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Elevator, Escalator, or Neither? Classifying Conveyor
State Using Smartphone Under Arbitrary
Pedestrian Behavior

Tianlang He ", Zhiqiu Xia

Abstract—Knowing a pedestrian’s conveyor state of “‘elevator,”
‘“‘escalator,” or “neither” is fundamental to many applications such
as indoor navigation and people flow management. Previous studies
on classifying the conveyor state often rely on specially designed
body-worn sensors or make strong assumptions on pedestrian
behaviors, which greatly strangles their deployability. To overcome
this, we study the classification problem under arbitrary pedestrian
behaviors using the inertial navigation system (INS) of the com-
monly available smartphones (including accelerometer, gyroscope,
and magnetometer). This problem is challenging, because the INS
signals of the conveyor states are entangled by the arbitrary and
diverse pedestrian behaviors. We propose ELESON, a novel and
lightweight deep-learning approach that uses phone INS to classify
a pedestrian to elevator, escalator, or neither. Using causal decom-
position and adversarial learning, ELESON extracts the motion
and magnetic features of conveyor state independent of pedestrian
behavior, based on which it estimates the state confidence by means
of an evidential classifier. We curate a large and diverse dataset
with 36,420 instances of pedestrians randomly taking elevators
and escalators under arbitrary unknown behaviors. Our exten-
sive experiments show that ELESON is robust against pedestrian
behavior, achieving a high accuracy of over 0.9 in F1 score, strong
confidence discriminability of 0.81 in AUROC (Area Under the
Receiver Operating Characteristics), and low computational and
memory requirements fit for common smartphone deployment.

Index Terms—Conveyor state classification, smartphone, user
behavior, IMU, magnetic field, causal representation learning,
evidential model.

I. INTRODUCTION

NOWING whether a pedestrian is taking an elevator,
K escalator, or neither is fundamental to many smart city
applications. For example, in indoor navigation, such informa-
tion enhances localization accuracy owing to better detection of
floor transition [1], [2], [3], [4]. Such knowledge also plays an
important role in understanding pedestrian flow and conveyor
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preference in a venue, shedding insights on user journey, people
management measures, and conveyor capacity planning [5], [6],
[7]. However, previous studies on the subjects often employ
specially designed body-worn sensors or make strong assump-
tions on pedestrian behavior, which greatly limits their wide
applicability [8], [9], [10], [11].

To overcome this, we study classifying a pedestrian into one of
the three conveyor states of “elevator,” “escalator,” and “neither”
without any behavior assumption, using the inertial naviga-
tion system (INS) commonly available from the off-the-shelf
smartphone nowadays. Specifically, we use the multimodal INS
readings from the accelerator (namely acceleration), gyroscope
(namely angular velocity), and magnetometer (namely magnetic
field) to classify the states.!Note that we primarily focus on the
conveyor states of elevator and escalator in indoor environments;
readers interested in transportation modes (such as bus and flight
travels) may refer to [14], [15], [16] and the references therein.

Conveyor state classification is challenging, because the mea-
sured INS readings are the mixture, or entanglement, of signals
due to the two independent processes of conveyor state and
arbitrary pedestrian behavior. In other words, the underlying
process of conveyor state is continuously perturbed by various
random and diverse behaviors of pedestrians, including, but not
limited to, their spatial movements (such as walking, turning,
and accommodating), phone carriage (whether held in hand,
stored in pocket, or placed in bag), and various actions (such
browsing, swinging, and shaking). These behaviors complicate
and perturb the brittle conveyor signals, thereby obscuring the
classification decision on conveyor states.

Much effort has been made on using the smartphone INS
to classify behaviors regarding human gesture recognition, gait
detection, and action recognition [17], [18],[19], [20]. While im-
pressive, their research problems are orthogonal to ours because
a pedestrian’s conveyor state is determined by the conveyor
rather than his/her behaviors.2 Moreover, these works treat the
INS signal as a unit or aggregate in both the training and
inference processes. If such a methodology is straightforwardly
applied to our case, the accuracy would be unsatisfactory due to

"'We forgo barometer due to its relatively lower phone penetration and greater
device heterogeneity, leaving it for future study [12], [13].

2For example, while people could browse phones on elevators, the browsing
behavior cannot be used to define the “elevator” state.
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Fig. 1. System overview of ELESON.

the perturbation caused by pedestrian behaviors (as confirmed
in our extensive experimental results). Although the general
approaches on classification robustness have been applied to INS
processing, once extended to our problem, they require precise
labels of behaviors during training [21], [22], [23], [24], [25].
This is difficult to implement because exhaustively labeling the
plethora of all the possible conceivable behaviors is prohibitively
costly, next to impossible. Therefore, classifying the conveyor
state under arbitrary pedestrian behaviors remains an open and
challenging problem.

