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ABSTRACT
Trilateration has been widely and successfully employed to
locate outdoor mobile devices due to its accuracy. However,
it cannot be directly applied for indoor localization due to
issues such as non-line-of-sight measurement and multipath
fading. Though fingerprinting overcomes these issues, its ac-
curacy is often hampered by signal noise and the choice of
similarity metric between signal vectors. We propose IN-
TRI, a novel, simple and effective indoor localization tech-
nique combining the strengths of tri lateration and finger-
printing.

For a signal level received from an access point (AP) by
the target, INTRI first forms a contour consisting of all the
reference points (RPs) of the same signal level for that AP,
taking into account the signal noise. The target is hence
at the juncture of all the contours. With an optimization
formulation following the spirit of trilateration, it then finds
the target location by minimizing the distance between the
position and all the contours. INTRI further uses an on-
line algorithm based on signal correlation to efficiently cali-
brate heterogeneous mobile devices to achieve higher accura-
cy. We have implemented INTRI, and our extensive simula-
tion and experiments in an international airport, a shopping
mall and our university campus show that it outperforms re-
cent schemes with much lower location error (often by more
than 20%).

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless Com-
munication
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Design, Experimentation, System, Performance
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1. INTRODUCTION
In traditional trilateration, a mobile device (target) first

measures its distances to a number of landmarks of known
location. It then estimates its position which best matches
these measured distances (e.g., given by minimizing the error
between the measured distances and the distances from the
position to the landmarks). Such a localization technique has
been widely used outdoors, with exemplary applications in
GPS (Global Positioning System) and cellular positioning,
where the landmarks are satellites and base stations (cell
towers), respectively.

Despite of its accuracy and successful outdoor deploymen-
t, trilateration does not work well indoors because distances
to landmarks cannot be estimated accurately. Such inaccu-
racy is mainly due to non-line-of-sight landmarks, complex
indoor signal fading (due to multipath), over-simplification
or parametric uncertainties in indoor propagation models,
etc. Fingerprinting, on the other hand, emerges as a promis-
ing approach for indoor localization. An example is Wi-Fi
fingerprinting, which is gaining popularity due to its ease of
deployment without the need to install extra sensor infras-
tructure beyond the existing Wi-Fi network [11].

Fingerprint-based localization is usually conducted in t-
wo phases. In the first offline (survey) phase, a site survey is
conducted to collect the vectors of received signal strength in-
dicators (RSSIs) at known locations, the so-called “reference
points” (RPs). These vectors of RSSIs are the fingerprints
of the locations and are stored in a database. In the second
online (query) phase, a user samples or measures an RSSI
vector at his own position and reports it to the server (in
this paper, we use “user”, “mobile device” and “target” in-
terchangeably). The server then locates the indoor user by
comparing the target vector with the fingerprints using some
similarity metric (such as Euclidean distance [2] between sig-
nal vectors). The target position is then estimated out of the
most similar “neighbors,” the set of RPs whose fingerprints
closely resemble the target’s RSSI.

Traditionally, the similarity metric used often treats the
RSSI vector of the target as a single “entity” in comparison.
This makes the neighbor selection susceptible to statistical
fluctuation in signal strength and measurement noise. Due to
random signals, it has been widely observed that the match-
ing algorithm in the online phase may result in a dispersed
set of neighbors (i.e., RPs which are quite distant apart in
the physical space). This leads to unsatisfactory localization
accuracy [11,30].

In this paper, we propose INTRI (Indoor Trilateration
using signal contours), a novel, efficient and accurate indoor
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Figure 1: The basic idea of INTRI, indoor contour-based
trilateration by minimizing the distance to signal contours.
The contours are based on the fingerprints.

localization technique by employing the concept of trilatera-
tion in fingerprint-based environment. By treating the RSSI
from each AP individually (instead of as a single signal vec-
tor), INTRI does not suffer from the problem of dispersed set
of neighbors. It is highly robust to random signals (due to
signal noise and measurement uncertainty) as it is not based
on fingerprint similarity comparison.

We illustrate the basic concept of INTRI in Figure 1 with
three access points (APs). Let S be the signal strength from
a certain AP as measured by the target. For that AP, we
can form a contour for S in the fingerprint region, which are
the spatially distributed RPs whose signal level of the AP
is S, subject to its statistical fluctuation (the figure shows
a continuous contour, though in reality the signal contour
consists of discrete points in space). It is clear that the target
is somewhere on the contour line. Given the target’s received
signal vector, we can hence form the corresponding contour
for each of the APs (three contours for the three APs in
the figure). Following the spirit of trilateration, the target
position can then be estimated by minimizing its distances
to the signal contours.

INTRI integrates the highly accurate contour-based trilat-
eration technique with indoor fingerprinting. It combines the
strengths of both approaches: it does not need the positions
of APs and line-of-sight (LoS) measurement, and locates the
target at the junction of its measured signal levels without
the dispersion problem. Though at times for concreteness
our discussion in this paper is on Wi-Fi RSSI fingerprint-
ing, INTRI is a general approach applicable to any other
fingerprint signal like channel state information (CSI) [39],
ZigBee [37], visible light [40] or RFID [5, 10]. It may also
be a complementary module to existing sensor localization
systems such as [21, 26] without modifying or adding any
specialized infrastructures.

In order for INTRI to be practically deployed, we need to
address the following important issues:

• Forming contours for random signals: Signal measure-
ment is inherently noisy. Constructing contours needs
to consider random fluctuation in order to effectively
locate the target. We present how to statistically ana-
lyze the fingerprints and target RSSIs received so as to
construct contours under random signals. As the tar-

Figure 2: System framework of INTRI.

get is likely to be at the region where contours meet,
we discuss how to find such region.

• Efficient contour-based localization algorithm: We pro-
pose a novel contour-based localization algorithm based
on linear programming formulation. Following the spir-
its of trilateration, it estimates target location with the
objective to minimize the distances to the contours ob-
tained above.

• Adaptive online calibration for heterogeneous devices:
For the same signal, different devices may have differen-
t readings. Device readings hence need to be mapped,
or “calibrated,” to the corresponding signal level stored
in the database so that the contours can be correctly
discovered. Offline calibration for all different devices
is neither efficient nor scalable. We propose an efficient
and practical online scheme to calibrate devices, which
adapts the target measured RSSI according to the s-
tored fingerprints based on signal correlation. Using
our efficient approach, INTRI achieves high scalability
in heterogeneous devices, and robustness under noisy
environment.

We show in Figure 2 the system framework of INTRI. The
Wi-Fi fingerprint database is initialized by a site survey, s-
toring <location, RSSI vector> pairs for each RP and vendor
information of the devices used for data collection. The sys-
tem is now ready for online estimation.

In the online phase, INTRI first checks the vendor infor-
mation of the user’s device. If that is different from the
devices used for site survey, the target RSSI vector will be
calibrated using the stored fingerprints. The calibrated RSSI
vector is then used to construct the signal contours. Given
signal contours, INTRI formulates a linear programming to
jointly minimize the distances to the contours and estimates
the user’s position. The location is finally returned to the
user’s device.

We have conducted extensive simulation and large-scale
experimental trials in the Hong Kong International Airport
(HKIA), the Hong Kong Cyberport mall (HKCP) and our
university campus (HKUST). Both simulation and experi-
mental studies further confirm the high accuracy of INTRI.

The rest of this paper is organized as follows. After re-
viewing the related works in Section 2, we describe in Sec-
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tion 3 the construction of contours for noisy signals. Based
on these contours, in Section 4 we present the linear pro-
gramming formulation for localization based on the idea of
trilateration. In Section 5, we propose an efficient online ap-
proach to calibrate different devices. Illustrative simulation
and experimental results are presented in Sections 6 and 7,
respectively. We finally conclude in Section 8.

