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Abstract—Fusing mutual distance information with fingerprints can substantially improve indoor localization accuracy. Such distance

information may be spatial (e.g., measurement among users or from installed beaconing devices) or temporal (e.g., via

dead-reckoning). Previous approaches on distance-fusion often require deterministic distance measurement, consider fingerprints and

distances separately, or are narrowly applicable to some specific sensing technology or scenario. Given the fact that fingerprint and

distance measurements are intrinsically random, we proposeMaxlifd, an accurate indoor localization framework fusing fingerprints

and distances of arbitrary distributions via joint maximum likelihood. Maxlifd is a generic statistical/probabilistic framework applicable

to a wide range of sensors (peer-assisted, INS, iBeacon, etc.) and fingerprints (Wi-Fi, RFID, etc.). It achieves low localization errors by

a novel optimization formulation jointly considering mutual distances and fingerprint signals. Using generic probabilistic formulation, we

further derive the lower bound on localization error for comprehensive performance analysis. We have implemented Maxlifd, and

conducted extensive simulation and experimental trials in an international airport and our university campus. Our results show that

Maxlifd achieves significantly lower errors than other state-of-the-art schemes (often by more than 30 percent). We experimentally

verify that its performance does not depend sensitively on the exact knowledge of the underlying distributions beyond simple Gaussian.

Index Terms—Indoor localization, fusion, joint maximum likelihood, convex optimization, semi-definite programming, noisy fingerprints,

mutual distances, measurement uncertainty

Ç

1 INTRODUCTION

INDOOR location-based service has attracted much atten-
tion in recent years due to its commercial potentials.

The quality of such service largely depends on the accuracy
of localization algorithm. Among all the explored techniques,
fingerprint-based approach emerges as a promising one.

Fingerprint-based indoor localization is usually con-
ducted in two phases [1]. In the offline (survey) phase, a site
survey is conducted to collect the vectors of received signal
strength indicator (RSSI) at known locations, the so-called
reference points (RPs). The vectors of these RSSIs form the
fingerprints of the site and are stored in a database. In the
online (query) phase, a user (also known as target) samples
an RSSI vector at his location and reports it to the server,
which estimates and returns the user location. (Another
possibility is to compute the location locally at mobiles,
if the fingerprints have been downloaded.)

Error in location estimation is inevitable. This is due to
random signal fluctuation in both offline and online meas-
urements. It has been observed that localization error can be
quite high (more than 10 m [1], [2], [3]) under large open

indoor environment such as malls, train stations or airports.
This is unsatisfactory for many applications. In order to sub-
stantially enhance accuracy, one may embed, or fuse, finger-
printing with mutual distance information.

Mutual distance information can be spatial, where the
target estimates the distance to other users or beaconing
devices in its neighborhood. This can be done using differ-
ent sensing techniques: Bluetooth [4], Wi-Fi direct [5],
sound [6], etc. While there have been impressive works on
using spatial distance for localization, they often assume
accurate distance measurements, resulting in rigid con-
straints over the fingerprints. These approaches cannot be
easily extended or applied to the more realistic scenarios
when distance estimation is random.

Besides spatial, the distance information can also be tem-
poral, where the target estimates its displacement over time
(e.g., by the step counter or inertial navigation system (INS)
provided in one’s mobile phone). Previous approaches (like
particle filter [3], [7] or Hidden Markov Model [8], [9])
in this setting often treat Wi-Fi fingerprints and pedestrian
distance measurements as separate, and hence sequentially
consider them. This consideration of independence may be
hardly satisfactory for accurate localization, as measured
fingerprints and distances are inherently correlated (cou-
pled) and better jointly optimized. Given noisy/random sen-
sor measurement, prior works may not fully address the
issue of large positioning error.

Due to signal fluctuations, wireless fingerprint is inher-
ently noisy, and estimated distance is random. In this paper,
we proposeMaxlifd, a novelmaximum likelihood framework
fusing noisywireless fingerprints and randommutual distan-
ces to achieve highly accurate indoor localization. Maxlifd
jointly considers fingerprints and distances, both of arbitrary
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distributions. After formulating the location estimation in a
joint likelihood problem, Maxlifd solves it using novel semide-
finite programming (SDP), achieving excellent accuracy.

Unlike previous works, Maxlifd is a generic statistical or
probabilistic framework applicable to a wide range of sens-
ing techniques and scenarios. As a framework, it enables
indoor localization combining both spatial and temporal
mobile sensing independent of how distance is measured.
For example, a target may employ opportunistic peer-to-
peer spatial distances in a crowded region. For an unpopu-
lated area, it may switch to dead reckoning (INS) for distance
measurement. Meanwhile, the target may also estimate its
distances to some fixed beaconing devices (if any).

Based on the joint maximum likelihood framework of Max-
lifd, we have derived the lower bound on the localization
error using Cram�er Rao Lower Bound (CRLB) [10]. Such deri-
vation enables us to understand the impact of various system
parameters over the localization error, and sheds insights on
the system design. For example, we show that increasing the
number of collaborative users in peer-assisted localization or
deploying more iBeacons beyond a certain point would not
significantly improve the localization accuracy. We also
show effects of other factors like signal noise and distance
misestimation over the localization error.

We show in Fig. 1 the overall architecture of Maxlifd
based on wireless fingerprints. The fingerprint database is
initialized by a site survey, storing the couplets < location,
RSSI vector> for each RP. In addition to the RSSI vectors, a
target measures the mutual distances (spatial or temporal)
and reports them to the localization server. Based on that,
the server constructs an SDP-based convex-optimization
framework and solves a joint maximum likelihood problem.
It then returns the absolute location result to the target.

Maxlifd is applicable to any wireless fingerprint. Though
most of our discussion in this paper is on Wi-Fi fingerprints
(due to its ease of deployment without extra infrastructure
beyond the existing one) for prototype studies, Maxlifd is
general enough to be extended to many other existing or
emerging fingerprint signals [11], such as RFID and channel
state information (CSI), to achieve higher accuracy.

The contributions of our paper are as follows:

� We present a novel and general joint maximum-
likelihood-based framework to fuse fingerprints
and distances of arbitrary distributions. Beyond
the previous fusion systems, Maxlifd generalizes
variant distance sensing scenarios, laying a more

comprehensive foundation for theoretical and exper-
imental performance analysis.

� We formulate a novel SDP-based optimization prob-
lem to fuse fingerprints and distances for indoor
location estimation. Using the novel localization
framework, we conduct extensive CRLB analysis on
the lower bound of localization error;

� We have implemented Maxlifd based onWi-Fi finger-
prints on Android platforms. We have performed
large-scale simulation, and conducted testbed experi-
ments in Hong Kong International Airport (HKIA)
and our university campus. Using the commonly
available indoor sensors of dead reckoning, peer-
assisted and beacon-based measurement, we show
that Maxlifd achieves much higher accuracy than
other state-of-the-art approaches. Furthermore, the
performance does not depend sensitively on the exact
knowledge of signal or distance distribution, and
Gaussian distributionmay be applied for simplicity.

The rest of this paper is organized as follows. After
reviewing related work in Section 2, we present in Section 2
the framework of Maxlifd based on noisy fingerprint and
random distance estimation, followed by an SDP-based
localization formulation for the example of Gaussian distri-
bution in Section 4. Given the formulation, we present in
Section 5 the CRLB of Maxlifd for Gaussian measurement.
Illustrative results based on experimental trials and further
simulation studies are discussed in Sections 6 and 7, respec-
tively. We discuss some important implementation issues in
Section 8, and conclude in Section 9.

2 RELATED WORK

Fingerprinting techniques [12], pioneered by Radar [1],
have been widely studied in recent years. The work by
Horus [13] estimates the target location using a probabilistic
model, which reflects the signal distribution in the site. Ker-
nel method [14], [15] and compressive sensing [16] have
been implemented for fingerprint-based indoor localization.
The techniques above solely address Wi-Fi fingerprint
issues. We study here fusing distance information with fin-
gerprinting to achieve much better accuracy. Fingerprints
provide coarse location information, while mutual relative
distances help fine-grain the final results. Furthermore, most
recent works only analyze the statistical performance of tra-
ditional Wi-Fi fingerprinting localization [17] or distance-
based sensor network positioning [18], [19], [20], while fus-
ing noisy fingerprints with variants of statistical sensor dis-
tance measurements into a single but generic probabilistic
formulationwith error bound analysis, has not been compre-
hensively studied before. Filling such a gap would help the
following researchers and practictioners to better under-
stand, interpret and design such fusion systems.