We propose ELESON, a novel and lightweight deep-learning
approach to classify a pedestrian of arbitrary behaviors to
elevator, escalator, or neither using the multimodal INS read-
ings from smartphone. We overview ELESON in Fig. 1, which
consists of three major modules:

1) Causal feature extractor to segregate the conveyor motion
from pedestrian behaviors: The motion signals in terms of
acceleration and angular velocity capture the movement of
elevators and escalators. However, as mentioned before,
the motion feature is entangled with pedestrian behaviors.
Employing causal decomposition, we propose a causal
feature extractor which segregates in deep feature space
the motions of moving elevators and escalators, resulting
in the causal feature. We design a novel loss function
so that such causal feature is extracted independent of
pedestrian behaviors.

Magnetic feature extractor to extract conveyor magnetic
[feature robust against pedestrian behaviors: The magnetic
feature inside the metallic enclosed space of an elevator
is different from that of a semi-open escalator. However,
some pedestrian behaviors (such as shaking or rotating of
phone) often disrupt such magnetic feature. Using adver-
sarial learning, we propose a magnetic feature extractor
to capture the conveyor magnetic features robust against
these behaviors. Extracting features from the temporal
differential of the magnetic field signals, our extractor
achieves generalizability for the elevators and escalators
unseen in the training data.

Evidential state classifier to estimate the confidence of
each state based on the causal and magnetic features:
Applying evidence theory, we employ an evidential state
classifier to estimate the confidence of each conveyor state
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(between 0 and 1) given the causal and magnetic features.
The pedestrian is classified to the state with the highest
confidence (i.e., s* and ¢* in Fig. 1) if it is above a certain
threshold, or “undecided” (UD) otherwise. In contrast to
the conventional Softmax-based approaches, our classifier
estimates the state confidence that reflects the similarity of
the target INS signals with the training data, hence better
discriminating the misclassifications.

We curate a large and diverse dataset with 36,420 instances
from pedestrians randomly taking elevators and escalators with
arbitrary behaviors. We conduct extensive experiments on the
dataset, and show that ELESON achieves high accuracy of over
0.9 in F1 score with a strong confidence discriminability of
0.81 in AUROC (Area Under the Receiver Operating Charac-
teristics). As compared with the state-of-the-art classification
approaches (all treating the INS signals as a single unit), ELE-
SON outperforms significantly with 14% improvement in F1
score. We have also implemented ELESON on mobile phones
and demonstrated that it runs locally in real time with low
computational overhead, requiring only 9 MB of memory and
consuming less than 2% battery for a 2.5-hour operation.

The remainder of this paper is organized as follows. We
first review related work in Section II. Then, we present the
problem, the causal feature extractor, and magnetic feature
extractor in Section III. After that, we discuss the evidential state
classifier to estimate state confidence in Section IV. Finally, we
validate ELESON design with extensive experimental results in
Section V, and conclude in Section VI.

II. RELATED WORK

Previous studies on classifying the conveyor states often
employ specially designed body-worn INS sensors or have
specific strong assumptions on pedestrian behaviors [9], [11].
For example, works in [8], [9] study the classification using
foot-mounted sensors; works in [10], [11] are based on restricted
user behaviors. However, these restrictions could limit their wide
deployability. Recently, deep learning has shown powerful capa-
bilities in INS signal processing, effectively classifying various
pre-defined behaviors of phone users, including their actions,
gestures, and gaits [26], [27], [28], [29], [30], [31], [32], [33].
While impressive, these approaches for human behaviors cannot
be satisfactorily extended to the conveyor states of elevator and
escalator, because they consider the INS readings as a unit
instead of a mixed signal. In our problem, the fragile signals
of the underlying conveyor process are frequently perturbed by
various arbitrary pedestrian behaviors, which makes it challeng-
ing to classify the states robustly. Furthermore, although domain
generalization has been applied for robust INS classification,
once extended to our problem, it requires precise and exhaustive
labeling of pedestrian behaviors in the training process, which
is, if not impossible, prohibitively difficult and costly [21], [22],
[23], [24], [25], [34], [35], [36]. Therefore, we propose ELE-
SON, the first approach to address arbitrary pedestrian behaviors
for conveyor state classification using phone INS without any
need for behavior labeling.
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Much research work has considered evidential classification
for image classification, speech recognition, LiDAR/infrared
object detection, etc. [37], [38], [39], [40], [41]. Despite so,
the evidential model for INS sensing has rarely been studied.
In this paper, we use an evidential state classifier based on the
causal and magnetic features of conveyor states and present a
loss function for confidence estimation and sound classification.

III. CAUSAL AND MAGNETIC FEATURE EXTRACTION

In this section, we present the feature extraction of conveyor
states under arbitrary pedestrian behaviors. After defining the
problem in Section III-A, we discuss the causal feature extractor
based on the acceleration and angular velocity in Section III-B,
and the magnetic feature extractor based on magnetic field in
Section III-C.

A. Problem Definition

A phone-based inertial navigation system (INS) samples the
acceleration, angular velocity, and magnetic field in the three
dimensions at a fixed interval typically ranging from 1 to 20ms.
Given a sequence of the signals with 7" time steps from a pedes-
trian’s phone, or simply an INS signal, denoted as xz € R”T*?,
our overarching goal is to classify the conveyor state of the
pedestrian, denoted as s. Specifically, we define s as a categorical
variable that can take one of the three values representing the
states of “elevator,” “escalator,” or “neither.”