2. RELATED WORK
We briefly discuss related works in this section. Pattern

recognition techniques have been widely studied in Wi-Fi
fingerprinting localization. RADAR [2] and Horus [42] are
the two representative approaches. Recently more advanced
techniques on pattern matching have been investigated [11–
13, 22, 29]. Signal propagation model is also considered re-
cently to derive RSSI at different locations [6,14,23]. EZ [6]
utilizes rigid matching between signals and distances to de-
termine the target location. More recent works like EZPer-
fect [31] and Modellet [23] further utilize the labeled finger-
prints to derive signal propagation model and achieve higher
accuracy.

In contrast to the above works, we combine the advan-
tages of fingerprinting and trilateration approaches. We em-
ploy a geometric scheme (with spirits of trilateration) based
on random fingerprint signals to constrain the target region.
By formulating a novel linear programming, INTRI achieves
much better localization accuracy without neighbor disper-
sion. INTRI is also compatible to emerging fingerprint up-
date schemes like [4] (crowdsourcing), [5] (sensor-assisted)
and [34] (crowdsourcing and model-based update) to achieve
higher robustness in practical deployment.

Some other recent works leverage the temporal or spa-
tial RSSI patterns for localization. These works consider
location-dependent patterns such as the trend of RSSI se-
quences along corridors [33], order of RSSIs from differen-
t APs [18], or the unique existence of some Wi-Fi APs at
some area [38] [20]. Once the target measures such pattern-
s, its location is then mapped to the area. These patterns
achieve promising results for constrained and narrow envi-
ronment with well-defined user trajectories (like corridors or
offices). To the contrary, the contours in INTRI are solely
derived from fingerprints and are applicable to any indoor
environment. Furthermore, INTRI does not need the po-
sitions of APs and LoS measurement, and is not based on
indoor models (indoor environment may be too complex to
model).

Calibrating different devices has been studied in recen-
t works [7, 25, 28, 32]. Traditional offline calibration [32]
causes extra manual efforts in real deployment and hence
is not scalable. Given the target RSSI measurement, works
like [7, 25, 28] utilize the deduction [25] (or ratio [28]) be-
tween AP signal values to calibrate the devices. However,
large noise and fluctuation in signal levels can degrade the
quality of the above calibration. Some learning-based ap-
proaches [9,23] utilize expectation maximization to calibrate
the signal difference. Different from these works, INTRI pro-
poses a more efficient and robust scheme which maps the
target signals to the signal space in fingerprint database.

To improve fingerprint localization, sensor fusion has at-
tracted intensive attention recently. Using the smartphone
inertial sensors, fusing motion information has been studied
extensively to improve fingerprint-based positioning [15, 17,
36]. Peer-assisted localization has also been recently studied,

Table 1: Major symbols used in INTRI formulation.

Notation Definition

N Number of RPs in fingerprint database.
L Number of APs in the site.
fn Wi-Fi RSSI vector received at RP n.
f l
n Wi-Fi AP l’s RSSI at RP n (dBm).
g Wi-Fi RSSI vector received at target.
gl Wi-Fi AP l’s RSSI at target (dBm).
σl
n AP l’s standard deviation at RP n (dB).

σl AP l’s standard deviation at target (dB).
z0 Uncertainty range parameter of contour.
Sl Signal contour from AP l.
Cl Indices of RPs on Sl.

d̂l Pseudo distance from AP l.
Dn Contour weight at RP n.
R Indices of selected RPs for LP localization.
NR Number of RPs selected in R.
Δl

n Minimum distance between RP n and Sl.
ωn Weight of RP n in target estimation.
rn 2-D coordinate of RP n.
x̂ Estimated 2-D coordinate of target.

making use of Wi-Fi Direct [19] and high-pitch sound [24] to
measure the distance between peer devices [16] as extra po-
sition constraints. Different from above fusion approaches,
INTRI solely relies on existing Wi-Fi measurement, achiev-
ing higher scalability in pervasive deployment. INTRI is also
independent of these works, and is amendable to integrate
with them for higher accuracy of mobile localization.

3. FORMING CONTOURS FOR RANDOM
SIGNALS

In this section, we describe how to properly form the sig-
nal contours for later localization estimation (Section 4). In
Section 3.1, we first present how to find the signal contour for
each AP, given target random RSSIs. A contour (of an AP)
consists of discrete RPs whose signal level is the same as the
target’s measured signal level, subject to statistical fluctua-
tion. To achieve higher localization accuracy, the RPs visited
by many contours of strong signals are preferred. Therefore,
in Section 3.2 we propose a weighting scheme which is able
to differentiate the importance of the RPs. The important
RPs are kept while those unimportant ones (where target is
unlikely at) are filtered. After the above steps, given that the
target is likely to be in the “dense” region of selected RPs, we
finally present in Section 3.3 how to find such region based
on maximally connected components. The major symbols
used in this paper are shown in Table 1.

3.1 Finding a Signal Contour
By evaluating the signal map of each given AP within the

survey site, we may observe a set of RPs which share simi-
lar RSSI values subject to some statistical fluctuation. These
RPs forms the signal contour for that AP. Then a target mea-
suring a similar RSSI value is likely within a certain range
from that contour. And the juncture of contours from these
detected APs becomes the potential location of the target.
Inspired by the above observations, we present as follows how
to form the signal contours given fingerprints and target sig-
nals.
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Let N and L be the total number of RPs and distinct APs
detected in the whole survey site, respectively. Further let

F̃ l
n be the random variable of the RSSI collected at RP n for

AP l in the offline fingerprint collection, where 1 ≤ n ≤ N
and 1 ≤ l ≤ L. Multiple samples are collected at different
time τ indexed 1, 2, . . . , T l

n for RP n and AP l, which are
denoted as

{f l
n(τ)|τ = 1, . . . , T l

n, T
l
n > 1}, (1)

where T l
n is the total number of samples collected. The un-

biased estimate of E(F̃ l
n), denoted as μ̂l

n, is the mean of

f l
n(τ)’s. The unbiased estimate on the variance of F̃ l

n is de-

noted as σ̂2(F̃ l
n). Then μ̂l

n and σ̂2(F̃ l
n) are respectively given

by

μ̂l
n =

1

T l
n

⎛⎝ T l
n∑

τ=1

f l
n(τ)

⎞⎠ , σ̂2
(
F̃ l
n

)
=

1

T l
n − 1

⎛⎝ T l
n∑

τ=1

(
f l
n(τ)− μ̂l

n

)2

⎞⎠ .

(2)
Let f l

n be the mean of the measured fingerprint signals (a
random variable) at RP n for AP l, given by

f l
n =

1

T l
n

T l
n∑

τ=1

F l
n(τ), (3)

where F l
n(τ)’s are random variables distributed as F̃ l

n and
f l
n(τ)’s are their realized values. Let v(τ) be a noise process
independent from f l

n(τ). Let α
l
n be a parameter determining

the autocorrelation of samples. Then the signal time series
can be represented as a first order autoregressive model [41],

f l
n (τ) = αl

nf
l
n (τ − 1) + (1− αl

n)v(τ), (4)

where αl
n represents the correlation between successive sam-

ples (0 ≤ αl
n ≤ 1). For f l

n, its expected value f̄ l
n and stan-

dard deviation σl
n [41] can be estimated as

f̄ l
n = μ̂l

n, σl
n =

⎧⎨⎩ σ̂2
(
F̃ l
n

)
(T l

n)2

[(
1− (αl

n)
T l
n

1− αl
n

)2

+ T l
n − 1

−(αl
n)

2 1− (αl
n)

2(T l
n−1)

1− (αl
n)2

]}1/2

,

(5)
respectively. Here αl

n can be approximated by autocorre-
lation coefficient with lag one [41] for the RSSI samples in
Equation (1), i.e.