Combining dead reckoning with RF signals has been
discussed in some literature. Some of the works, like particle
filter, treat multiple temporal Wi-Fi estimations as indepen-
dent, and have not jointly considered their estimation errors
for better localization [3]. Some works [21] require extensive
motion, trajectory and map information for sophisticated
classification model training. Some others treat the outputs
from dead reckoning and Wi-Fi fingerprints sequentially
through particle filter [3], [7] or Markov model [8], [22]
rather than jointly, at the cost of lessened useful informa-
tion. Maxlifd, on the other hand, formulates the localization

Fig. 1. System architecture of Maxlifd.
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problem as a single joint convex-optimization problem given
distribution of temporal walking distance. This formulation
greatly reduces the impact of measurement noise and
achieves much higher accuracy.

Our study here is orthogonal to simultaneous localization
andmapping (SLAM). InWiFi-SLAMalgorithm [23], the state
space is modeled by a Gaussian Process (Latent Variable)
model. Different from WiFi-SLAM, our Maxlifd considers
fusion of fingerprints and distances into one single probabilis-
tic framework, and solves it efficiently through semidefinite
programming. Furthermore, SLAM approaches are consid-
ered as orthogonal to our work, as Maxlifd considers a novel
sensor fusion given a basic floor and signal map. On the other
hand, SLAM-based approaches, such asUnLoc [24], can serve
as an initial provider of indoormap and fingerprint signals.

There has been some work making use of Wi-Fi direct [5]
and high-pitch sound [6], [25] to measure spatial distances
between devices and improve localization. Some consider
using a rigid graph [5] constructed through rotation and
translation [6], while others consider using Bayesian
approach to infer the device location [25]. Assuming static
devices in office environment, Centaur [25] utilizes the
sound to estimate device positions. In contrast, Maxlifd
jointly considers distance uncertainty and fingerprint noise,
and formulates the joint maximum likelihood problem to
estimate the target location. Maxlifd is a much more versa-
tile and generic framework accommodating measurement
noises and different application scenarios.

Some beacon-based techniques, pioneered by iBeacon,
have recently been proposed for site monitoring and indoor
localization [26], [27]. The work in [26] studies the advantages
of using iBeacons for indoor localization. The work in [27]
investigates the performance of iBeacon fingerprinting. We
propose here a new joint optimization framework combining
both wireless fingerprints and different emerging beacon
techniques (say, iBeacons, AoA [28], [29], ToA [30], Wi-Fi
sniffers, sound anchors [31], etc.). Our prototyping with iBea-
con has further shown that such formulation achieves much
higher accuracywith general applicability.

Based on our deployment practice, we consider spacious
and commercial application scenarios (like airport or shop-
ping mall) where acts of adding many new anchor nodes or
modifying existing WLAN APs belonging to many different
parties of the site are more or less regulated. Thus, we lever-
age the fingerprint-based technique (where low-cost finger-
prints can be collected via crowdsourcing [32]), and beyond
this we further embrace any extra information of distances.
Specifically, coarse but pervasive fingerprints anchor the
rough location of the user, while variant accurate ranging
information (e.g., pedometer, phone-to-phone ranging or
beacon) is encountered opportunistically to constrain or
refine the estimation.

In our joint optimization, we consider the mutual Euclid-
ean distance and have a quadratic objective function. To
reduce the computation complexity from the quadratic
form, we apply semi-definite relaxation [33] to relax the dis-
tances. Semi-definite programing has been applied in wire-
less communication [34] and sensor networks [33]. In this
paper, we implement SDP to fuse the noisy fingerprints and
distance distributions for indoor localization. Note that,
unlike multidimensional scaling (MDS) and spectral graph
drawing (SGD) [35], Maxlifd formulation considers finger-
print matching with distances, and relies less on high sensor

connectivity [36], [37]. Hence Maxlifd is more applicable to
complex signal measurements in indoor localization.

A preliminary version of this work, Wi-Dist, has been
reported in [38], which estimates location by fusing finger-
prints and distance bounds. In this paper, we advance from
Wi-Dist in several major ways: 1) Maxlifd jointly accounts
for the measurement noise in both fingerprints and distance
estimation, given any arbitrary distribution. As distance
bound is a special case of our formulation, Maxlifd is more
general; 2)Maxlifd uses jointmaximum likelihood to localize
the target, which is much more robust to signal noise and
hence more accurate; 3) We reformulate Maxlifd through
SDP relaxation, and solve it efficiently; 4) We further analyze
the lower bound of localization error based on CRLB; (5) We
conductmore simulation and experimental studies.

3 PRELIMINARIES & STATISTICAL FRAMEWORK

In this section, we show the preliminaries and statistical
framework on howMaxlifd estimates user locations. For con-
creteness, our discussion is in the context of Wi-Fi fingerprint
signal (extension to other signals is clear and straightforward).
We first present the preliminaries of Maxlifd in Section 3.1.
Then in Section 3.2, we present the statistical or probabilistic
framework of Maxlifd. Table 1 shows some of the important
symbols used in our formulation.

3.1 Preliminaries of Fingerprint-Based Localization
In the offline phase, a site survey is conducted with a total of
Q RPs. Let rq be the 2-D position of RP q, and R be a 2�Q
matrix indicating the RP positions, i.e.,

R ¼ ½r1; r2; . . . ; rQ�: (1)

Let L be the index set of the Wi-Fi access points (APs) that
cover the site, i.e., L ¼ f1; . . . ; Lg.

At each RP, time samples of Wi-Fi RSSI readings are col-
lected. Due to the random nature of radio signal, multiple

TABLE 1
Major Symbols in the Maxlifd Formulation

Notations Definitions

M, V Number of spatial/temporal targets and
their index set

Q Number of reference points (RPs) in
fingerprint databasebxm Estimated 2-D coordinate of targetm

X M � 2matrix of all target locations
Y M �M matrix for transformation in SDP
rq 2-D coordinate of reference point (RP) q
R 2�Q coordinate matrix of RPs
vmq Weight of RP q to estimate targetm
W M �Qmatrix of weights at RPs
LLm Index set of targets to be estimated in V

with distance measurements from targetm
Vm Set of distances (spatial or temporal) from targetm
L Number of Wi-Fi APs in the site of interest
Cq RSSI vector received at RP q
�cl
q Average RSSI of AP l at RP q (dBm)

sl
q RSSI standard deviation of AP l at RP q (dB)

Fm RSSI vector received at targetm
fl
m RSSI of AP l at targetm (dBm)

dmn Distance measurement between targetm and n (m)
Imn Indicator on existence of dmn betweenm and n
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samples are collected in order to reduce the uncertainty in
the signal measurements.

Denote the RSSI at RP q from AP l at time t as
fcl

qðtÞ; t ¼ 1; . . . ; Sl
q; S

l
q > 1g, with Sl

q being the total number
of samples collected. Denote the average RSS readings from
AP l, l 2 L, at RP q as �cl

q, and the unbiased estimate of the
variance of the RSS time samples for AP l at RP q as ðsl

qÞ2.
Then for each RP, the unbiased estimates for the mean RSSI
and its corresponding standard deviation at RP q are

�cl
q ¼

1

Sl
q

XSlq
t¼1

cl
qðtÞ

0@ 1A; sl
q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Sl
q � 1

XSlq
t¼1

cl
qðtÞ � �cl

q

� �20@ 1A
vuuut :

(2)

Then the Wi-Fi RSSI vector at rq is

Cq ¼ �c1
q ;
�c2
q ; . . . ;

�cL
q

h i
; q 2 f1; 2; . . . ; Qg; (3)

where, by definition, �cl
q ¼ 0 if AP l is not detected at RP q.

In the online phase, let V be the set consisting of the
indexes of theM target nodes (or simply targets) to be local-
ized in the site, i.e., V ¼ f1; 2; . . . ;Mg, and each of their 2-D
locations to be estimated is denoted as bxm;m 2 V. Note that
these targets to be estimated can be either spatial or tempo-
ral. Let X be an M � 2 matrix of locations of all these points,
i.e.,

X ¼ ½bx1;bx2; . . . ;bxM �T : (4)

For each of the targets (spatial or temporal), let fl
m be the

RSSI value at target location bxm for Wi-Fi AP l, l 2 L. Similar
to the RP RSSI vector, we define the target m’s sampled
RSSI vector as

Fm ¼ f1
m;f

2
m; . . . ;f

L
m

� �
;m 2 V; (5)

where, by definition, fl
m ¼ 0 if AP l is not detected at target

m. Given a target m, let Lm be the set of its neighbors that
have distance measurement with. Let dmn be the distance
(spatial or temporal) between targets bxm and bxn for any
m;n 2 V, i.e.,

kbxm � bxnk2 ¼ d2mn; 8n 2 Lm; n 6¼ m: (6)

As the measurements of mutual distances often contain
noise, we may evaluate the difference (or relationship)
between kbxm � bxnk2 and dmn according to a certain distribu-
tion. Then we obtain the likelihood of dmn given bxm and bxn,
denoted as pðdmnjxm; xnÞ. pðdmnjxm; xnÞ can be given by a cer-
tain distribution formulation. Note that for the temporal
pedestrian localization, dmn exists if m and n are two conse-
cutive targets (i.e., walking distance between two successive
Wi-Fi RSSI measurements). For spatial scenarios, we con-
sider dmn exists if two devices (sensors) are within a certain
detection range.