To achieve this goal, a common practice is training a deep
learning classifier that maps an INS signal to the conveyor state
given a labeled dataset denoted as D = {(z,,, §,,)}, where §,, is
the label of the nth signal, or simply conveyor state label. After
the training process, the classifier is considered ready for testing
in real-world scenarios. By doing so, the underlying assumption
is that the INS signals used for the training and testing are
independent and identically distributed (IID), expressed as

P(itest ‘ S) = P(xtrain l 3)7 (1)

where Xiesr and Zyq4p refer to the INS signals in testing and
training scenarios, respectively.

However, the IID assumption may be violated in conveyor
state classification due to the pedestrian behavior. Specifically,
the diverse and arbitrary behaviors of pedestrians often lead
to a discrepancy of INS signals in the training and testing,
which violates the IID assumption. Formally, under the impact
of the conveyor state and pedestrian behavior, the conditional
probability of obtaining an INS signal (x) is presented as

P(x|s,V,), 2)

where V), is the variable of pedestrian behavior, and we consider
its value drawn from an uncountable set.> Though in the same
conveyor state (s), itis hard to guarantee the pedestrian behaviors
(Vp) in testing to match those in training, thus leading to the
signal discrepancy, i.e., P(Ztest | 8) # P(Ztrain | $). Such a

3This is because the impact of pedestrian’s various behaviors on INS signal
(such as their spatial movements, phone carriage styles, actions, and user
heterogeneity) is difficult to precisely enumerate.
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discrepancy violates the IID assumption, which makes the deep
learning classifier unreliable.

To tackle the discrepancy, we apply a feature extraction mod-
ule before classification. The module aims to extract a conveyor
state feature, denoted as z, that is statistically independent of
pedestrian behavior, shown as

P(z]s,Vp,)=P(z|s). 3)

The signal discrepancy hence can be bridged by the extracted
features in that

P(Ztest | S) = P(Ztrain | 3)7 (4)

where 2.5t and 24,44y, are the conveyor state features extracted
from testing and training scenarios, respectively.

The module has two feature extractors, as shown in Fig. 1.
First, we divide an input INS signal into the motion signal (i.e.,
acceleration and angular velocity), denoted as z,,, € RT*6 and
magnetic field signal, denoted as x, € R7*3, shown as

T = [Tm, ], ©)

where [-, -] is the concatenation operation. Then, a causal feature
extractor captures a conveyor causal feature, denoted as z.., from
the motion signal, and a magnetic feature extractor captures a
conveyor magnetic feature, denoted as z3, from the magnetic
field signal. Finally, the two features are concatenated to be a
conveyor state feature, shown as

2= [ze, 2] 6)

After the feature extraction, we input the conveyor state feature
to the evidential state classifier to be discussed in Section IV.
Next, we present the two feature extractors in detail.

B. Causal Feature Extractor

1) Overview: When a pedestrian uses an elevator or esca-
lator, the motion signal on the pedestrian’s phone is mainly
affected by two independent processes: the conveyor transport
and pedestrian behavior. The conveyor affects the motion signal
due to the transportation process; meanwhile, the pedestrian’s
various behaviors, whether consciously or unconsciously, more
directly influence the phone movement, rotation, pose variation,
etc. As aresult, the motion signal reflects the mixture of the two
processes, and due to various random pedestrian behaviors, the
fragile signal of the conveyor transport is difficult to recognize,
as illustrated in Fig. 2.

We formulate the generation process of a motion signal under
conveyor state (s) and pedestrian behavior (V},) as a function,
denoted as G,,,, defined by

Gm (37 Vp7 Vu) = Tm, (N

where the variable V,, represents the minor unobserved factors
to ensure the rigor of the equation. As mentioned earlier, our
goal is to extract a feature of conveyor state that is independent
of the pedestrian behavior. However, we neither have the labels
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Fig. 3. Causal feature extractor segregates conveyor state from pedestrian
behavior based on causal decomposition, learned from a novel loss function.
The key idea of the loss function is to simulate an intervention operation in deep
feature space.

of pedestrian behavior (V) nor the expression of the inverse
function of the generation process (G, 1).*

To overcome this, our key idea is to build a deep learning
model to conduct a causal decomposition on motion signals.
Specifically, the model decomposes a motion signal into two
deep features that separately encode the conveyor state and
pedestrian behavior, such that the feature of conveyor state is
independent of pedestrian behavior. As illustrated in Fig. 3, we
use a causal feature extractor, denoted as fy, , to decompose
the motion signals (x,,) into a conveyor causal feature (z.) and
a pedestrian behavior feature, denoted as z,, expressed as

f9m (xm) = [ZCa Zp} , ®)

where the feature extractor is parameterized by 6,,. In the
model training, the causal feature extractor learns from a loss
function designed for extracting the causal feature of elevator
and escalator. In the implementation, the structure of the causal
feature extractor is empirically determined, consisting of a two-
layer ConvLSTM and two fully connected layers with ReLU as
the activation function. We assume that other temporal models
should also be suitable [42].