αl
n ≈

∑T l
n−1

τ=1

(
f l
n(τ)− μ̂l

n

) (
f l
n(τ + 1)− μ̂l

n

)∑T l
n

τ=1 (f
l
n(τ)− μ̂l

n)
2

. (6)

Such autocorrelation within sequential RSSIs may be related
to the caching in Wi-Fi sampling. Wi-Fi data caching can be
identified using Timing Synchronization Function (TSF) [43]
of the RSSI. We can conclude that an RSSI is a cached one
if its TSF is identical to another in an earlier scan result.

To illustrate that, we collect 21, 000 signal vectors at 350
different locations in the HKIA with HTC One X (Android
4.3). At each location we collect 60 RSSI samples. For each
AP l at an RP n, we calculate the αl

n using Equation (6).
Figure 3 shows the histograms of all αl

n before and after
cache filtering. We can see that the autocorrelation between
RSSI samples decreases if we filter the cache based on TSF.
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Figure 3: Lag one autocorrelation before and after cleaning
Wi-Fi data cache (samples from the international airport).

Given much lower signal correlation, we can further sim-
plify the modeling of σl

n [41] into

σl
n =

√
1

T l
n

σ̂2
(
F̃ l
n

)
, (7)

However, TSF of RSSI cache is only available in the latest
smartphones (supported by Android 4.2 or above). There-
fore, here we implement Equations (5) and (6) to calculate
σl
n for more general cases. Given the above, let

fn = [f̄1
n, f̄

2
n, . . . , f̄

L
n ] (8)

be the RSSI vector (fingerprint) at RP n.
In the online query stage, denote the target measurement

of AP l as gl. We denote the RSSI vector at the target as

g = [g1, g2, . . . , gL]. (9)

For Equations (8) and (9), by definition, f̄ l
n = 0 (gl = 0), if

AP l is not sampled at RP n (at the target).
As online gl is also random signal, we utilize the uncertain-

ty in offline fingerprint to characterize its variation. Specifi-
cally, let (σl)2 be its variance, estimated as the mean of the
variance in all the fingerprints, i.e.,

(
σl
)2

=
1

|Nl|

⎛⎝ ∑
n∈Nl

σ̂2
(
F̃ l
n

)⎞⎠ , (10)

where Nl is the set of RPs detecting AP l in the site and
|Nl| is its cardinality.
We consider the randomness in the difference between fin-

gerprint and target RSSI, gl − f l
n for each AP l. As gl and

f l
n are independently measured, the variance of gl − f l

n is
therefore given by

V(gl − f l
n) = V(gl) + V(f l

n)

= (σl)2 + (σl
n)

2.
(11)

A signal contour for AP l, denoted as Sl, consists of a set
of RPs where the target is likely within. In other words, Sl

represents the RPs whose RSSI for AP l is likely within a
certain range from gl. Therefore, in finding the contour Sl,
we eliminate the RPs whose RSSI is more likely far away
from the target’s, i.e., if∣∣∣gl − f̄ l

n

∣∣∣ > z0
√

V (gl − f l
n), z0 > 0, (12)
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where z0 represents the uncertainty range. z0 determines the
sensitivity of INTRI towards the signal noise (in our exper-
iment we will further evaluate this parameter). We hence
find the signal contour for AP l as follows. Given a target
RSSI gl, we utilize Equations (11) and (12), and form the
signal contour Sl consisting of RP n ∈ Nl such that

gl − z0

√
(σl)2 + (σl

n)
2 ≤ f̄ l

n ≤ gl + z0

√
(σl)2 + (σl

n)
2. (13)

Given AP l, we denote the corresponding index set of RPs
on contour Sl as Cl, i.e.,

Cl = {n ∈ Nl,where f̄ l
n satisfies Equation (13)}. (14)

Then we denote its cardinality as |Cl|.

3.2 Calculation of Contour Weights
Given the found contours, an intuitive idea is to locate the

target at RPs with the maximum number of contours. How-
ever, due to the indoor partitions and signal measurement
uncertainty, spatially dispersed RPs may have very similar
number of signal contours passing by. In this case, finding
the RPs with the largest number of contours may not lead
to accurate location estimation. As shown in Figure 4, a
target (red diamond) measures a signal vector consisting of
RSSIs from six APs, A, B, C, D, E and F. The contours of
D, E and F (black circles) shift from those of A, B and C
(red rectangles) due to signal fluctuation or wall partitions.
Thus, the RPs in black circles may share the same number
of contours as those close to target. If all these RPs are con-
sidered equally without sufficient filtering or differentiation,
large location errors still exist.

Through empirical studies, we observe that the strong sig-
nals near APs provide more reliable location-dependent in-
formation than the weak ones. The stronger the RSSI, the
more important the AP contour is in contributing to location
estimation. This is due to the sharpness of signal strength
change at the locations near the Wi-Fi APs, which differ-
entiates RPs the most from other distant ones. Inspired by
this, we consider as follows how to utilize such distinguish-
able RSSIs to improve location accuracy.

Take Figure 4 again as an illustration. The signals at con-
tours of A, B and C are stronger since they are closer to the
corresponding APs. If we can assign more weights on the
contours with strong signals in final location decision, we
can distinguish the important RPs more accurately. Thus,
we propose a weighting scheme which differentiates RPs the
most and finds the RPs with higher confidence. The physical
intuition of the weighting scheme is based on the log-distance
path loss (LDPL) model [6, 23]. We adopt it in the weight-
ing function for signal contour differentiation, which achieves
high localization accuracy.

Denote the reference power at distance d0 as P l
0 (dBm).

Let dl be the distance between target and AP l. Then the
received power at target from AP l is given by

gl = P l
0 − 10γl log10

(
dl
d0

)
+X, (15)

where γl denotes the decay rate of RSSI in propagation. X
represents the inherent signal fluctuation and noise. Here
we consider using LDPL to represent the closeness of APs
for contour differentiation (not exact distance), and X has
been considered separately in forming contours (Section 3.1).
Based on Equation (15), we define the corresponding pseudo

distance from AP l (d0 = 1 m) as

d̂l = 10
Pl
0−gl

10γl . (16)

Instead of indicating actual distances, we use it to represent
the confidence level with AP signals. Specifically, the smaller

d̂l, the more likely the AP is nearby. Then the contour weight
at RP n from all detected APs is defined as

Dn =
1

L

L∑
l=1

1

d̂l
. (17)

Using Equation (17), for each gl at contour Sl, we consider
the potential that an AP is physically nearby. The larger Dn,
the more contours of strong signals hit the RP. Such APs are
more likely to be close to these RPs around the target, and
we further utilize such closeness information to constrain the
target region.

Then we find the RP set R consisting of the indices of RPs
which have the highest contour weights as the potential area
for final estimation, i.e.,

R = argmax
n

Dn. (18)

In INTRI, we dynamically select the RPs with Dn higher
than ρmax{Dn} (ρ = 0.75 in our simulation and experimen-
t). RSSIs from an AP that is located in a region surrounded
by obstacles may lead to larger γl than those from other APs
with freer signal propagation. Here we do not assume ide-
al line-of-sight measurement. The external parameters (P l

0

and γl) in Equations (15) and (16) can be learned through
gradient decent analysis over the fingerprint signals [6, 8].

To summarize, by traversing the survey site, we find the
signal contours at each RP within the signal range in E-
quation (13), and calculate the contour weights at that RP
using Equations (16) and (17). The most important RPs
with strong signals will be selected to form R.

3.3 Finding the Dense Contour Region
The selected RPs in R may still have “strayed RPs” due

to measurement uncertainty. In Figure 5, we illustrate the
spatial distribution of R (red rectangles), which is based
on the extensive experimental observations in HKIA trials
(from 1, 100 target RSSI samples). We can find RPs which
are physically close to each other. These RPs form a region
where the target is likely at, and should be used in our lo-
calization formulation. Due to signal temporal fluctuation,
some RPs (the two to the right) exist and are distant away
from the target location. If included in localization, these
RPs may lead to location error and unnecessary computa-
tion. Considering their spatial connectivity, we observe in
Figure 5 that the RPs near the target (red diamond) form a
connected component with the largest cardinality.