Based on statistical analysis of distance (spatial or tempo-
ral), we can obtain the standard deviation of the distance
measurement, i.e., smn to generalize the inherent uncer-
tainty. Therefore, for each target m, we store the corre-
sponding standard deviation in its distance measurement
as Vm ¼ fsmng; 8n 2 Lm.

To summarize, given the M targets (temporal or spatial)
to be localized in V, each of them contains the following

information in the Maxlifd problem:

Pm , fm;bxm;Fm;Lm;Vmg; m 2 V: (7)

3.2 Statistical Localization Framework
The RP positions R are used to estimate the locations of the
targets. Similar to traditional weighted average estimation
in K-NN [1], [2], let vmq be the weight assigned to RP q to
locate targetm, so that

bxm ¼
XQ
q¼1

vmqrq; m 2 V; (8)

where the weights vmq; 8m, satisfyXQ
q¼1

vmq ¼ 1; vmq � 0; 8q 2 f1; 2; . . . ; Qg: (9)

Note that in reality the target may not always be located
within the convex hull due to the random indoor layout
(say, corner at a corridor). This issue can be addressed by
augmenting map constraints such that the finally returned
locations fall within the accessible area. Let W be an M �Q
matrix of vmq, rq 2 R, i.e.,

W ¼
v11 . . . v1Q

..

. . .
. ..

.

vM1 . . . vMQ

264
375: (10)

Then the positions of all the targets in V givenW are

X ¼ WRT : (11)

Given the above, we present in the following the general
localization framework for Maxlifd problem. Denote the
index set of APs received by target m as Lm, i.e., f

l
m 6¼ 0 if

l 2 Lm. Let pðfl
mjrqÞ be the likelihood that signal fl

m appears
at RP q. Then the joint likelihood (considered as indepen-
dent [13]) that FFm appears at RP q is

pðFFmjrqÞ ¼
Yl2Lm
l¼1

pðfl
mjrqÞ: (12)

Note that we only consider the uncorrelated APs in Maxlifd,
while the virtual or correlated APs and those tethered by
mobiles can be easily removed via existing MAC address fil-
tering [39] or correlation computation [16].

In practice, each target (temporal or spatial) may detect
different number of APs. Therefore, for each target m,
pðFFmjrqÞ is normalized, i.e.,

pðFFmjrqÞ0 ¼ pðFFmjrqÞPQ
q¼1 pðFFmjrqÞ

: (13)

In summary, the probability of each target estimated
in the survey region of Q RPs is defined as the mixture of
likelihood (joint probabilistic distribution), i.e.,

pðFFmÞ ¼
XQ
q¼1

vmqpðFFmjrqÞ0: (14)

When estimating target m based on above mixture of likeli-
hood, the RPs with higher potential to be target position,
i.e., with larger pðFFmjrqÞ0, tend to get larger weight vmq in
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order to maximize pðFFmÞ, whose intuition is inspired by the
spirits of Gaussian mixture model (GMM) and expectation
maximization (EM) [40].

For ease of distance formulation, we denote Imn ¼ 1 if
dmn exists, and Imn ¼ 0 vice versa. Based on Equations (6)
and (14), we formulate in Maxlifd a joint maximum likeli-
hood problem for localization. Specifically, we are to find a
matrixW for theM targets (temporal or spatial) such that

argmax
W

YM
m¼1

pðFFmÞ
YM
m¼1

YM
n¼1

Imnpðdmnjxm; xnÞ;

subject to: Constraints (8), (9), (10) and (11):

(15)

In other words, we are to find the weights of RPs in order to
find the target locations which jointly maximize the likeli-
hood of signals and mutual distances. The RPs which satisfy
above objective get high weights in final estimation.

4 AN EXAMPLE: LOCATION ESTIMATION WITH

GAUSSIAN FINGERPRINT & DISTANCE

Given the above statistical framework, we consider here the
special case that both signals and mutual distances are
Gaussian distributed (Section 4.1). The objective function of
Maxlifd has quadratic elements (mutual distances), which
lead to high computation overhead. To reduce its hardness,
we further implement Semi-Definite Programming relaxa-
tion [41] to solve it (Section 4.2). Finally we discuss the
application scenarios and complexity analysis (Section 4.3).

4.1 Gaussian Distribution for Fingerprints &
Distances

In Section 3.2, the probability distribution, or likelihood, can
be calculated through several measures. The selection of
distribution forms or likelihood functions may depend on
the signal samples and experimental environments. Wire-
less fingerprint signals have been reported to follow Gauss-
ian distribution [13]. We further conduct extensive data
collection in HKUST campus to evaluate the distance
measurement randomness and error. 200 mutual distance
samples and walking distances are collected. As shown in
Figs. 2a and 2b, the pair-wise distance measurements
between smartphones and walking distances with step
counter may also follow the Gaussian (normal) distribu-
tion [4], [6], [42]. Note that other distributions (for example,
log-normal or exponential) may be considered in Maxlifd,
while here we use Gaussian distribution for illustration and
prototyping.

In the derivation of this section, for concreteness and ease
of prototyping, we derive the maximum likelihood based on

Gaussian distribution. Therefore, in this section, for model
derivation and prototyping, we consider Gaussian distribu-
tion within the wireless signal noise and distance measure-

ment, i.e., fl
q � Nð�fl

q; ðsl
qÞ2Þ and kxm � xnk2 � Nðdmn; ðsdÞ2Þ.

Note that our work is also general enough to be applied in
various distributions or statistical measures, including log-
normal distribution, histogram-based [13] or kernel-based [14]
methods.

Specifically, when comparing the signal vectors at RP q
with target signals FFm, we first compute the probability dis-
tribution of signal value fl

m at RP q, i.e.,

pðfl
mjrqÞ ¼

1ffiffiffiffiffiffi
2p

p
sl
q

exp �
fl
m � cl

q

� �2
2ðsl

qÞ2

0B@
1CA: (16)

By definition, if AP l 2 Lm is not detected at RP q, pðfl
mjrqÞ is

assigned with a nonzero value pmin (in our evaluation,
pmin ¼ 0:01). Device heterogeneity in RSSI can be further
addressed through existing approaches like offset calibra-
tion by crowdsourcing [7] or online RSSI offset learning [15].
For example, we can conduct regression over the RSSIs
crowdsourced by many users to find the offset [15], [43].

Then the likelihood that estimated locations xm and xn
match the measured distance dmn is given by

pðdmnjxm; xnÞ ¼ 1ffiffiffiffiffiffi
2p

p
sd

exp � dmn � kbxm � bxnk2ð Þ2
2ðsdÞ2

 !
; (17)

where sd represents the uncertainty of mutual distance mea-
surement. By definition, if there is no distance measurement
between m and n, pðdmnjxm; xnÞ ¼ 0. The joint probability
distribution of the distance matching is then given by

pðddÞ ¼
YM
m¼1

YM
n¼1

Imnpðdmnjxm; xnÞ; (18)

where indicator Imn ¼ 1 if dmn exists, and 0 otherwise.
Using Equations (18) and (14), we present in the following

the objective function forMaxlifd. Let fFFmg and fdmng be the
set of RSSI vectors and mutual distances. To measure the
matching of all targets (spatial or temporal) with the stored
signal map and measured distances, we find the weights in
W which maximize the joint likelihood [40], denoted as
L fFFmg; fdmngjWð Þ, as the following distribution format [44]:

L fFFmg; fdmngjWð Þ ¼
YM
m¼1

pðFFmÞ
 !

pðddÞ

¼
YM
m¼1

XQ
q¼1

vmqpðFFmjrqÞ0
 ! !YM

m¼1

YM
n¼1

Imnpðdmnjxm; xnÞ:

(19)

By taking logarithm on both sides, we get rid of the exponen-
tial terms in Equation (17), and transform Equation (19) into
a joint maximum likelihood formulation, i.e., the log likelihood

logL fFFmg; fdmngjWð Þ ¼
XM
m¼1

log
XQ
q¼1

vmqpðFFmjrqÞ
 !