In the following, we discuss the causal feature of elevator
and escalator in Section I1I-B2, and present the loss function in
Section III-B3.

2) Causal Feature of Elevator and Escalator: The causal
feature of an object reflects the physical property of the object. To

4In other words, handcrafting reliable features of conveyor state under arbi-
trary pedestrian behaviors could be extremely difficult.
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name a classic example, temperature generally drops as altitude
goes up. Since the law of physics universally holds in most cases,
a causal feature is typically more reliable and independent of
confounding factors to reflect an object than a common statistical
feature [43].

In our problem, we identify that the signal pattern caused
by transportation is the causal feature of elevator and escalator.
To elucidate, as long as an elevator or escalator transports a
pedestrian (and his/her smartphone), it inevitably generates the
unique transport pattern on the motion signal. Conversely, the
transport pattern would not exist without such a transporting
process. Therefore, the transport pattern is the causal feature
of elevator and escalator. Furthermore, the pattern is naturally
independent of pedestrian behaviors, because it only depends on
the conveyor.

Fundamentally, the transport pattern needs to be extracted
from interventional experiment. The experiment contrasts pairs
of motion signals, between which the conveyor state is treated as
univariate, and other variables are strictly controlled. Formally,
each experimental signal, generated by G, (s, V,,, V,,), is paired
with a control signal, generated by G,,(do(s),V},’,V.,). To
ensure the conveyor state (s) as the univariate, we conduct an
intervention operation on s, denoted as do(s), which manipu-
lates the conveyor state to be the “neither” state, and strictly
control the other variables such that V,,’ = V,, and V,,/ = V,,.°
Given the above, the transport pattern, or the causal feature, can
be reflected by the difference between the two signals, shown as

Az = Gy (8, Vp, Vi) — Gy (do(s), V', V). (9)

The interventional experiment underlies the causal decompo-
sition upon the experimental signal, which is shown as

G (5,V,, Vi) = Ay + G (do(s), V), Vi) . (10)

This decomposition is causal because it captures the causal
feature of elevator and escalator. In particular, if the conveyor
state (s) is the “elevator” or “escalator” state, Ax,, reflects the
transport pattern due to the conveyor; if not, Az,,, would be a
zero vector, indicating the absence of a conveyor.

With sufficient signal pairs collected from the interventional
experiments (or simply interventional data), we can learn the
causal feature extractor based on (10). However, the interven-
tional data, by and large, are inconvenient to collect due to the
demanding univariate setting. In most cases, we only have the
experimental signal (or observational data) without the control
signal. Therefore, we present a loss function for learning the
causal decomposition based on observational data.

3) Loss Function: In the below, we simplify the conveyor
state as binary in notation, referring to s = 1 as either the
“elevator” or “escalator” state and s = 0 as the “neither” state.

As mentioned earlier, the goal of the causal feature extractor,
ie., fo,, (€m) = [2c, 2p), is to causally encode the experimental
signal, i.e., G, (s, Vp, V4,). Specifically, z. encodes the trans-
port pattern, i.e., Az,,, and z, encodes the control signal, i.e.,

5The application of the do-calculus follows [43], [44].
OThis is only for simplifying the equation expressions. The possible values of

»

the conveyor state are still the “elevator”, “escalator” and “neither”.
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G (do(s), V', V4,"). However, we do not have the control signal
and hence the transport pattern as ground truth. To tackle this, we
present three learning constraints to enforce the decomposition
of the causal feature extractor to comply with (10), based on
which we design a loss function.

First, if the decomposition is causal, it should not cause infor-
mation loss. In (10), the transport pattern and the control signal
can be used to reconstruct the experimental signal. Accordingly,
we design a loss function that enforces the decomposed features
to reconstruct the experimental signal, shown as

Lyec (ema eq) = Z MSE (geg (Zc + zp + U) s xm) .

TmeD

Y

In the loss function, MSE(-, ) calculates the mean squared error,
Zc + zp 1s the vector addition between the two deep feature
vectors, o is a Gaussian noise empirically used to model the V,
in(7),and gy, (-) is a signal generator parameterized by 6. In the
implementation, the signal generator has three fully connected
layers which are trained jointly with the causal feature extractor.