Based on such observation, we utilize an algorithm of find-
ing maximally connected components, and find the region
with dense contours by filtering out RPs not in the region.

We show the process of such filtering in Algorithm 1. Let
NR be the cardinality of R. We first construct an NR×NR

adjacency matrix A, where A(i, j) = 1 indicates that RP
i and j are adjacent, and A(i, j) = 0 otherwise (Lines 1).
We set the threshold of adjacency as

√
2 times of the square

grid width in site survey. By treating RPs in R as an undi-
rected graph, we find the membership list of all connected
components [35] (Lines 11 to 29). After that, we find the
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Figure 4: Illustration of differentiat-
ing signal contours.

Figure 5: Illustration of maximal-
ly connected component to find the
dense contour region.
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Figure 6: Histograms of NR before and
after RP filtering (the airport data).

component with the maximum number of RPs (Line 30). If
multiple components have the maximum cardinality in com-
mon, we use their union for later localization.

In Figure 6, we plot the histograms of NR from 1, 100
targets in the Hong Kong International Airport before and
after the proposed RP filtering. We can observe that such
a scheme narrows the search scope and facilitates the final
location estimation.

4. LINEAR PROGRAMMING FOR LOCA-
TION ESTIMATION

In this section, we present the core formulation of INTRI.
To formulate the objective function, we first define in Sec-
tion 4.1 the physical (geographical) distance from an RP to
signal contours. Then in Section 4.2, we formulate a linear
programming based on weighted physical distances to those
contours. We finally analyze the online computational com-
plexity of INTRI in Section 4.3.

4.1 Defining Distances from an RP to Signal
Contours

We are given a set of RPs where the contours locate. In
the following we introduce how to utilize the signal contours
as the objective for INTRI .

Recall that traditional trilateration estimates target po-
sition by minimizing the difference between the measured
distances and the distances from the position to the land-
marks. In our formulation, based on the same spirit, we use
the distances to the constructed signal contours. As RPs on
contours are discretely sampled in the survey site and a tar-
get is surrounded by RPs, we utilize in our formulation the
distances from RPs in R to those on other contours. The
RPs with small distances to other Sl’s are likely to be the
target region.

Let rn = [xn, yn] be the coordinate of RP n ∈ R. We
calculate its distance from each RP m (n �= m) in Sl, i.e.,

δlnm =

√
(xn − xl

m)2 + (yn − yl
m)2, ∀m ∈ Cl, (19)

where [xl
m, yl

m] is RP m’s coordinate on signal contour l.
Given all distances δlnm, ∀m ∈ Cl, we find the minimum one,
i.e.,

Δl
n (g, fn) = min δlnm, ∀m ∈ Cl, (20)

Algorithm 1: Finding dense contour region.

Input: R: indices of selected RPs; ζ: threshold.
Output: R: set of RPs with dense contours.
/* Constructing Adjacency Matrix. */

1 A ← zeros(NR, NR)./* NR ×NR matrix. */

2 for i ∈ {2, . . . , NR} do
3 for j ∈ {1, . . . , i} do
4 if dist(i,j) ≤ ζ then

/* Symmetric Matrix */

5 A(i, j) ← 1; A(j, i) ← 1;

6 end

7 end

8 end

9 isDiscovered ← zeros(NR);
10 mem ← {};/* Set of Components */

11 nGp ← 0; /* Number of Components */

12 for n ∈ {1, . . . , NR} do
13 if !isDiscovered(n) then
14 nGp ← nGp+ 1;
15 isDiscovered(n) ← 1;
16 mem[nGp].pt ← mem[nGp].pt ∪ {n};
17 ptr ← 1;
18 while ptr ≤ sizeof(mem[nGp].pt) do

/* Find Its Neighbors. */

19 nbrs ← find(A(:,mem[nGp].pt(ptr)));
20 for nb ∈ {1, . . . , sizeof(nbrs)} do

/* Connected Components */

21 if !isDisovered(nbrs(nb)) then
22 isDisovered(nbrs(nb)) ← 1;
23 mem[nGp].pt ←

mem[nGp].pt ∪ {nbrs(nb)};
24 end

25 end
26 ptr ← ptr + 1;

27 end

28 end

29 end
30 R ← MaxMembers(mem);

which represents the distance between RP n and contour l.
Given above, the distances to all contours are aggregated as

Δn =

L∑
l=1

Δl
n(g, fn), (21)
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which, in other words, approximates the residual between
the target estimation’s distances to the landmarks and the
measured distances.

By minimizing Equation (21), we minimize the distance
difference and hence extend the idea of trilateration into a
contour-based scheme. As the contours are derived from fin-
gerprints and target RSSIs, we require no explicit knowledge
of AP locations or LoS measurement, and therefore combine
the advantages of both fingerprinting and trilateration in our
formulation. In the following, we present the formulation to
find the target position.

4.2 Linear Programming Formulation
Given R and Δn, we formulate the localization problem

based on linear programming (LP). For each target, denote
its estimated location as x̂ = [x̂, ŷ]. Let ωn be the weight as-
signed to rn in locating the target. As the target is surround-
ed by the RPs in R, its estimated position can be expressed
as

x̂ =

NR∑
n=1

ωnrn, (22)

where rn ∈ R, and the weights satisfy the normalization and
non-negativity, i.e.,

NR∑
n=1

ωn = 1, ωn ≥ 0, ∀n ∈ {1, . . . , NR}. (23)

Based on Equation (20) and (22), we extend the idea of trilat-
eration into finding the weights which minimize the target’s
weighted sum of distances to all the contours, i.e.,

argmin
{ωn}

NR∑
n=1

ωnΔn. (24)

In real deployment, a target is far more likely to be between
two neighboring RPs (or within the square grid formed by
four RPs). In order to jointly consider the neighboring RPs
to the target, we set a constraint over the weight ωn at each
RP, i.e.,

wn ≤ W, ∀n ∈ {1, . . . , NR}, (25)

where W is a dynamic parameter determined by the maxi-
mum contour weight

W =
maxDn∑NR

n=1 Dn

. (26)

Through Equations (24) and (25), we can jointly consider
the physical distances (denoted as {Δn}) and the contour
weights (denoted as {Dn}) in our formulation.
If there are indoor wall partitions in narrow space, we can

include map constraints in our basic formulation. Denote
the set of map constraints as E. For each edge e ∈ E, we
consider the accessible area within the map constraints as

aex̂+ beŷ + ce ≥ 0, e ∈ E, (27)

where ae, be and ce are the line parameters obtained from the
site map in our system initialization. The formula of map
edges can be easily found using the nearest map constraints.
Using the above, the localization problem can therefore be

Algorithm 2: Contour-based indoor trilateration.

Input: {rn} and {fn}: the set of N RPs and the set of
RSSI vector at each RP; g: target RSSI vector;
ζ: the threshold in determining maximally
connected components; ρ: range of RPs to be
selected.

Output: x̂: estimated locations of the target.
/* Construction of Signal Contours. */

1 Cl ← {}; /* Set of RPs with Contours. */

2 for n ∈ {1, . . . , N} do
3 Dn ← 0;
4 for l ∈ {1, . . . , L} do

5 if f̄ l
n ≥ gl − z0

√
(σl)2 + (σl

n)
2 and

f̄ l
n ≤ gl + z0

√
(σl)2 + (σl

n)
2 then

6 Cl ← Cl ∪ {n}; Dn ← Dn + 10(g
l−P l

0)/(10γ
l);

7 end

8 end
9 Dn ← Dn/L;

10 end
/* Selecting Dense Contours. */

11 R ← FindHighWeight (Ω, ρ, {Dn});
/* RP Filtering Using Connectivity. */

12 R ← FindMaxComponent(R, ζ);
/* Calculating Dist from Contours. */

13 for n ∈ {1, . . . , NR} do
14 for l ∈ {1, . . . , L} do
15 for m ∈ {1, . . . , |Cl|} do

16 δlnm =
√

(xn − xl
m)2 + (yn − yl

m)2;
17 end

18 Δl
n (g, fn) = min{δlnm};

19 end

20 end
21 LP-based Localization Using Formulation (28);

22 x̂ ← ∑NR

n=1 ωnrn;/* Final Estimation. */

formulated as a linear programming (LP):

Objective: Equation (24),

subject to: Constraints (22), (23),

(25), (26) and (27).