�
XM
m¼1

XM
n¼1

Imn kxm � xnk2 � dmnð Þ2
2s2

d

� const:

(20)

Fig. 2. CDF and normal fit of (a) sound-based distance measurement
(5 m between smartphones). (b) Walking distance obtained from
pedometer (4 m walking distance).
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Note that the logarithm function is convex and therefore our
objective function logL fFFmg; fdmngjWð Þ is convex, which
can be solved through the convex optimization. In our opti-
mization, we can simply leave out the constant term, which
is const ¼PM

m¼1

PM
n¼1 Imn log

ffiffiffiffiffiffi
2p

p
sd.

Our objective function finally becomes

argmax
W

logL fFFmg; fdmngjWð Þ; (21)

which jointly considers the probability of detected signals
and the physical distance constraints.

4.2 Semidefinite Programming (SDP)
To relax the quadratic objective, we describe as follows solv-
ing the optimization using SDP. Note that SDP approach in
Maxlifd can be applied to other probability distributions by
simply replacing the probability distribution in fingerprint
RSSI (Equation (16)) and distance (Equation (17)).

Let emn be an M � 1 column vector where the mth ele-
ment is 1 and nth element is �1. The physical distance
between nodem and n can be therefore represented as

d2mn ¼ eTmnXX
Temn; ½dmn; d̂mn� 2 Vm: (22)

Denote anM �M matrix Y for internal transformation, i.e.,

Y ¼ XXT : (23)

Finally, the distance constraint can be rewritten as

eTmnYemn ¼ d2mn: (24)

Based on the transformation of Equation (24), we can
rewrite Formulation (15) into

Objective: Equation (21),

subject to: Constraints (9), (11), (23) and (24):
(25)

Given a symmetric matrix A, let A � 0 represent that A is
a positive semidefinite matrix [41], [45]. We can then relax
this problem into a convex one by replacing the nonconvex
equality constraint, Y� XXT ¼ 0 in Constraint (23), with a
convex positive semi-definite constraint, i.e.,

Y� XXT � 0: (26)

Constraint (26) is a nonlinear constraint, which can be fur-
ther transformed into linear matrix inequality (LMI) [39].
Through LMI, the quadratic elements within the objective
function can be relaxed. Then it can be solved efficiently by
a convex optimization solver [41], [45]. The extent of the
relaxation can be controlled through the solver. The trans-
formation is through a Schur complement:

Definition 1. Let H be a matrix partitioned in four blocks, con-
sisting of four matrices B;E;C andD, i.e.,

H ¼ B E
C D

� �
; (27)

where B and D are symmetric and nonsingular. The Schur
complement ofD inH, denoted as S, is defined as

S ¼ B� ED�1C: (28)

If S � 0, then H � 0 [41]. Let I2 be a 2� 2 identity matrix.
Thus, by using Schur complement, we can rewrite Con-
straint (26) as a matrix form for LMI, i.e.,

Y X
XT I2

� �
� 0: (29)

Formulation (25) is finally transformed into an SDP prob-
lem [41]

Objective: Equation ð21Þ;
subject to Constraints (9), (11), (23), (24) and (29):

(30)

4.3 Localization Applications & Complexity
Analysis

The formulation above can be directly applied in peer-
assisted localization. For dead-reckoning based localization
using inertial navigation system, we may take m as the time
stamp (M becomes the number of temporal targets). In
fusion with dead reckoning, the device also collects the
Wi-Fi RSSI vectors as the user walks. Then using the nota-
tion in Equation (7), the index m represents the time stamp
during walking. Each target location bxm now corresponds to
a temporal measurement of a single target. The most recent
M temporal targets and M � 1 distances between them
form a sliding window in time domain, and the estimation of
theMth target is returned as the current position. Given edmn

at time m from its predecessor, LLm ¼ ½m� 1�. Based on
Equation (7), a Wi-Fi temporal target Pm is defined as

Pm , fm;bxm;Fm; ½m� 1�;Vmg: (31)

Each temporal target m has distance from its predecessor,
m� 1, and by definition the first target in the sliding win-
dow has no distance and predecessor. For beacon-assisted
localization, we may let M ¼ 1, and a target measures dis-
tances from those neighboring beacons with known loca-
tions. In practical deployment, at a time only one of above
applications is triggered opportunistically given corre-
sponding spatial or temporal distance measurements.

We end by analyzing the computational complexity of
the solution. Given Q RPs and L APs, signal likelihood cal-
culation takes OðQLÞ. Given M temporal or spatial target
measurements (usuallyM is small), the computation of SDP
relaxation is bounded by OðM3Q3Þ [46]. Some commercial
SDP solver can solve this problem efficiently [41]. Further
computational reduction can be achieved by AP filtering
and RP cluster mapping [16]. Specifically, unimportant APs
can be first filtered before signal likelihood calculation, and
the target can be first mapped to a small area (namely RP
cluster) before final Maxlifd calculation [16].

5 CRLB FOR LOCALIZATION ERROR

This section presents the Cram�er-Rao lower bound (CRLB) of
theMaxlifd problem discussed in Section 4.1. CRLB has been
widely used to evaluate the fundamental hardness of an esti-
mation problem [17], [47]. Here we utilize CRLB to evaluate
the localization error bound of Maxlifd, showing the optimality
of the formulated problem. Specifically, in Section 5.1, pre-
liminary of CRLB is first introduced. Then, the CRLB ofMax-
lifd for Gaussian distribution is derived in Section 5.2.

5.1 CRLB Preliminary
CRLB sets a lower limit for the covariance of the unbiased esti-
mates of the unknown parameters [17]. In our formulation,
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the location coordinates of the targets (temporal or spatial),
denoted as uu ¼ ½x1; y1; x2; y2; . . . ; xM; yM �T , are the corre-
sponding parameters of the estimator. Each target corre-
sponds to a 2-D location, i.e., xm ¼ ðxm; ymÞT . Let s2

xa
be the

variance of coordinate xa, and sxayb be the covariance between
coordinate xa and yb. Therefore, the covariance matrix of all
the targets should be a 2M � 2M matrix, i.e.,

CovðuuÞ ¼

s2
x1

sx1y1 . . . sx1xM sx1yM

sy1x1 s2
y1

. . . sy1xM sy1yM

..

. ..
. . .

. ..
. ..

.

sxMx1 sxMy1 . . . s2
xM

sxMyM

syMx1 syMy1 . . . syMxM s2
yM

26666664

37777775: (32)

Here the diagonal elements in Equation (32) represent the
mean squared errors, and the off-diagonal elements are the
covariances between the coordinates of theM targets.

The observation in our formulation, denoted as Q,
consists of the received signal strength from APs and the
measured pairwise distances between targets, i.e., Q ¼
f11;f12; . . . ;f1L; . . . ;fML; d12; . . . ; d1M; . . . ; dMðM�1Þ
� �

. Let
fuuðQÞ be the joint probability density function of the obser-
vations Q conditioned on uu. Fisher information matrix (FIM),
denoted as JðuuÞ (a 2M � 2M matrix), is given by

JðuuÞ ¼ �E
@2 log fuu Qð Þ

@uu2

� �
: (33)

CRLB is the inverse of FIM and the covariance of the esti-
mated locations (Equation (32)) is bounded as

CovðuuÞ � fJðuuÞg�1: (34)

Let JmðuuÞ be the corresponding square block in FIM for tar-
get m, Jxm;xn

be the element at the ð2m� 1Þth row and

ð2n� 1Þth column of FIM JðuuÞ (odd row/column), and Jym;yn

be that at the 2mth row and 2nth column (even row/

column). Then the mean squared error of each target m,

denoted as varðûumÞ, is then bounded by its local geometric

relationship fJmðuuÞg�1 [10], [18], i.e., varðûumÞ or
E uum � �uumð ÞT uum � �uumð Þ
� �

� fJmðuuÞg�1

¼ Jxm;xm
Jxm;ym

Jym;xm
Jym;ym

" #�1

¼ 1

jJmðuuÞj
Jym;ym

�Jxm;ym

�Jym;xm
Jxm;xm

" #
;

(35)

where jJmðuuÞj ¼ Jxm;xm
Jym;ym

� Jxm;ym
Jym;xm

.