Second, if the decomposition is causal, an intervention opera-
tion should effectively remove the causal feature of the conveyor.
In the interventional experiment, we carry out an intervention
operation to remove the conveyor from the generation process
of the experimental signal, which results in the control signal.
To simulate this process in deep feature space, combining the
conveyor causal feature and pedestrian behavior feature should
be able to generate the experimental signal; also, when we
remove the conveyor causal feature, the pedestrian behavior
alone should generate the control signal. Rewriting this as a
constraint gives

9o, (e + 2p+0) =G (5,Vp, V),
90, (2p +0) = G (do(s), V), Vi),

recalling that gg_ (-) is the signal generator. Although the control
signal is unavailable, we know that it belongs to the “neither”
state. This allows us to give a loose constraint of (12): the
pedestrian behavior feature alone should generate the signal
whose distribution conforms to the “neither” state, which is
shown as

12)

90, (Zp) ~ D(ajm | §= 0)7

where D(z,,, | s = 0) represents the distribution of motion sig-
nal in “neither” state. Since the signal is generated from the
feature, we directly implement this constraint in deep feature
space, facilitated by a classifier denoted as ky, (-). The loss
function is shown as

2

Esim (em 5 ek) =
(Tn,8n)ED

+CE (kg (2p), 5 = 0)],

where CE(-) is the cross-entropy loss function, and recall that 3,,
is the conveyor state label. In the implementation, the classifier
has two fully connected layers which are trained jointly with the
causal feature extractor.

Third, if the decomposition is causal, the control signal should
have a larger variance than the transport pattern. In (10), the

13)

[CE (Ko, (2c + 2p), 8 = Sn)

(14)
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Fig. 4. Illustration of acceleration signal under elevator ascending.

control signal and the transport pattern are the results of causal
decomposition. Since the diverse pedestrian behavior only af-
fects the control signal and not the transport pattern, the variance
of the control signal should generally be larger than that of the
transport pattern. Formally, if the decomposition is causal, we
should have

Var [go, (2c)] < Var [gs, (2)] (15)
where Var[-] calculates the variance of a vector. This constraint
could be useful in learning the causal decomposition, as it
complements the loose constraint in (13). Similar to the im-
plementation in (14), we directly transform this constraint into
a loss function enforced in deep feature space. Specifically, we
reduce the variance of the causal feature, and the loss function
is presented as

Leon (em) - Z Z

s (xp,8n)€D,
S,=s

Var(zc | 5,). 16)

In summary, the loss function of the causal feature extractor

is given as

ECal = Esim + wlﬁrec + w2£con~ 17)
where w; and ws are the weights for tuning their relative
importance. In the implementation, we learn the causal feature
extractor using this loss function end-to-end.

Finally, we provide an analysis to interpret the causal feature
extractor. Fig. 4 shows an example of the acceleration process
of elevator ascending, where the process starts at the 2nd second
and ends at the 9th second. The raw acceleration signal is very
noisy because the pedestrian perturbs the signal in the process,
performing behaviors such as typing, shaking, and moving. This
makes the pattern of elevator transport very difficult to recognize.
In comparison, the signal generated from the causal feature
(aided by the signal generator in (11)) demonstrates the pattern
of elevator transport: it first enforces an ascending acceleration,
followed by a descending one to maintain a stable speed at the
end of the process. This provides an empirical understanding that
causal feature enhances the classification of conveyor states.

More rigorously, the causal feature extractor can be regarded
as the importance sampling on training data to reduce the bias
caused by pedestrian behaviors [45]. Applying Bayes’ theorem,
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the classification without the loss function can be written as
Pz | 5)P(s)
P (l’m)

- [ P61 vp>P1£f;;n | f’ng")

where the classification decision on the left-hand side depends
on the distribution of training data on the right-hand side. In other
words, the decision depends on not only the motion signal but
also the correlation between the conveyor state and pedestrian
behavior, i.e., P(s | V},). As mentioned earlier, the conveyor
states of pedestrians are largely independent of their behaviors
in practice; however, such independence is not guaranteed when
the training data are observational.” As a result, the classification
decisions are often biased due to the correlation in training data.
For example, the classifier may misinterpret the browsing action
as a feature of the “escalator” state when browsing frequently
coincides with escalators in training data, which may cause
errors when a pedestrian browses his/her phone outside an
escalator.

To address this, the proposed loss function enforces the con-
veyor state independent of pedestrian behavior in the training
process. This can be interpreted as the importance sampling
upon training data distribution. Specifically, the classification
decision, after the importance sampling, would only depend on
the motion signal, expressed as

P(s|ay) =

dVyp, (18)

Plan |5,1,)
P(s | zm) = [ wP(s|V,)—am 1% 2) gy
(1o = [wp(s | V) G nl
- [ Rl Pl 2V g
P(s|Vp) Pam | Vp) !
[Pl ls )
= Plam | V) dv,, (19)

where w = 1/P(s | V,) represents the sampling weights for
balancing the distribution.

C. Magnetic Feature Extractor

A magnetometer regularly samples the magnetic field orien-
tation at the phone location, generating a sequence of magnetic
field signals, or simply a magnetic signal, presented as

Tp = xgo),xl()l), .. .,x,()T_l)] ,

where the magnetic signal has 7" samples over time. When a
pedestrian uses a conveyor, the signal would vary according to
the conveyor movement. Yet another impact is that the signal
is sensitive to the metallic structure of the conveyor, either
the enclosed shell of the elevator or the semi-open frame of
the escalator. Therefore, the magnetic signal may be used to
classify the conveyor state, complementing the motion signal,
as examplified in Fig. 5.