(28)

In other words, we opt to find the estimated position with the
smallest weighted physical distances to the contours within
the accessible area. INTRI returns the set of weights assigned
to RPs in R which minimizes the distances to contours, i.e.,
the RPs which are closer to all contours are assigned higher
weights, and vice versa.

Using some commercial optimization solver, we can solve
the above LP efficiently [3]. The final solution {ωn} is then
used to estimate the target position according to Equation (22).
We summarize INTRI in Algorithm 2.

4.3 Complexity Analysis
We here analyze the computational complexity of INTRI:

1. Forming contours with random signals: Given N RPs
and L APs, the complexity of finding signal contours
and calculating contour weights is given by O (NL)
(Section 3.1 and 3.2).

231



1 2 3 4 5 6 7 8 9
−95

−90

−85

−80

−75

−70

−65

−60

Index of Wi−Fi APs

M
ea

n 
R

S
S

I (
dB

m
)

HTC One X
Lenovo A 680

Figure 7: Device heterogeneity between two devices.

2. Finding maximally connected components: Given NR

selected RPs, finding the maximally connected compo-
nent takes O((NR)2) [35] (Section 3.3).

3. LP-based localization: To prepare the objective func-
tion of LP, calculating the distances between R and
contours takes O (

NRL|Cl|) (Section 4.1). In Formu-

lation (28), there areO(NR) decision variables in {ωn}.
Thus, the LP in location estimation takes weak poly-
nomial time, i.e., O (

(NR)3
)
[3] (Section 4.2).

To summarize, the overall online running time of INTRI is

O
(
NL+NRL|Cl|+

(
NR

)3
)
. (29)

After contour differentiation and finding maximally connect-
ed components, NR � N . Further computation reduction
can be done via AP filtering and RP cluster mapping [13].
Then we can significantly reduce the number of APs and RP-
s. In this way, INTRI can be integrated on existing on-board
LBS systems and further support mobile targets.

5. EFFICIENT ONLINE CALIBRATION FOR
HETEROGENEOUS DEVICES

Due to difference in Wi-Fi network interfaces, for the same
signal different smartphones may have different measurement
values [14, 25]. To illustrate this, we conduct an experiment
and collect 1, 000 RSSI samples using HTC One X and Leno-
vo A680, respectively. If such signal difference issue is not
addressed, the contours (Section 3.1) cannot be found cor-
rectly. Figure 7 shows the similarity of signal trend between
signals of the two smartphones despite the shift. Leveraging
such similarity, we present an efficient algorithm to adapt to
different mobile devices as follows.

In this section we consider efficient and scalable online cali-
bration in order to reduce offline manual efforts. To this end,
we map the target signals g to the signal space in fingerprint
database. We first calculate the correlation between the tar-
get RSSI vector and that of each RP. The RPs with similar
signal vectors can be leveraged for online signal calibration.
The vector comparison is based on the correlation between
g and fingerprint fn, i.e.,

corr(g, fn) =

∑L
l=1

(
gl − ḡ

) (
f̄ l
n − f̄n

)√∑L
l=1 (g

l − ḡ)2
√∑L

l=1

(
f̄ l
n − f̄n

)2 , (30)

where ḡ = 1
L

∑L
l=1 g

l and f̄n = 1
L

∑L
l=1 f̄

l
n. The above corre-

lation compares relative signal trend of different APs rather
than the absolute RSSI values. Based on Equation (30), we
can find the RPs with similar signal trend for calibration and
reduce the effect of device dependency.

To mitigate the effect of random noise, we find the top sev-
eral RPs with corr(g, fn) > η (η = 0.95 in our experiment)
for linear calibration. For each target RSSI gl from AP l, we
find the corresponding f l

n at RPs. Given pairs of [gl, f l
n], we

conduct the linear regression and obtain the corresponding
a and b for target RSSI gl, i.e.,

g̃l = agl + b. (31)

Note that our online calibration approach is not restrict-
ed to linear model, and is general enough to apply to any
other signal mapping model (e.g. [32]). Based on Equa-
tion (31) we can conduct INTRI with calibrated g̃l. Given
O(L) APs and O(N) RPs, the correlation comparison takes
O(NL). Let λ (λ � N) be the number of RPs whose correla-
tion corr(g, fn) is greater than η, and linear regression takes
O(L2λ2). Therefore, the online computational complexity of
2-D linear regression is O(NL+ L2λ2) [3].

6. ILLUSTRATIVE SIMULATION RESULT-
S

We develop a simulation environment (100× 90m2) based
on the setting of a local airport. We consider all the Wi-Fi
transmitters and receivers are equipped with omni-directional
antennas. The RSSI gl (dBm) at distance d from AP l is giv-
en by the LDPL model [1]:

gl = PTX − L0 − 10γ log10

(
d

d0

)
+X, (32)

where X ∼ N (0, σ2
dB) is the Gaussian measurement noise. In

our simulation, we set transmission power PTX 25 dBm, the
path loss exponent γ 4.0, the reference path loss L0 37.7 dBm
[1] and the reference distance d0 1 m. Based on empirical
observations, if gl < −95 dBm, the target cannot detect the
signal of this AP and we discard this measurement.

We evaluate the performance of INTRI in terms of AP
number, signal noise and survey grid size in our simulation
environment. We compare INTRI with four state-of-the-art
schemes:

• EZPerfect (EZPerf) [6,31]: a model-based Wi-Fi local-
ization scheme which considers deriving signal propa-
gation model from fingerprint data. Given Wi-Fi fin-
gerprints, EZPerfect first finds the matching relation-
ship between signals and distances from APs [6], and
then locates targets with a genetic algorithm solving
trilateration problem [31].

• KL-divergence (KL-div) [29,30]: which utilizes the Kullback-
Leibler (KL) divergence distance [30] between the sig-
nal distribution at an RP and target during compar-
ison. Then the top k RPs with the minimum KL-
divergence are utilized for final estimation.

• Weighted k-Nearest Neighbors (WKNN) [11,12]: It com-
putes the cosine similarity [12] between the fingerprints
and the target RSSI vector. Then it finds the weighted
average of k-Nearest Neighbors [11] of highest cosine
similarity to estimate the target location.
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Figure 8: Mean errors in simulation versus (a) number of APs deployed; (b) signal measurement noise; (c) survey grid size.

• Probabilistic algorithm (Horus [42]): It first calculates
the probability distribution of the RSSI values at each
RP. Given a target RSSI vector, Horus computes the
overall probability of the vector at each RP and finds
the top several ones with the maximum likelihood as
the target location.

Unless otherwise stated, we use following baseline param-
eters in simulation: 15 APs are deployed; σdB = 5 dB (E-
quation (32)); k = 20 for KL-divergence, WKNN and Horus
algorithm; z0 = 3 (Equation (12)); survey grid size is 5 m.

Let xm be targetm’s true location and x̂m be its estimated
location. The performance metric in our experiment is the
mean error (unit:m) of the estimated targets in set V:

μe =
1

|V|
∑
m∈V

‖xm − x̂m‖. (33)

In Figure 8(a), we show the mean localization errors versus
the number of APs. The performance of all the algorithms
improves as the number of APs increases. As there are more
APs deployed in the site which help differentiate the RPs, the
error decreases. Compared with these traditional algorithms,
INTRI achieves much lower errors under different numbers of
deployed APs. It is because INTRI considers differentiating
contours using contour weights, which helps distinguish the
RPs and prevents dispersed estimations.