5.2 CRLB for Gaussian Signal Measurement
In the following, we derive the CRLB of Maxlifd under
Gaussian distributed signal measurements.

We first derive the joint probability density function
fuuðQÞ. Based on the formulation in Equation (21) of Section
4.1, we can formulate the measured signal strength between
targetm andAP l as

fml ¼ Pl � 10g0 log dml

d0

	 

þ Xml; (36)

where g0 ¼ g
log 10 is introduced for later derivation, and

Xml � Nð0; s2
mlÞ. Similarly, we formulate the probability

density function of estimated distance between m and n as
normal distribution, i.e.,

dmn � N kxm � xnk2; s2
mn

� �
: (37)

Given above, let �fml ¼ Pl � 10g0 log ðdml
d0
Þ, and �dmn ¼

kxm � xnk2. The objective in Section 4 jointly maximizes the
likelihood of wireless signals and mutual distances. Thus
for ease of analysis in CRLB, we equivalently transform the
objective function in Equation (21) [10], [17], and the joint
probability density function fuuðQÞ is then given by

fuuðQÞ ¼
YM
m¼1

YL
l¼1

1ffiffiffiffiffiffi
2p

p
sml

exp �ðfml � �fmlÞ2
2s2

ml

 ! !

�
YM
m¼1

YM
n¼1

1ffiffiffiffiffiffi
2p

p
smn

exp �ðdmn � �dmnÞ2
2s2

mn

 ! !
;

(38)

which is equivalent to the joint maximum likelihood formu-
lation presented in Equation (20).

Therefore, the first derivatives of the objective function in
Equation (38), are given by

@ log fuuðQÞ
@xm

¼
XL
l¼1

1

s2
mn

fml � �fmlð Þ @
�fml

@xm

þ
XM�1

n¼1

1

s2
mn

dmn � �dmnð Þ @
�dmn

@xm
;

(39)

@ log fuuðQÞ
@ym

¼
XL
l¼1

1

s2
mn

fml � �fmlð Þ @
�fml

@ym

þ
XM�1

n¼1

1

s2
mn

dmn � �dmnð Þ @
�dmn

@ym
;

(40)

where the partial derivatives with respect to coordinate xm

or ym are given by

@�fml

@xm
¼ � 10g0d0

d2ml

ðxm � xlÞ; @�fml

@ym
¼ � 10g0d0

d2ml

ðym � ylÞ;

@�dmn

@xm
¼ xm � xn

dmn
;

@�dmn

@ym
¼ ym � yn

dmn
:

(41)

Considering aml 2 ½0; 2pÞ as the relative angle that target
mmakes with respect to AP l, and bmn 2 ½0; 2pÞ ðbnm ¼ 2p�
bmnÞ as that the target m makes w.r.t. target n. Therefore,
we have

cosaml ¼ xm � xl

dml
; sinaml ¼ ym � yl

dml
;

cos bmn ¼ xm � xn

dmn
; sinbmn ¼ ym � yn

dmn
:

(42)

Given above elements, we calculate expectation of the sec-
ond derivatives in Equation (33) [10], [20], and find the
entries within the FIM JðuuÞ, which are given as follows:
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Jxm;xm
¼ �E

@2 log fuuðQÞ
@x2

m

� �
¼
XL
l¼1

1

s2
ml

10g0d0
d2ml

	 
2

ðxm � xlÞ2 þ
XM�1

n¼1

1

s2
mn

ðxm � xnÞ2
d2mn

¼
XL
l¼1

10g0d0ð Þ2
s2
ml

cosamlð Þ2
d2ml

þ
XM�1

n¼1

ð cos bmnÞ2
s2
mn

;

(43)

Jym;ym
¼ �E

@2 log fuuðQÞ
@y2m

� �
¼
XL
l¼1

1

s2
ml

10g0d0
d2ml

	 
2

ðym � ylÞ2 þ
XM�1

n¼1

1

s2
mn

ðym � ynÞ2
d2mn

¼
XL
l¼1

10g0d0ð Þ2
s2
ml

sinamlð Þ2
d2ml

þ
XM�1

n¼1

ð sin bmnÞ2
s2
mn

;

(44)

Jxm;ym
¼ Jym;xm

¼ �E
@2 log fuuðQÞ
@xm@ym

� �
¼
XL
l¼1

1

s2
ml

10g0d0
d2ml

	 
2

ðxm � xlÞðym � ylÞ

þ
XM�1

n¼1

1

s2
mn

ðxm � xnÞðym � ynÞ
d2mn

¼
XL
l¼1

10g0d0ð Þ2
s2
ml

sin 2aml

2d2ml

þ
XM�1

n¼1

sin 2bmn

2s2
mn

;

(45)

and

Jxm;xn
¼ Jxn;xm ¼ Jym;yn

¼ Jyn;ym ¼ 1

s2
mn

; (46)

and

Jxm;yn
¼ �E

@2 log fuuðQÞ
@xm@yn

� �
¼ 1

s2
mn

ðxm � xnÞðym � ynÞ
d2mn

¼ 1

s2
mn

sin 2bmn

2
; (47)

while Jxn;ym ¼ Jxm;yn
¼ Jym;xn

¼ Jyn;xm . To summarize, with

Equation (35) and the above components, we can obtain the

corresponding lower bound for estimation variance (mean

squared errors) of each involved targetm in Maxlifd.

6 EXPERIMENTAL EVALUATION

We have developed Maxlifd on Android platforms based
on Wi-Fi fingerprints, and conducted extensive experi-
ments. In this section, we first discuss the experimental
settings and performance metrics in Section 6.1. Then we
present illustrative experimental results for dead reckon-
ing fusion (fusing with inertial navigation system, or
INS), peer-assisted (PA, i.e., fusing with mutual distan-
ces of peers) and beacon-assisted (BC, i.e., fusing Wi-Fi
with sensor beacons) localization in Sections 6.1. Though
practically only one distance type is likely operating at a
time, our framework is general enough to include all the
distance information mentioned.

6.1 Experimental Settings & Performance Metrics
We compare Maxlifd with the following typical and state-
of-the-art localization schemes in our experiment:

1) Fingerprint-based localization (FL) [1], [2], which evalu-
ates the Euclidean distance of target RSSI vector with
each RP fingerprint, and finds interpolation of the top
k nearest neighbors for location estimation (k ¼ 15).

2) Sequential Monte Carlo (SMC) localization [3], [7], the
state-of-the-art fusion algorithm based on Sequential
Monte Carlo method (particle filter) using INS data
and Wi-Fi fingerprinting (FL). Via the propagation
along the temporal walking path, the particles move
from one location to the next. With map constraints,
the spatial distribution of these particles is corrected
and resampled. The final estimation is based on the
weighted average of particle locations.

3) Hidden Markov Model (HMM) localization [8], [9],
which fuses INS with Wi-Fi fingerprints (FL), and
conducts location positioning based on a traditional
probabilistic framework, hidden Markov models.

4) Localization with Social Interaction (SocialLoc) [4], which
fixes the Wi-Fi fingerprint-based location estimations
(FL) via Bluetooth-based interaction of users (encoun-
ter/nonencounter information).

5) Graph-based & fingerprint localization scheme (GB +
FL) [6], which uses graph construction and Wi-Fi fin-
gerprinting (similar to FL) for peer-assisted localiza-
tion. With the pairwise spatial distances of peer
targets, GB+FL constructs the rigid graph consisting
of all targets [5], [48]. Then GP+FL searches against
the Wi-Fi signal map and finds a set of fingerprints
to minimize the objective function S

M
m¼1kFm �Cqk2

via graph rotation and translation [6].
6) MMSE [49]: For indoor beacon-based positioning

scenarios, we compare the performance of Maxlifd
with minimum mean squared error (MMSE) algo-
rithm [49], which has been applied in many existing
iBeacon-based systems. 3 iBeacons with the strongest
RSSIs are used for MMSE.

Corresponding state-of-arts are compared in each applica-
tion scenario. Specifically, in experimental comparison of
dead reckoning fusion (INS), we compare Maxlifd with SMC
and HMM. In peer-assisted (PA) application, we compare
Maxlifd with Social-Loc and GB+FL. In beacon-based locali-
zation (BC), we compare Maxlifd withMMSE. Note that FL is
compared in all scenarios as the base comparisonwithout sen-
sor fusion. In iBeacon-based localization scenario (BC), we
implement FL using Bluetooth fingerprints [26].

Let xm be targetm’s true location and bxm be the estimated
location. The performance metrics used are the mean locali-
zation error (unit:m) of the estimated target in set V:
ME ¼ P

m2V kxm � bxmk2� �
=jVj.