However, it is not straightforward to classify conveyor states
using magnetic signals. Since the magnetic field depends on
location, as shown in Fig. 6 (left), the magnetic signals are

(20)

"Note that such spurious correlation does not occur in interventional data.
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Fig. 7. System diagram of magnetic feature extractor. The differential feature

extractor obtains from a magnetic signal a differential feature, based on which
the behavior filter enhances the feature robustness against pedestrian behavior.
In training, the behavior filter learns from a loss function based on adversarial
learning.

difficult to be used for the classification in different places. In
addition, the signal is affected by many pedestrian behaviors
such as waving and rotating phones, which makes the signal
noisy in practice.

To effectively leverage magnetic signals, we aim to extract
a conveyor magnetic feature that is independent of conveyor
locations and robust to pedestrian behaviors. As shown in Fig. 7,
we propose a magnetic feature extractor consisting of a differ-
ential feature extractor and a behavior filter. Given a magnetic
signal, the differential feature extractor extracts a differential
feature, denoted as Ay, to alleviate the signal dependency on
location. After that, a behavior filter reduces the signal noises
due to pedestrian behaviors and outputs a conveyor magnetic
feature.

The design of the differential feature extractor is based on
an empirical finding. As shown in Fig. 6, compared with the
raw magnetic signal, the temporal differential of the signal
demonstrates much lower location dependency, and it maintains
the ability to differentiate the conveyor states. This is because the
differential feature of the signal reflects the magnetic variation
of the conveyor process, which is much independent of their
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locations. Based on this observation, we design a differential
Seature extractor,denoted as f;(-), which extracts the differential
feature by

fo(xp) = Ay,

4],

where | - |2 calculates the magnetic field intensity. Empirically,
we find that the intensity is more effective than the orientation for
reflecting conveyor states, which has been validated in Fig. 20.

To tackle the pedestrian behavior, we use a behavior filter
to enhance the feature robustness against pedestrian behaviors.
Formally, the behavior filter, denoted as fj, (-), takes a differ-
ential feature as input and outputs a conveyor magnetic feature
(2p), defined by

2y

. ‘mgt‘”‘ ,t:1,27...,T},
2

fo, (Azy) = 2,

where the filter is parameterized by ;. In the model training, we
train the behavior filter robust against the perturbation caused
by pedestrian behaviors. Specifically, we regard a behavior as
a perturbation when it causes a phone to move or rotate, such
as swinging and browsing, denoted as V, = 1, and otherwise,
V,, = 0. To enhance the robustness, we reduce the discrepancy
of the conveyor magnetic feature between the two cases, which
is shown as

min|P(z, |s=1,V,=0)—P(z |s=1,V,=1)|. (23)

(22)

To enforce this, we employ a classifier, denoted as kg, (-), to
determine the discrepancy between the two distributions. The
classifier plays a min-max game with the behavior filter based on
adversarial learning [46], and the loss function for the behavior
filter is shown as

£Mag(9b) == Z CE (kgh © f9b (Axb)7 Vp) )

(x,5n)€D,
Sp=1

(24)

where o is the composition operator.

In the implementation, we use a threshold of angular velocity
(1.5rad/s) to determine V), automatically. This is based on the
observation that pedestrians could often lead to a high angular
velocity, but elevators and escalators usually cannot. The be-
havior filter consists of a two-layer ConvLSTM and two fully
connected layers with ReLU as the activation function.

IV. EVIDENTIAL STATE CLASSIFIER

Given the extracted causal and magnetic features, ELESON
employs an evidential state classifier to estimate the confi-
dence of the conveyor states. We overview the classifier in
Section IV-A, and present its loss function in Section I'V-B.

A. Overview

Given a conveyor state feature extracted in a period, say, 2
seconds, we aim to classify the conveyor state and estimate
the confidence behind the classification decision. We trust the
decision if the confidence is greater than a threshold and remain
undecided (UD) otherwise. By discarding the decisions with
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Fig. 8. System diagram of evidential state classifier. Given a conveyor state
feature, an evidence collector extracts the evidence supporting each of the states.
The evidence is then normalized to be a state confidence vector that gives the
classification decision and confidence.

low confidence as UD, we could enhance the system reliability.
Therefore, it is important for the confidence to effectively reflect
the classification accuracy.

In conveyor state classification, the confidence depends on the
INS signal due to the signal-to-noise ratio (SNR) and the signal
similarity to the training data. For example, if pedestrian behav-
ior is much more intense than the conveyor motion, resulting in
low SNR, the INS signal could be ambiguous to reflect conveyor
states, leading to low confidence. On the other hand, even with
a high SNR, an INS signal may not be correctly classified if it
is out of the training data of the classifier, which indicates low
confidence. To account for the two aspects, existing frameworks
are mainly based on the Bayes method and evidence theory [47],
(48]

In this paper, we build an evidential state classifier due to
computational efficiency.” The system diagram of the classifier
is shown in Fig. 8. Given a conveyor state feature (z), it first
uses an evidence collector, denoted as fy_(+), to extract a state
evidence vector, denoted as F, defined by

fee(z) =FE,

where {e; | es € E,es > 0} is the evidence value supporting
the conveyor state s (dim(E) = 3), and the evidence collector
is parameterized by .. Then, it normalizes the evidence vector
to be a state confidence vector, denoted as C, calculated as

E
C=—cv— (26)
€y + ZEEE e’
where {c; | ¢; € C,cs € [0,1)} is the confidence of state s, e,
is an uncertainty constant, and we empirically set it to e, =
dim(E). We select the state with the highest confidence to be
the classification decision, which is given as

(25)

27

§* = argmaxc.
ceC

8The Softmax-based classifier is often overconfident as it does not consider
the signal similarity [47].
9Evidential classifier is as efficient as a Softmax-based classifier [49].