In Figure 8(b), we show the mean localization errors a-
gainst the signal measurement noise (σdB in Equation (32)).
Clearly, the performance of all the algorithms degrades as
the noise in Wi-Fi signals increases. Signal noise leads to
dispersed nearest neighbors and distance measurement error,
which degrades the accuracy of traditional pattern matching
algorithms and EZPerfect. Especially in different indoor en-
vironments ranging from spacious halls or narrow corridors,
the signal fluctuation of fingerprints can be different. Even
under large fingerprint variation, INTRI achieves much bet-
ter accuracy. Different from these traditional and state-of-
the-art algorithms, INTRI considers the signal variation in
the contour construction. Therefore, it achieves higher ro-
bustness and localization accuracy under large signal noise.

Figure 8(c) shows the mean localization errors versus sur-
vey grid size, i.e., we vary the site survey grid width (in
square shape) to change the fingerprint density, given differ-
ent schemes. Accuracy suffers as grid size increases, illustrat-
ing the tradeoff between survey cost and localization accura-
cy. INTRI considers the signal contours in the formulation to

Figure 9: Sur-
vey site of board-
ing area at HKIA.

Figure 10: Sur-
vey site of HKUST
campus hall.

Figure 11: Sur-
vey site of HKCP
shopping mall.

constrain the target region. By minimizing distances to con-
tours, INTRI prevents dispersion of nearest neighbors and
achieves higher accuracy.

7. EXPERIMENTAL EVALUATIONS
Besides simulation, we have conducted extensive experi-

mental trials of INTRI in the Hong Kong International Air-
port (HKIA) (Figure 9), our university campus (HKUST)
(Figure 10) and the Hong Kong Cyberport (HKCP) (Fig-
ure 11). We first present our experimental settings in Sec-
tion 7.1. As the measured AP signals are different in the
three sites, we discuss the comparative studies over these d-
ifferences in Section 7.2. Then we illustrate the experimental
results in HKIA (Section 7.3) followed by those in HKUST
and HKCP (Section 7.4).

7.1 Experimental Settings
We use in our experimental studies the same state-of-the-

art algorithms and comparison metrics as in Section 6. Be-
sides, we compare the device calibration scheme in INTRI
with two recent methods, signal strength difference (SSD) [25]
and signal ratio (SR) [28]. SSD utilizes the differences be-
tween pairs of AP signal values as patterns. Similarly, SR
calculates the ratio between pairs of AP signals as Wi-Fi
fingerprints. Both methods aim at compensating the signal
difference among heterogeneous devices.

In Figure 12, we show the corresponding survey floor plan
of RPs and targets in HKIA. In the 10, 000 m2 site, we collect
340 RPs and 1, 100 targets. We utilize HTC One X as the fin-
gerprint collector and Lenovo A680 for target measurement.
The locations of RPs are predefined on the indoor map. To
balance between localization accuracy and survey cost, we
use 5 m grid density in fingerprinting. At each RP, signal
data is sampled from four different directions (north, west,
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Figure 12: Indoor map of a boarding gate at the HKIA. The survey grid
size is 5 m (survey conducted on July 8, 2014).

Figure 13: Hall map of HKUST campus
(survey conducted on Nov. 28, 2014).

Figure 14: Indoor map of HKCP mal-
l (survey conducted on Sept. 10, 2014).
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Figure 15: Histograms of detected
AP number at targets in three sites.
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Figure 16: Average signal noise σl

(Equation (10)) in different sites.

south and east). For each direction, 15 samples of RSSI vec-
tors are collected. The ground truth of the target locations is
also predetermined in grid form (in the testing, the surveyors
find the RP or target locations from the nearest pillars, floor
tiles and other noticeable indoor landmarks). Note that the
data sampling is conducted with people around, and tempo-
ral fluctuation exists within the fingerprints and target sig-
nals. The time interval between samples in Wi-Fi scanning
is 1 second.

Wi-Fi APs are officially pre-deployed. Thus, their number,
locations and transmission power are already settled before
site survey. In the data preprocessing, we filter out the mo-
bile APs tethered by smartphones, and combine the signals
of virtual APs (VAPs) [27]. Overall 360 APs are detected
(each RP measures 47 APs on average). Part of these APs
may be installed outside the survey site since their coverage
in our site is relatively small and signals are globally weak.
The target samples are collected one month later than RP
collection. For schemes like KL-divergence and Horus which
are device dependent, we utilize our scheme to calibrate the
signals.

In the HKUST campus and the HKCP shopping mall,
fingerprint collection, target sampling and data preprocess-
ing are the same as those in the airport. Figure 13 shows
the RPs and targets on campus (100 × 50m2). In campus
corridor environment, we collect 250 RPs and 475 targets.
Figure 14 shows the RPs and targets in the shopping mall
(150 × 100m2). In the HKCP mall, we collect 680 RPs and
680 targets. In both the HKUST and HKCP, the blue dot-
s represent RPs and the red diamonds are targets. Similar
to the HKIA, we are given the officially deployed APs and
we cannot manually change their settings (installation loca-
tions and TX power). In the site survey of campus corridor,
overall 320 APs are detected (each RP measures 24 APs on
average). In the site survey at shopping mall, overall 190
APs are detected (average 28 APs at each RP).
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Figure 17: Mean errors versus parameter z0 in three sites.

7.2 Comparative Studies of Different Sites
Figure 15 shows the histograms of AP number detected

by targets at different sites. On average, each target can
detect 16 APs on HKUST and 22 APs in HKCP. In HKIA,
each target can detect 16 APs on average. Though target-
s in HKIA and HKUST have similar detected AP number,
the survey site in HKUST is smaller and hence it has denser
AP deployment. Moreover, the signal coverage of APs in
our campus corridor and HKCP is constrained by the wal-
l partitions, which helps differentiate the RPs. Therefore,
we expect a better localization performance on HKUST and
HKCP than in HKIA. Based on these detected APs, we e-
valuate the effect of different received AP numbers.

Figure 16 shows the corresponding signal noise in each
survey site. We show the cumulative probability of the σl

according to Equation (10). Clearly, we can see a smaller
signal noise in HKUST and HKCP than that in HKIA. It is
because the airport boarding area is large open space with
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Figure 18: Cumulative probability of
INTRI running time on different sites.
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Figure 19: Calibration of target RSSI
from RP signals (HKIA).
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Figure 20: Performance of different de-
vice calibration methods in HKIA.
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Figure 21: Performance of INTRI with
and without contour weights (HKIA).
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Figure 22: Mean errors versus fraction
of APs removed (HKIA).
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Figure 23: Mean localization errors ver-
sus site survey grid size (HKIA).
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Figure 24: Cumulative probability of localization errors in (a) HKIA boarding gate; (b) HKUST campus; (c) HKCP mall.

many airline passengers, which leads to higher signal uncer-
tainty. Based on the difference in signal noise, we adjust the
parameter z0 in Equation (12) for online localization.
Figure 17 shows the mean localization errors of INTRI in

three sites given different z0. In general, the error first de-
creases and then increases. This is because the localization
error depends on two factors: signal noise and RP finger-
print differentiation. When z0 is small, the tight contours
cannot accommodate the large measurement uncertainty in
target. Thus, the error is high. As z0 increases, the con-
tours can bound the target, and hence the error decreases.
As z0 further increases, the error increases because, as con-
tours become wide, the differentiation between RPs becomes

weak. Then more distant RPs are included in localization.
The result shows that without sufficient RP fingerprint dif-
ferentiation, wide contours would not help. Compared with
HKUST and HKCP, z0 is slightly larger in HKIA due to high-
er signal variance in airport (as shown in Figure 16). Thus,
in our experiment, z0 = 4 in HKIA, z0 = 3.5 in HKCP, and
z0 = 2.5 on our HKUST campus.