We evaluate Maxlifd in the Hong Kong International Air-
port (HKIA) boarding area and HKUST campus atrium. In
the airport, we collect overall 1; 400 RPs in 8,000m2 area. On
the campus we collect 394 RPs in 5,000 m2 area. Figs. 3a
and 3b show the corresponding floor plans of HKIA and
HKUST campus. Note that the black triangles in the map
correspond to the deployed iBeacons. In the HKIA and the
HKUST campus, at each RP we take overall 80 Wi-Fi RSSI
vectors using HTC One X+ (total 5 are used).

A quarter of these samples are collected when we are fac-
ing north, south, west and east, respectively. Note that the
target signals are collected at least one month after the fin-
gerprinting. For all the application scenarios, unless other-
wise stated we use the following parameters as baseline: 5
m survey grid size (i.e., width between two neighboring
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RPs, which represents the density); 1 Wi-Fi RSSI sample
(which takes around 1 second for sampling on our Android
platform) is used for each target; no Wi-Fi AP reduction is
conducted over the target RSSI vectors. Note that HTC One
X takes around 1 second to scan one Wi-Fi RSSI vector as
the OS needs to scan all possible channels (2.4 and 5 GHz).
Bluetooth fingerprinting is conducted in the same process
as the Wi-Fi fingerprinting.

Note that the ranging test is conducted in the noisy envi-
ronment (including campus and airport). The sound rang-
ing is working at different frequencies from the audible
sound, which is overall robust against the environmental
dynamics [6], [50].

The signal studies are illustrated as follows. In Fig. 4, we
show the CDF of detected AP number at each target and RSSI
standard deviation (STD) at RPs (Equation (2)) in HKUST and
HKIA. Though in HKIA the number of detected APs at each
RP is larger, most of their detected signals are weak (less than
�80 dBm). As a larger spectrum of signal variation is observed
in HKIA, we expect a larger localization error there. Prepro-
cessing of AP importance, virtual and correlated AP filter has
been conducted here, and the implementation details are simi-
lar to [14], [37]. Note that we conduct the experiment during
working hours with crowds nearby (each collection takes
around 6 hours). The sites where we conduct experiments are
with marked RSSI noise and low fingerprint differentiation,
leading to accuracy degrade of state-of-the-art algorithms.

In fusing with dead reckoning (INS), sliding window size
M ¼ 7 for Maxlifd, and the influence of different M’s is also
evaluated in the experiment. 200 particles are used in the par-
ticle filter (SMC). A step counter at the smartphone measures
user steps and temporal distances. Each step detection is
based on the periodic changes in the gravity direction of accel-
erometer [7]. The walking traces range from 8 to 15 meters.
We label the ground truth based on the landmarks nearby
(say, the door, hall gate or a pillar). Based on the number of
steps, the distance travelled, or motion offset, can be esti-
mated by multiplying the average stride length of the target
(which is related to walking frequency as in [42]). Step length
calibration can be referred toworks like [21] or [51] for related
approaches.

For some areas visited by many users, peer-assisted locali-
zation may be used [6]. Peer ranging can be based on either
RSS-distance mapping or sound ranging. Wi-Fi direct is not
considered as it may cause extra overhead and interference to
ongoing Wi-Fi transmission. Time synchronization between
transceivers makes obtaining accurate distance information
from Wi-Fi direct difficult. Sound-based distance estimation
is easier for time synchronization and implementation. For
ease of prototyping, in the experiment we implement and test
smartphone-based sound ranging like [6] under quiet and
noisy campus environment. The mean peer ranging errors
under these two conditions are 0.8 m and 2 m respectively.
Since the distance constraint between two peers is asymmetric

due to measurement uncertainty, we use their average value
of the measurements as mean in Gaussian likelihood estima-
tion. By default, 5 targets (users) are involved in sound-based
distance measurement. We do not exclude the cases when
walls may partition some of the peers during localization
(with none-line-of-sight orNLoSmeasurements).

In beacon-assisted localization (BC), we implementMaxlifd
upon Bluetooth iBeacons (Fig. 3) with TI CC2540. Besides
Wi-Fi fingerprinting, we also measure the distance between
the beacon and the target based on the path loss model. The
calibration of the iBeacons on RSSI-distancemodel and hetero-
geneous devices can be achieved through online learning [15]
and crowdsourcing-basedmethods [7]. To furthermitigate the
signal noise, we empirically implement a mean filter over a
sliding window of three consecutive RSSI samples. After that,
a distance estimation result is returned to Maxlifd. Further
importance differentiation of spatial distances in both PA and
BC applications is outside the scope of Maxlifd and interested
readersmay refer to establishedprior arts like [6].

6.2 Illustrative Experimental Results
We evaluate the fusion with dead reckoning (INS) as follows.
Fig. 5 shows the cumulative probability of localization errors
in the HKIA. We can observe at least 30 percent error reduc-
tion using Maxlifd compared with other state-of-the-arts. As
the sensor readings are jointly considered in one single formu-
lation,Maxlifdmitigates the influence inwalking distance and
hence achievesmuch lower errors than SMC andHMM. Fig. 6
shows the computation time using SMC, HMM and Maxlifd
running on a PC with i7 3610QM. We may observe slightly
higher computation in Maxlifd than traditional HMM, while
Maxlifd achieves better efficiency than the particle filter in
SMC. Traditional SMC often suffers from computation under
large number of particles in order to locate the target.

Fig. 7 shows theME of Maxlifd (INS) againstM, the num-
ber of Wi-Fi temporal target measurements (size of sliding
window) in HKIA. We can see that the accuracy improves as
we utilize more temporal samples, as joint consideration of
more periods further constrains the location estimations.
When we further increase the number of measurements, the
localization accuracy gradually converges, indicating that
given distances already provide sufficient constraints. Thus,
to balance between localization accuracy and computational
complexity we choose several temporal measurements (like
7 in our experiment) inMaxlifd (INS).

Fig. 8 plots the real-time localization error for Maxlifd
(INS), HMM and SMC in HKIA. The estimation error fluctu-
ates as the user walks in the airport. Changes in wall

Fig. 3. (a) Boarding area at HKIA. (b) HKUST campus atrium (black
triangles: locations of iBeacons).

Fig. 4. (a) CDF of detected AP number at each target and (b) CDF of
RSSI STD (dB) at RPs in two sites.
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partitions, crowded people, user walking direction and
smartphone holding gesture introduce measurement noise
in Wi-Fi and INS signals. SMC sequentially considers the
fingerprints and INS measurements. It does not jointly con-
sider the Wi-Fi fingerprints and the distances from the
multiple time periods. Therefore, large error in location esti-
mation happens. In contrast, Maxlifd constrains its estima-
tions through the single optimization over the joint
maximum likelihood. Therefore, Maxlifd can achieve lower
localization errors and smaller estimation fluctuation.

Further evaluation of Maxlifd in peer-assisted and
beacon-based localization (BC) is presented as follows.
Fig. 9 shows the mean localization errors versus different
survey grid size. As grid size increases, the localization
accuracy decreases, while a diminishing return is observed
we use 5 m as the grid size. Fig. 10 shows the mean localiza-
tion errors against the proportion of APs removed at targets
in HKIA. We randomly remove some received APs of each
target to evaluate the influence of AP reduction due to wall
partitioning or crowds of people. We can see that peer-
assisted localization systems marginally rely on the number
of received APs. It is because the Wi-Fi samples at multiple
users reduce the effect of sparse AP deployment. To the con-
trary, FL relies on the APs to differentiate the RPs and there-
fore its estimation error increases as more APs are pruned.

Compared with GB+FL and SocialLoc, Maxlifd uses joint
optimization of fingerprints and distances which reduces
noise influence and suffers less from AP loss.

We show the CDF of location errors for different algo-
rithms at two sites as follows. Figs. 11 and 12 show the loca-
tion error CDF ofMaxlifd at different scenarios (PA and BC at
baseline parameters) in HKIA. Large indoor open space often
leads to high uncertainty in Wi-Fi signals [2] and hence the
disperse nearest neighbors in signal space. Furthermore, the
temporal and spatial distance measurement also contains
large signal noise under the crowded scenarios. Therefore,
we expect the signals collected (Wi-Fi and mutual distance
measurements) contains strong NLoS elements. Compared
with other state-of-the-art algorithms, Maxlifd significantly
reduces the errors often by around 30 percent in the noisy
environment of HKIA. With distance constraints and joint
optimization, Maxlifd mitigates the influence of dispersed
nearest neighbors in locationmapping.