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 08,2025 at 02:20:29 UTC from IEEE Xplore. Restrictions apply.



HE et al.: ELEVATOR, ESCALATOR, OR NEITHER? CLASSIFYING CONVEYOR STATE USING SMARTPHONE

Finally, if the highest confidence is larger than a threshold, i.e.,
max(C) > 7, we trust the classification decision. Otherwise,
the system outputs UD.

In the implementation, the evidence collector consists of three
fully connected layers. We use ReLU as both the activation
function and the output layer, such that e, > 0. The evidence
collector is supposed to extract evidence reflecting the two
aspects of confidence. In the following, we introduce the loss
function for learning the evidence collector.

B. Loss Function

Since the conveyor state of a pedestrian could only be one of
the “elevator,” “escalator,” and “neither”, the probabilities of the
three states sum up to one. However, considering that the clas-
sifier may be unfamiliar with an INS signal (or the input signal
is dissimilar to its training data), we use an uncertainty term to
occupy a fraction of the probability. Specifically, the uncertainty
term indicates the “equally likely” among the three states due to
the unfamiliarity (namely the epistemic uncertainty [37]). By
considering the uncertainty term, the probability assignment
depends on the training data of the classifier. Therefore, the
probability assigned to each of the conveyor states, i.e., ¢; € C,
is called the state confidence. Formally, the uncertainty term,
denoted as u, forms a simplex with the state confidence, which

is shown as
U+ Z cs = 1.

cseC

(28)

In evidence theory, confidence comes from evidence. The
more evidence a classifier collects to support a decision, the less
uncertainty it remains. Formally, recall that e, is the evidence
value supporting the state s, and e,, is the uncertainty constant,
the uncertainty term can be calculated as

€y
€y + ZeEE €

To estimate the evidence value, we learn an evidence collector,
and the learning has two objectives.

The first objective is to optimize classification accuracy.
In other words, the evidence collector should maximize the
evidence value supporting the state of ground truth while mini-
mizing the values for the other states. Recalling that x is the INS
signal, CE(-, -) is the cross-entropy loss function, and §,, is the
conveyor state label, the loss function of the first objective can
be written as

Lots(Oms 00,00 = 3 CE(E8> (30)

e
(2,3,)€D ZGGE

where the loss function applies to both the feature extraction
module and the evidence collector, and this implicitly captures
the signal SNR in confidence.

The second objective is to optimize the uncertainty term. In
other words, the evidence collector should extract more evidence
values for its familiar signals, and vice versa. To make the
uncertainty term differentiable, we transform the simplex in (28)
into a Dirichlet distribution whose variance positively relates to

(29)
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the uncertainty term.'’ Letas = es + land A = Y, _p(e + 1),
the variance of the Dirichlet distribution after the transformation
is

as(A — ay)

Var(E) = AT

€1y
To optimize the uncertainty term, we minimize the variance of
the distribution on training data. Overall, the loss function for
learning the evidence collector is

Liis=Las + ZVar(E).
D

(32)

In summary, recalling that L7445 and Lc; are the loss func-
tions of magnetic and causal feature extractors, respectively, the
loss function of the whole system is given as

L= Lgis +w3sLlirag + wilcal, (33)

where w3 and w, are their weights. In the implementation, we
learn the classifier and the two feature extractors end-to-end.

V. ILLUSTRATIVE EXPERIMENTAL RESULTS

This section evaluates the performance of ELESON. We first
introduce the experimental setting in Section V-A, and present
the performance of ELESON in Section V-B. Then, we study
system parameters in Section V-C, and show efficiency studies
in Section V-D.

A. Experimental Setting

We curate a large and diverse collection of real-world data
to validate ELESON. In the data collection, pedestrians freely
roam shopping malls with arbitrary behaviors and casually carry
their phones, during which they take elevators and escalators at
different locations.!' At the same time, an observer annotate
the conveyor state with timestamps whenever the pedestrians
get on and off the conveyors (with their consent). In total, we
collect data from multiple pedestrians in 10 shopping malls over
20 hours, with roughly 20% in elevators, 20% on escalators, and
60% are neither. To our knowledge, this is the first dataset for
classifying the conveyor states of pedestrians under arbitrary
behaviors based on phone INS.