Figure 18 shows the running time CDF of INTRI on the
targets at different sites. We test INTRI on a server PC with
i7 4790 (3.6GHz) CPU. It shows that at the three sites, our
INTRI shows different computation time due to the differ-
ence in RP numbers and detected AP number at target side
and RP side. The running time of INTRI at HKCP is much
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smaller than that at HKIA and HKUST. It is mainly because
many of detected APs in HKCP are installed in the shop s-
tores and have limited coverage (small contours) due to wall
partitions, compared with those in HKIA and HKUST. A
target can be quickly mapped to smaller areas and therefore
the overall computation becomes much smaller.

7.3 International Airport Trials
Figure 19 shows the linear signal model of four different

target estimations in HKIA. Target data (x-axis) are collect-
ed using Lenovo A680 while RP signals (y-axis) are from
HTC One X. Based on the a and b, we obtain the calibrated
signal strength, g̃l, for each given target. We can see that the
linear calibration scales up the Lenovo A680 measurements
(target), which matches our observation in Figure 7.

Figure 20 compares the cumulative errors of different de-
vice calibration schemes in the airport. We use uncalibrated
signals in INTRI as the baseline case. The calibrated IN-
TRI improves from the uncalibrated scheme, and also out-
performs SSD and SR. It is mainly because our proposed
scheme jointly considers the relative trend and the RSSI ad-
justment model when calibrating devices. Unlike SSD and
SR, our correlation scheme mitigates the errors in signal val-
ues when INTRI calibrates target RSSI using fingerprints,
which is more robust under large signal noise in the airport.

Figure 21 shows the localization error with and without
differentiating the contours using HKIA data. We consid-
er two scenarios using 5 m (default) and 10 m survey grid
size. Without using contour weights, we count the number
of signal contours and implement it into INTRI as the base-
line case. As shown in Figure 21, simple contour counting
cannot discriminate the dispersed nearest neighbors (RPs)
with similar number of contours. In contrast, contour weight
discriminates the fingerprints by penalizing RPs only with
many weak signals. Then we mitigate the influence from
the noise in the measurement. Thus, we have shown using
contour weights achieves better performance than the un-
weighted scheme, especially under sparser survey grid size.

In Figure 22, we plot the mean localization errors of these
algorithms against the number of APs used. We randomly
select part of the APs detected at target side to simulate the
miss of the RSSI due to crowds of people or site construction
change, which generally exists in the HKIA. As the number
of APs used decreases, the performance of all five algorithms
degrades. INTRI is less susceptible to AP number change
than other four algorithms. It is mainly because junction
of contours can constrain the target in a small region and
reduce the dispersed set of nearest neighbors.

Figure 23 shows the mean localization errors against the
survey grid size. As the minimum grid size is five meters,
columns or rows of RPs are removed to form the grid sizes
with multiples of five. Clearly all five algorithms degrade
as grid size increases. We can observe EZPerfect achieves
slightly higher accuracy than WKNN, KL-divergence and
Horus under larger grid size. It is because for EZPerfect
additional distances from multiple APs constrain the target
location and prevent large error. Compared with the algo-
rithms above, INTRI has much higher localization accuracy
at different grid sizes. It is because INTRI considers signal
uncertainty in contours and constrains the target estimation
through joint optimization. Without relying on accurate dis-
tance measurement, INTRI can still constrain the target es-
timation by signal contours under large grid size.

Figure 24(a) compares the cumulative errors of five al-
gorithms in HKIA. Due to large measurement noise in the
airport, WKNN’s accuracy is weakened by the dispersed n-
earest neighbors. Horus assumes a certain distribution of
signal level at each RP and therefore cannot represent real
signal distribution under limited sampling. KL-divergence
also requires large data sampling and dense fingerprints in
signal distribution comparison. Therefore, it cannot adapt
to the noisy airport environment. The large signal noise al-
so degrades the distance accuracy of traditional trilateration
in EZPerfect. In contrast to above methods, INTRI joint-
ly considers the signal noise and distances to contours, and
therefore reduces misestimation of the target.

7.4 Campus Hall & Shopping Mall Trials
Figure 24(b) and Figure 24(c) show the cumulative er-

rors in HKUST and HKCP, respectively. Compared with
the HKIA, the fingerprints and target signals in HKUST
and HKCP carry less signal measurement noise. Thus, we
observe the increase of localization accuracy in all the al-
gorithms at these two sites compared with that in the air-
port. EZPerfect becomes slightly better than WKNN as the
distance measurement becomes less noisy. Similar to Fig-
ure 24(a), INTRI achieves higher accuracy than other algo-
rithms since it considers the signal variation in constructing
contours and utilizes them to reduce the dispersed nearest
neighbors. INTRI is general enough to work under different
environments with markedly higher accuracy.

We also study the performance of INTRI in the HKUST
and HKCP extensively. As the conclusions are qualitatively
the same, for brevity we will not repeat them here.

8. CONCLUSION
Traditional trilateration has achieved much success for out-

door localization. However, it does not work well indoors due
to non-line-of-sight measurement and signal fading. Finger-
printing is a promising approach for indoor localization, but
its performance is vulnerable to signal noise. We propose in
this work INTRI, a highly accurate algorithm which com-
bines the advantages of both trilateration and fingerprinting
to achieve much better accuracy.

Based on the spirit of trilateration, for each measured AP
signal level, INTRI forms the corresponding contour, which
is the set of RPs with the same signal level subject to its s-
tatistical fluctuation. The target is hence where the contour
is. To estimate target’s location, INTRI formulates a linear
programming to minimize the distance between the location
and these contours (i.e., following the spirit of trilateration).
To achieve higher accuracy, INTRI addresses device hetero-
geneity with an efficient and scalable algorithm based on the
correlation in RSSI for online signal calibration. We have
conducted extensive simulation and experimental studies on
INTRI in the Hong Kong International Airport, Hong Kong
Cyberport mall and HKUST campus. Compared with oth-
er approaches, INTRI achieves significantly higher accuracy
and robustness under signal noise (often by more than 20%).

9. ACKNOWLEDGMENTS
This work was supported, in part, by The Hong Kong

R&D Center for Logistics and Supply Chain Management
Enabling Technologies (ITP/034/12LP), and Hong Kong Re-
search Grant Council (RGC) General Research Fund (610713).

236



10. REFERENCES
[1] N. Alsindi, R. Raulefs, and C. Teolis. Geolocation

Techniques: Principles and Applications. Springer,
2012.

[2] P. Bahl and V. N. Padmanabhan. RADAR: An
in-building RF-based user location and tracking
system. In Proc. IEEE INFOCOM, volume 2, pages
775–784, 2000.

[3] S. P. Boyd and L. Vandenberghe. Convex
Optimization. Cambridge University Press, 2004.

[4] K. Chang and D. Han. Crowdsourcing-based radio
map update automation for Wi-Fi positioning systems.
In Proc. ACM SIGSPATIAL GeoCrowd, pages 24–31,
2014.

[5] Y.-C. Chen, J.-R. Chiang, H.-h. Chu, P. Huang, and
A. W. Tsui. Sensor-assisted Wi-Fi indoor location
system for adapting to environmental dynamics. In
Proc. ACM MSWiM, pages 118–125, 2005.

[6] K. Chintalapudi, A. Padmanabha Iyer, and V. N.
Padmanabhan. Indoor localization without the pain. In
Proc. ACM MobiCom, pages 173–184, 2010.

[7] S.-H. Fang, C.-H. Wang, S.-M. Chiou, and P. Lin.
Calibration-free approaches for robust Wi-Fi
positioning against device diversity: A performance
comparison. In Proc. IEEE VTC Spring, pages 1–5,
2012.