Compared with HKIA, the campus atrium in HKUST is
smaller in size with more building partitions, which may
influence the peer-distance measurement accuracy. We show
the accuracy ofMaxlifd (INS, PA and BC) on HKUST campus
in Figs. 13, 14 and 15, respectively. Maxlifd achieves much
higher localization accuracy (often about 30 percent error

Fig. 5. Cumulative distribution function (CDF) of localization errors (INS)
in HKIA.

Fig. 6. CDF of running time in fusing with INS (HKIA).

Fig. 7.ME versus number of Wi-Fi temporal targets (HKIA).

Fig. 8. Real-time position errors versus time in HKIA (INS).

Fig. 9.ME versus survey grid size (HKIA).

Fig. 10.ME versus reduced ratio of detected APs in HKIA.
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reduction) than the other state-of-the-art algorithms. To sum-
marize, for PA scenarios, several users (say, 4 to 5) collectmul-
tiple fingerprints and more mutual distances, which is likely
to provide more constraints than a single user (INS). Simi-
larly, for BC scenarios, given knowledge of detected beacon
locations, the user is also unlikely to be mapped to distant
locations. In both cases, the tail of localization error is hence
shorter than that in the single-user case. As the results in
HKUST are qualitatively similar to those in HKIA, for brevity
we do not repeat other experimental results here.

7 SIMULATION EVALUATION

Many environmental parameters are not re-configurable or
tunable for a complete experimental studies. Tomore compre-
hensively evaluateMaxlifd in large-scale environments under
different factors (for example, signal noise, distribution, AP
number and survey grid size are limited in the experiment),
we simulate a site in the Hong Kong International Airport
(HKIA). In this section, we first discuss the simulation setup
in Section 7.1. Then we present the illustrative results in dead
reckoning fusion (INS), peer-assisted and beacon-assisted
localization (BC) in Sections 7.2, 7.3 and 7.4, respectively.

7.1 Simulation Setup
We simulate the Wi-Fi RSSI following the work in [49]. In
the signal model, the RSSI f (dBm) from Wi-Fi AP at a dis-
tanceD can be simulated as

f ¼ fTX � L0 � 10g log10
D

D0

	 

þ �; (48)

where measurement noise is distributed as � � Nð0; s2
dbÞ.

Unless otherwise stated, we use the following settings in
our baseline parameters: the transmission power fTX ¼ 25
dBm; the path loss exponent g ¼ 4:0; reference path loss
L0 ¼ 37:7 dB; reference distance D0 ¼ 1 m; 215 m � 40 m
survey site with 5 m grid size; Wi-Fi signal noise
sdB ¼ 6 dB; 10 APs are uniformly distributed in the survey

area; a target takes a Wi-Fi sample every 2 seconds during
walking.

We also evaluate the CRLB on location errors of Maxlifd
given these simulation environment factors. As a result, we
evaluate the root mean square error (RMSE) in order to
compare with CRLB of Maxlifd, i.e.,

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jVj
X
m2V

kxm � bxmk22
s

; (49)

which is the root of mean square error. We also evaluate the
mean localization error (ME) in our simulation.

We also compare our Maxlifd with the state-of-the-art
algorithms discussed in Section 6.1. We also evaluate the
performance difference between Maxlifd and Wi-Dist in
some simulations. Detailed settings for each of localization
scenarios (INS, PA and BC) are presented as follows.

In INS cases, by default 7 most recent Wi-Fi temporal tar-
gets (records) are used. The step count error rate is distrib-
uted as Nð0; s2

rÞ, where sr ¼ 25%, and the stride length

error follows N 0; s2
l

� �
, where sl ¼ 0:2 m. Additional walk-

ing displacement error is assumed to follow Nð0; s2
wÞ,

where sw ¼ 3:5 m. Each user starts walking towards a ran-
domly selected destination point in the site. Based on the
random waypoint model, once the user reaches the final

Fig. 11. CDF of localization errors (PA) in HKIA.

Fig. 12. CDF of localization errors (BC) in HKIA.

Fig. 13. CDF of localization errors (INS) in HKUST.

Fig. 14. CDF of localization errors (PA) in HKUST.

Fig. 15. CDF of localization errors (BC) in HKUST.
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location, he or she stops for some random time and starts
walking again to another randomly selected destination [4].

In peer-assisted localization, we consider by default
noisy mutual distance error �m � Nð0; s2

mÞ, sm = 3.5 m; 90
users are randomly distributed in the survey site. If two
users are within a certain neighborhood detection range
(15 m in our simulation), a pairwise link is constructed and
a distance constraint is posed upon them. Given Wi-Fi sig-
nals collected at each target, by default four peer users
together conduct a peer-assisted localization, and further
evaluation over peer number is also conducted. k is also set
as 15 for FL, SocialLoc and GB+FL.

In the beacon-based localization (BC), we utilize the log-
distance path loss model for iBeacon RSSI-distance measure-
ment. The basic approach is to measure the distance based
on path loss signal model. In such application, M ¼ 1 in
Equation (7). For a single target, the corresponding distance
dn from beacon n, given detected RSSI fn, can hence be repre-
sented as dn ¼ d010

Pl�fnð Þ=g . Given a normally distributed fn,
the measured distance dn follows a log-normal distribu-
tion [49]. Hence in Equations (20) and (38), we replace the
normal distribution, with the logarithm of themutual distan-
ces in the final formulation (note that linear signal model [15]
may be also applied, and the distance measurement may be
modeled as normally distributed). CRLB derivation for the
BC case is similar to that using Gaussian distribution, and for
brevity we do not repeat here. In our simulation, by default a
target can detect an iBeacon if their distance is within 12 m;
80 beacons are deployed.

7.2 Fusing with Dead Reckoning
Fig. 16 plots the RMSE versus the signal variation in Wi-Fi
fingerprint (sdb in Equation (48)). We can observe that the
accuracy of SMC and HMM degrades when sdB increases. It
is because larger signal noisemakes it more difficult to differ-
entiate the fingerprints. For CRLB, the fingerprint signal
noise sml (coming from sdB in Equation (48)) decreases the
diagonal elements, Jxm;xm

and Jym;ym
, hence increasing the

inverse of the FIM. CRLB for Maxlifd estimation enlarges.
Besides, the difference betweenMaxlifd and CRLB decreases
as the noise increases. It is because under small fingerprint
noise, the distance errors become the dominant source of
final localization errors. As sdB further increases, the finger-
print noise becomes dominant in CRLB. Different from SMC
andHMM,Maxlifd considers signal uncertainty through the
joint maximum likelihood. By jointly maximizing the overall
likelihood in signal measurement and mutual distances,
Maxlifd reduces the effect of disperse nearest neighbors in
signal space and obtains better estimation results.

Fig. 17 shows the RMSE against the step count errors.
Clearly, the accuracy of SMC, HMM and Maxlifd degrades
with larger step count error. SMC locates the user based on
the particle filter and HMM considers conditional indepen-
dence. They have not jointly combined fingerprints and step
count information into one formulation. From CRLB, we can
observe that the measurement errors smn in Equations (43)
and (44) decrease as distance noise increases, leading to
increase of fJðuuÞg�1. Therefore, the CRLB increases with the
step count errors. When step count accuracy degrades, the
displacement error increases and the particles become spa-
tially sparse, making it difficult for SMC to converge to the
correct location. Similarly, HMM considers conditional inde-
pendence without joint consideration of measurements, and
information loss in sensor fusion happens. Therefore, we
observe higher errors in their performance.

To the contrary, Wi-Dist and Maxlifd both localize the tar-
get more accurately because the joint consideration of Wi-Fi
fingerprints and distances of multiple periods (temporal tar-
gets) reduces the influence of measurement uncertainty.
ComparedwithWi-Dist, Maxlifd constructs a joint maximum
likelihood formulation, which is more general and robust to
signal noise than using bounds. Under large distance errors,
such a flexible formulation reduces the misestimation if the
bounds do not properly cover the correct location.

Fig. 18 shows the RMSE against the walking displace-
ment errors. We can see that as the displacement error
increases, the overall location accuracy decreases. Similarly,
from CRLB we can observe that the measurement errors
smn within temporal distances in Equations (43) and (44)
decrease as distance noise increases, leading to the increase
of fJðuuÞg�1. Therefore, the CRLB increases as the step count
error becomes larger. Localization error in SMC increases
because the particles converge slowly given large distance
errors and noisy Wi-Fi fingerprints. Unlike SMC, Maxlifd
achieves more accurate results as it utilizes the joint maxi-
mum likelihood instead of actual distance measurement. By
maximizing the joint likelihood in fingerprints and mutual
distances, Maxlifd is more robust to distance uncertainty.
As Maxlifd also outperforms Wi-Dist for fusion estimation
accuracy and robustness, in the following we focus on com-
paring Maxlifd with other state-of-the-art algorithms.

