reduce location labeling errors.

Given that the labeled user locations may be randomly
distributed, Surecose further scales the data into a complete
signal map. Figure 12 shows the mean Wi-Fi RSSI prediction
error (dB) against temporal updates (comparison data). As
more signals are uploaded, RSSI prediction error gradually
decreases as Surecose learns the signal spatial distribution.
After a few rounds of updates (say, 5), Surecose already
captures the RSSIs and the prediction error converges. As
Surecose considers regional and directional heterogeneity of
signal propagation, it achieves much lower prediction errors
(more than 20% reduction) than LDPL and MC. With the pre-
dicted RSSIs, the signal map is scaled from the crowdsourced
one, and 70% offline survey cost (from 126 RPs to 30 RPs)
is reduced compared with traditional signal collection.

Given RSSI update in the signal map, we show in Figure 13
the improvement on online location labeling, i.e., the mean
labeling errors (query data) versus index of temporal user
updates. It shows the decrease of errors in all the algorithms
with more incoming signals, as the signals crowdsourced from
the users gradually accumulate and a more complete signal
map is constructed. As more Wi-Fi RSSIs are crowdsourced
by the LBS users, Surecose gradually improves the signal map

quality and locates the following users with better accuracy.
Figure 14 shows the CDF of Wi-Fi RSSI prediction errors

(dB) with different schemes after 5 signal updates (RSSI
error convergence point) in Figure 12. We also conduct linear
regression and matrix completion with uniform consideration
at all propagation directions as benchmark. Surecose outper-
forms the traditional LDPL and MC, as Surecose considers
more adaptively the signals w.r.t. the complex environments.
MC requires inherently redundant AP RSSI information for
prediction, which is not always satisfied in practical sparse
crowdsourcing. Given the constructed databases, we evaluate
its benefit for existing wireless applications. We further show
the performance of WKNN localization in Figure 15. We can
see that in locating the query data the database constructed by
Surecose outperforms the others using LDPL and MC.

Figure 16 visualizes the Wi-Fi signal heat map of an AP
(MAC: 00:08:30:70:18:90) before and after the signal map
construction by Surecose. Compared with the sparse one (left),
the signal map constructed by Surecose (middle) resembles
the ground truth (right), which also matches the results in
Figures 12 and 14. These figures have visualized the adaptive
signal map construction through Surecose crowdsourcing.

Figure 17 shows the mean location labeling error (m) with
standard deviation (std) versus 𝛾 in Surecose (campus query
data; sparse signal map in 10 m density). As 𝛾 increases, the
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accuracy grows, as higher constraint filters wrong RP map-
pings in localization. We can also observe that the accuracy
with 𝛾 = 0.95 is close to that of 𝛾 = 0.94 (red), showing the
diminishing improvement in performance. Figure 18 shows the
corresponding mean location labeling time (s) with standard
deviation versus 𝛾 (query data). We observe that as 𝛾 increases
the computation time grows mainly because a higher threshold
leads to more search over RPs in locating the target, which is
of higher accuracy but longer computation time. To balance
efficiency and accuracy, we set 𝛾 = 0.94 by default.

We have also conducted similar studies in the shopping
mall and the airport. As the location labeling results are
qualitatively similar, we do not repeat them for brevity. We
focus on the signal map evaluation at these two sites.

Figure 19 shows the RSSI prediction error (dB) in the con-
structed signal map of the shopping mall. Surecose accurately
predicts Wi-Fi RSSIs using comparison data. Given databases
generated by different schemes, Figure 20 shows the CDF of
WKNN localization errors (query data). Compared with the
database constructed by LDPL and MC, the one generated
by Surecose is much closer to that using ground-truth (i.e.,
combining sparse signal map and comparison data). It is main-
ly because Surecose captures not only the general trends of
radio propagation, but also the local signal patterns (including
NLOS) in complex indoor partitions. Hence it constructs more
accurate signal maps (by around 20% reduction in RSSI errors)
and lower error in WKNN is observed given the database
generated by Surecose.

Similar to the mall, we validate its signal prediction accu-
racy and localization error in the airport in Figures 21 and 22.
Note that the signal noise in the airport is much larger than that
on the campus and the shopping mall, as the airport is larger
with more pedestrians nearby. With adaptive GP, Surecose
outperforms the LDPL and MC in signal prediction accuracy.
Given the high accuracy in RSSI prediction, Surecose success-
fully reduces the offline site survey by more than 70%, i.e.,
from 94 RPs to 27 RPs in the shopping mall, and from 274
RPs to only 74 in the airport. Such reduction is important for
large-scale wireless applications in these spacious sites.