[8] B. Ferris, D. Fox, and N. D. Lawrence. WiFi-SLAM
using Gaussian process latent variable models. In Proc.
IJCAI, pages 2480–2485, 2007.

[9] A. Goswami, L. E. Ortiz, and S. R. Das. WiGEM: A
learning-based approach for indoor localization. In
Proc. ACM CoNEXT, pages 3:1–3:12, 2011.

[10] X. Guo, D. Zhang, K. Wu, and L. Ni. MODLoc:
Localizing multiple objects in dynamic indoor
environment. IEEE Trans. Parallel and Distributed
Systems, 25(11):2969–2980, Nov. 2014.

[11] D. Han, S. Jung, M. Lee, and G. Yoon. Building a
practical Wi-Fi-based indoor navigation system. IEEE
Pervasive Computing, 13(2):72–79, Apr. 2014.

[12] S. Han, C. Zhao, W. Meng, and C. Li. Cosine
similarity based fingerprinting algorithm in WLAN
indoor positioning against device diversity. In Proc.
IEEE ICC, pages 4313–4317, 2015.

[13] S. He and S.-H. Chan. Sectjunction: Wi-Fi indoor
localization based on junction of signal sectors. In
Proc. IEEE ICC, pages 2605–2610, June 2014.

[14] S. He and S.-H. G. Chan. Wi-Fi fingerprint-based
indoor positioning: Recent advances and comparisons.
IEEE Communications Surveys and Tutorials, to
appear.

[15] S. He, S.-H. G. Chan, L. Yu, and N. Liu.
Calibration-free fusion of step counter and wireless
fingerprints for indoor localization. In Proc. ACM
UbiComp, 2015.

[16] S. He, S.-H. G. Chan, L. Yu, and N. Liu. Fusing noisy
fingerprints with distance bounds for indoor
localization. In Proc. IEEE INFOCOM, pages
2506–2514, 2015.

[17] S. Hilsenbeck, D. Bobkov, G. Schroth, R. Huitl, and
E. Steinbach. Graph-based data fusion of pedometer
and WiFi measurements for mobile indoor positioning.
In Proc. ACM UbiComp, pages 147–158, 2014.

[18] Y. Jiang, Y. Xiang, X. Pan, K. Li, Q. Lv, R. P. Dick,
L. Shang, and M. Hannigan. Hallway based automatic
indoor floorplan construction using room fingerprints.
In Proc. ACM UbiComp, pages 315–324, 2013.

[19] J. Jun, Y. Gu, L. Cheng, B. Lu, J. Sun, T. Zhu, and
J. Niu. Social-Loc: Improving indoor localization with
social sensing. In Proc. ACM SenSys, pages 14:1–14:14,
2013.

[20] Y. Kim, H. Shin, and H. Cha. Smartphone-based
Wi-Fi pedestrian-tracking system tolerating the RSS
variance problem. In Proc. IEEE PerCom, pages
11–19, Mar. 2012.

[21] S. Kumar, S. Gil, D. Katabi, and D. Rus. Accurate
indoor localization with zero start-up cost. In Proc.
ACM MobiCom, pages 483–494, 2014.

[22] A. Kushki, K. N. Plataniotis, and A. N.
Venetsanopoulos. Kernel-based positioning in wireless
local area networks. IEEE Trans. Mobile Computing,
6(6):689–705, 2007.

[23] L. Li, G. Shen, C. Zhao, T. Moscibroda, J.-H. Lin, and
F. Zhao. Experiencing and handling the diversity in
data density and environmental locality in an indoor
positioning service. In Proc. ACM MobiCom, pages
459–470, 2014.

[24] H. Liu, J. Yang, S. Sidhom, Y. Wang, Y. Chen, and
F. Ye. Accurate WiFi based localization for
smartphones using peer assistance. IEEE Trans.
Mobile Computing, 13(10):2199–2214, Oct 2014.

[25] A. Mahtab Hossain, Y. Jin, W.-S. Soh, and H. N. Van.
SSD: A robust RF location fingerprint addressing
mobile devices’ heterogeneity. IEEE Trans. Mobile
Computing, 12(1):65–77, Jan. 2013.

[26] A. T. Mariakakis, S. Sen, J. Lee, and K.-H. Kim.
SAIL: Single access point-based indoor localization. In
Proc. ACM MobiSys, pages 315–328, 2014.

[27] E. Martin, O. Vinyals, G. Friedland, and R. Bajcsy.
Precise indoor localization using smart phones. In
Proc. ACM MM, pages 787–790, 2010.

[28] Mikkel Baun Kjaergaard. Indoor location
fingerprinting with heterogeneous clients. Pervasive
and Mobile Computing, 7:31 – 43, 2011.

[29] P. Mirowski, D. Milioris, P. Whiting, and T. Kam Ho.
Probabilistic radio-frequency fingerprinting and
localization on the run. Bell Labs Technical Journal,
18(4):111–133, 2014.

[30] P. Mirowski, P. Whiting, H. Steck, R. Palaniappan,
M. MacDonald, D. Hartmann, and T. K. Ho.
Probability kernel regression for WiFi localisation.
Journal of Location Based Services, 6(2):81–100, 2012.

[31] R. Nandakumar, K. K. Chintalapudi, and V. N.
Padmanabhan. Centaur: Locating devices in an office
environment. In Proc. ACM MobiCom, pages 281–292,
2012.

[32] J.-g. Park, D. Curtis, S. Teller, and J. Ledlie.
Implications of device diversity for organic localization.
In Proc. IEEE INFOCOM, pages 3182–3190, Apr.
2011.

[33] G. Shen, Z. Chen, P. Zhang, T. Moscibroda, and
Y. Zhang. Walkie-Markie: Indoor pathway mapping
made easy. In Proc. USENIX NSDI, pages 85–98, 2013.

[34] H. Shin, Y. Chon, Y. Kim, and H. Cha. MRI:
Model-based radio interpolation for indoor

237



war-walking. IEEE Trans. Mobile Computing,
14(6):1231–1244, June 2015.

[35] S. S. Skiena. The Algorithm Design Manual. Springer
Science & Business Media, 2008.

[36] W. Sun, J. Liu, C. Wu, Z. Yang, X. Zhang, and Y. Liu.
MoLoc: On distinguishing fingerprint twins. In Proc.
IEEE ICDCS, pages 226–235, July 2013.

[37] S.-H. Tsai, S.-Y. Lau, and P. Huang. WSN-based
real-time indoor location system at the Taipei World
Trade Center: Implementation, deployment,
measurement, and experience. In Proc. IEEE Sensors,
pages 1–4, Oct 2012.

[38] H. Wang, S. Sen, A. Elgohary, M. Farid, M. Youssef,
and R. R. Choudhury. No need to war-drive:
Unsupervised indoor localization. In Proc. ACM
MobiSys, pages 197–210, 2012.

[39] K. Wu, J. Xiao, Y. Yi, D. Chen, X. Luo, and L. M. Ni.
CSI-based indoor localization. IEEE Trans. Parallel
and Distributed Systems, 24(7):1300–1309, Jul. 2013.

[40] Z. Yang, Z. Wang, J. Zhang, C. Huang, and Q. Zhang.
Wearables can afford: Light-weight indoor positioning
with visible light. In Proc. ACM MobiSys, pages
317–330, 2015.

[41] M. Youssef and A. Agrawala. Handling samples
correlation in the Horus system. In Proc. IEEE
INFOCOM, pages 1023–1031, 2004.

[42] M. Youssef and A. Agrawala. The Horus location
determination system. Wireless Networks,
14(3):357–374, 2008.

[43] D. Zhou and T.-H. Lai. A compatible and scalable
clock synchronization protocol in IEEE 802.11 ad hoc
networks. In Proc. ICPP, pages 295–302, 2005.

238