7.3 Peer-Assisted Fusion
Fig. 19 shows the RMSE versus the number of users.
Clearly, more peer assistance provides more distance con-
straints over the involved users and improves the localiza-
tion accuracy. For CRLB, more peer assistance increases the
diagonal elements in FIM JðuuÞ. As more users participate in
the localization, we can observe that CRLB decreases,
and better localization accuracy is expected. Compared

Fig. 16. RMSE versus Wi-Fi signal noise (INS). Fig. 17. INS RMSE versus step counts error rate.
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with GB+FL, Maxlifd shows less dependency on the user
connectivity. It is because Maxlifd considers the measure-
ment uncertainty in the optimization and jointly constrains
all the users. Therefore, it does not have to involve many
users to achieve high localization accuracy. SocialLoc consid-
ers dynamic encounters and nonencounters among users,
and hence is not sensitive to user number. Maxlifd jointly
optimizes the target estimations and achieves better results
than SocialLoc. Accuracy gain from number of involved
users for Maxlifd becomes smaller as more users participate
in location estimation. It is mainly because interaction
between distant users contributes for all users in each loca-
tion estimation, which is also reflected from a stabler CRLB.

Fig. 20 shows the RMSE against peer distance errors.
We assume a zero-mean Gaussian noise is added to the
mutual distance measurement. When the distance error is
small, all algorithms achieve high accuracy given only
Wi-Fi fingerprint noise. As distance error further increases,
all algorithms suffer from lower accuracy. GB+FL constructs
a rigid graph to constrain relative positions of different
users. The graph shape deforms under large distance mea-
surement errors and lead to misestimation. SocialLoc con-
siders independently over the pairwise distance constraints
between users who encounter. Without joint consideration,
their accuracy still degrades with large signal noise. Max-
lifd, in contrast, leverages a more flexible probabilistic local-
ization based on fingerprints and distance likelihood.
Without assuming a rigid graph, Maxlifd can achieve more
robust localization estimation. For CRLB, as more distance
noises, smn, are introduced to the Fisher information matrix,
the diagonal elements in the FIM become smaller, leading
to higher CRLB. Therefore, we can observe the increase
within the lower bound of estimation errors.

Fig. 21 showsME versus site survey grid size. As the grid
size increases, all algorithms degrade in accuracy. FL
degrades due to ambiguity of fingerprints under large grid
size. Without joint consideration of distances and finger-
prints, GB+FL and Social-Loc cannot achieve high accuracy
with low site survey density. Different from above schemes,

Maxlifd jointly considers both the distance and fingerprint
uncertainty and relies less on fingerprint density. Hence
Maxlifd can achieve better localization accuracy. Fig. 21 also
shows saturation in accuracy improvement under small
grid size due to noise and measurement uncertainty.

7.4 Beacon-Assisted Fusion
In the simulation with iBeacon, we assume that when the tar-
get is within the range of the beacons, the target can detect
and measure the distances from them. Fig. 22 shows the
RMSE versus the iBeacon detection range. It shows the locali-
zation error decreases when the iBeacon detection range
increases. It is mainly because larger iBeacon coverage
increases the connectivity of each target, leading to more con-
straints over the final location estimation. Larger range intro-
duces more distance intersections and more constraints.
Therefore, the diagonal elements in JðuuÞ increase and CRLB
correspondingly decreases. Then the trend of decrease slows
down because each target point has obtained sufficient con-
straints. Similarly in CRLB, as more distance constraints are
included, the influence over final target estimation decreases.

Fig. 23 shows the RMSE versus the iBeacon deployment
density. It shows that the RMSE of both MMSE and Maxlifd
decreases proportionally with the iBeacon deployment den-
sity. Then the trend of decrease diminishes after a certain
number of beacons. However, dense deployment may intro-
duce large survey efforts, and thus in real application we
deploy beacons at area with sparser Wi-Fi coverage. When
the density of iBeacon increases, the connectivity for each
target increases. The diagonal elements of JðuuÞ also increase,
leading to a lower CRLB in location estimation.

Fig. 24 shows the ME under different probability dis-
tributions in fingerprints and distances for Maxlifd (BC).
We consider a uniform signal noise (i.e., � � Uð�sdb; sdbÞ
in Equation (48)), and the log-normal signal noise (i.e.,
F � logNðFTX � L0 � 10g log10ðDD0Þ; s2

dbÞ) exists within the
Wi-Fi RSSIs, respectively (similar forms are applied in the
mutual distance measurements). We compare Maxlifd

Fig. 18. INS RMSE versus additional walking displacement errors.

Fig. 19. RMSE versus peer user number (PA).

Fig. 20. RMSE versus peer distance errors (PA).

Fig. 21.ME versus site survey grid size (PA).
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under the corresponding distribution formulations and that
considering Gaussian distribution (see Section 4). From the
marginal sacrifice of accuracy and estimation fluctuation,
we can see Maxlifd does not depend sensitively on knowing
exactly the underlying signal or distance distribution, where
the simple Gaussian representation suffices to offer reason-
able accuracy. In practice, the calculation in probability dis-
tribution is also similar (the overall computation is bounded
by the optimization process), and the small difference in
positioning error indicates that the influence over the opti-
mality is also marginal.

8 DISCUSSION

We further discuss some important deployment issues
related to Maxlifd as follows.

� Reducing fingerprinting cost: How to learn and reduce
the fingerprints has been an important topic for
indoor localization. Various mechanisms have been
proposed recently, including crowdsourcing/boot-
strapping [32] and signal map reconstruction [52], in
order to get rid of detailed, costly and labor-intensive
survey. Given context of ubiquitous crowdsourcing
and appropriate preprocessing [53], fingerprints can
be collected or updated at much lower expenses [54].
Despite our focus here in locating target given sensor
fusion, these studies can be integrated with Maxlifd
to further reduce deployment costs, achieving more
ubiquitous localization.

� Adapting to power adjustment and environmental change:
Signal dynamics due to power adjustment [52]
and environmental alternation [55] have attracted
research attention recently. Maxlifd is evaluated in
practical environments of strong signal dynamics
(including power alteration and multi-path effects),
and shown to outperform other schemes due to its

joint optimization. To make Maxlifd more robust,
one may further integrate altered AP detection/fil-
tering [51], and adapts the fingerprint map to the
spatial-temporal dynamics [32], [55]. Interested read-
ers may refer to these works, and for brevity we do
not explore deeper here.

� Enhancing ranging performance: None-line-of-sight
(NLoS) ranging may affect the mutual distance con-
straints. Take the sound-ranging as an example.
Inside narrow and NLoS environment (like small
rooms), the accuracy of PA may be compromised
due to imperfection of their ranging models. We
may adopt some effective schemes (see [56]) to
detect strong multi-path effect within the sound
reflection, thus foreseeing potential degradation in
sound ranging accuracy. As a general framework,
Maxlifd may also switch to other more applicable
sensors (say, inertial pedometer) to conduct fusion-
based localization.

9 CONCLUSION

We have proposed Maxlifd, a novel joint maximum likeli-
hood framework fusing wireless fingerprints with mutual
distances for indoor localization. The mutual distances
can be temporal or spatial (as obtained from dead reckon-
ing, beacon-based, peer-assisted manner, etc.). Due to
random signal fluctuation, both fingerprints and distance
measurements are noisy in nature. Given the probability
distributions in distances and fingerprints, Maxlifd for-
mulates a single semi-definite programming problem,
fusing the noisy fingerprints with uncertain distance mea-
surement to localize the target based on the joint likeli-
hood maximization. Maxlifd is generic, and hence is
applicable to a wide range of sensing devices and wire-
less fingerprint signals.

We have implemented Maxlifd using INS (temporal),
peer-assisted and beacon-assisted distance measurement
(spatial), validating its accuracy and robustness. We have
also evaluated its CRLB of localization errors, which pro-
vides theoretical insights for deployment.

Fig. 22. RMSE versus iBeacon detection range (BC).

Fig. 23. RMSE versus iBeacon deployment density (BC).

Fig. 24. ME and error standard deviations of Maxlifd (BC) under different
distributions: (1)Wi-Fi RSSI distribution and (2)mutual distance distribution.
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