We summarize the GP regression results and signal prop-
erties in these three sites. The airport, shopping mall and
the campus are distinct in Wi-Fi RSSI propagation model
parameters and signal noise. We first compare the different
learned RSSI propagation model parameters (mean constant
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loss 𝑃 𝑙 and mean path loss component Γ𝑙 in Equation (9)
for all APs). Figure 23 shows the difference in the signal
propagation in three sites. Due to different indoor wall par-
titions, the path loss component Γ may vary at different sites.
RSSI on campus enjoys faster attenuation as there are more
wall partitions in campus offices and corridors. Faster attenua-
tion indicates more spatially distinguishable wireless features,
which may benefit the fingerprint-based localization in general.
Compared with the airport and the mall, our Surecose achieves
larger performance improvement gap in the university campus
environment. It is mainly because the complex partitioned
environment on campus leads to more difficult prediction for
LDPL and MC than the large open space. Due to higher
Wi-Fi RSSI noise in the airport (Figure 24), larger errors in
localization and RSSI prediction is expected there (Figures 21
and 22) than in the other two sites. Despite these, Surecose is
overall robust against the noise and achieves high adaptivity.

V. RELATED WORK

To construct the signal map, some recent works study using
specialized infrastructures to collect signals. ARIADNE [18]
investigates using specialized Wi-Fi monitors and ray-tracing
to construct the signal map. [19] proposes further using RFID
and environment sensors to monitor the signal map. More
recent works like [20] utilize installed cameras to track the
people and construct the Wi-Fi signal map. Different from
above works, our Surecose is a novel joint (user) location
labeling and sensor calibration framework based on existing
low-cost IoT devices which have been pervasively deployed.
To our best knowledge, it is the first work using implicit IoT
interaction to build the signal map. Furthermore, Surecose uti-
lizes the more advanced Gaussian process (GP) to predict the
signal map. Unlike the deterministic ray-tracing, simple path
loss model regression and matrix completion [15], Surecose
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considers local signal distributions probabilistically and adapts
to complex environment with NLoS measurements [7], [11].
With the proposed novel data clustering and preprocessing,
it is more adaptive to different signal environments than
traditional GP schemes. Despite the context in Wi-Fi RSSI for
ease of prototyping, Surecose can be easily extended to other
emerging signals, including CSI, FM and geomagnetism [20].

Exploiting user feedbacks for signal map construction has
gained attention recently. OIL [21] proposes an organic fin-
gerprinting which requires explicit and intrusive user location
inputs. SLAM [8] conducts simultaneous localization and
map construction, which is orthogonal to our studies here.
Surecose focuses on updating sparse signal map given users’
data and locations. SLAM, on the other hand, can serve as
the initial indoor map inputs for Surecose. Zee [22] considers
occasional access to GPS, and uses inertial motion sensors
or INS to locate users. Similarly, WILL [23], MRI [16] and
TransitLabel [24] study using INS to track users for signal
collection. Their location labeling accuracy largely relies on
extensively fine-grained inertial sensor calibration. In contrast
to theirs, Surecose does not rely on intensively-calibrated INS,
while its highly adaptive scheme (joint location labeling and
sensor calibration) supports more pervasive deployment.

Interaction of IoT devices has recently attracted much atten-
tion. Social-Loc [13] and Montage [25] utilize the proximity
between users to conduct human location estimations. Unlike
above only considering specific user localization, we focus on
reducing signal map survey cost with IoT device interaction.
Discussions on synchronization, privacy and energy efficiency
of sensors have been studied in [13], [25], [26], which are
orthogonal and amendable to our studies here.

VI. CONCLUSION

Signal map construction is important for many wireless sys-
tems. To construct the initial signal map, previous approaches
often assume explicit user feedback or intensively-calibrated
sensors to label the signal locations. Furthermore, as signals
are often crowdsourced at different random locations, scaling
them into a complete signal map is not easy.

We propose Surecose, a novel IoT system for implicit signal
map construction. Naive users unconsciously collects radio
signals via cooperative sensing. Mutual sensor distances and
Wi-Fi RSSIs are fed to joint location labeling and sensor
calibration, which transparently locates these users without
explicit intrusive inputs. Given the randomly and sparse-
ly crowdsourced data, Gaussian process adaptively predicts
RSSIs anywhere in the site. We only need a sparse initial signal
map and low-cost sensors to construct the signal map, instead
of dense and laborious site survey. Extensive experiments
in three distinct indoor sites have shown that Surecose can
adaptively construct the signal database with low survey cost
(around 70% labor reduction) and little human intervention.
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