Since pedestrians could use conveyors for varied periods, we
classify the conveyor state using a short sliding window with
size and stride of 2 seconds, leading to 36,420 instances for
classification in total. To balance conveyor state labels, we follow
object detection and evaluate the performance using F1 score
separately for “elevator” and “escalator” states, shown as

2 x Precision x Recall

F1 score = (34)

Precision + Recall

Specifically, Precision = TP /(TP +FP), and Recall =
TP /(TP 4 FN), where TP, FP, FN stand for “true positive”,
“false positive”, and “false negative”, respectively. Unless

0proof of equivalence is in [48].
"Note that the data are collected from the personal phones of the participants,
covering different brands and models.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 08,2025 at 02:20:29 UTC from IEEE Xplore. Restrictions apply.



12634

TABLE I
F1 SCORES UNDER VARIOUS PHONE CARRIAGE (WITH THE CONFIDENCE
THRESHOLD OF 0)

Carriage style | Reading In-pocket Swing In-bag
Handcraft 0.73 0.66 0.67 0.60
FootMount 0.75 0.67 0.62 0.66

E2E 0.76 0.76 0.68 0.77

MDG (Rand) 0.79 0.75 0.71 0.73

DIVERSIFY 0.79 0.75 0.72 0.78

MDG (Label) 0.81 0.78 0.73 0.78
ELESON 0.92 0.92 0.84 0.88

stated otherwise, we report the average F1 score over “elevator”
and “escalator” states.

To validate ELESON, we compare it with the following state-
of-the-art approaches for conveyor state classification:

® Handcrafted feature approach (Handcraft) [11] classifies
conveyor states using several handcrafted features ex-
tracted from phone-based INS signals, assuming a steady
holding posture. In the experiment, we use a neural network
to classify the extracted features.

e Foot-mounted sensor approach (FootMount) [8] classifies
conveyor states using a finite-state machine specially de-
signed for foot-mounted INS.

To demonstrate the challenge of our problem, we further com-
pare the performance with the following general classification
approaches that have been extended to INS processing:

® FEnd-to-end Approach (E2E) [19] is our backbone ap-
proach, which classifies INS signal using ConvLSTM end-
to-end.

®  Multi-domain Generalization (MDG) [23] enhances classi-
fication robustness using the labels of pedestrian behaviors.
To implement this, we label the behaviors using phone car-
riage styles (Label) and random grouping (Rand), shown
in Table I. The implementation is based on ConvLSTM.

e DIVERSIFY [21] enhances classification robustness based
on implicit labeling, where it employs a clustering algo-
rithm and reduces the feature variance among the clusters.
In the implementation, we use ConvLSTM to classify
conveyor states incorporating the scheme.

We assess confidence estimation using the area under the
receiver operating characteristic curve (AUROC), which mea-
sures the discriminability of confidence to distinguish correct
and false classification decisions. We regard it as a true positive
case when a false decision is regarded as UD. Specifically,
AUROC measures the trade-off between false positive rate and
true positive rate, which is computed as

1
AUROC = / Sp(r)dr, (35)
0

where r is the false positive rate and Sp(r) maps r to the true
positive rate given a dataset D. We implement the following
approaches to compare confidence estimation:
e Entropy approach (Softmax) [50] uses information entropy
of the classification score to present the confidence of
Softmax-based approach;
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Fig. 9.  Under arbitrary pedestrian behaviors, ELESON outperforms previous
approaches significantly, improving around 14% in F1 score.

® Bayesian neural network (Bayesian) [51] represents con-
fidence using prediction variance over the distribution of
network parameters. In the experiment, we sample network
parameters using the Dropout mechanism [50];

o Temperature scaling (TempScale) [52] calibrates the classi-
fication scores using an exponential parameter (calibrated
in training) and calculates confidence using the information
entropy of the scores.

Furthermore, we have evaluated the computing efficiency of
ELESON by deploying it to a mobile phone (Huawei LDN-
AL10), based on which we investigated its memory usage,
inference time, and power consumption (see Section V-D). In the
experiment, each of the conveyor causal feature and the magnetic
feature has 128 dimensions, and the model is optimized by the
Adam optimizer. The INS sampling frequency is 100/z, which
is supported by most smartphones [53], [54]. We empirically
follow the signal preprocessing in [55], accounting for the gen-
eral heterogeneity issues, and we assume that other approaches
should also be applicable [56], [57]. To reduce randomness, we
use the five-fold cross-validation to evaluate the results, where
we shuffle the signal sequences of each data collection.

B. Overall Performance

We compare the overall performance of the schemes on the
whole dataset in Fig. 9. From the figure, the previous classi-
fication approaches for conveyor states fail in our setting due
to their behavior or sensor assumptions (note that Handcraft
performs similarly to FootMount). On the other hand, the general
classification approaches cannot achieve satisfactory results on
our problem, which validates that our problem is new, open, and
challenging. In comparison, ELESON has achieved satisfactory
precision, recall, and hence F1 score (around 0.89) owing to the
feature extraction module. In addition, by setting the confidence
threshold to be 0.5, which leads to the UD ratio of 0.05, ELESON
gains around 3% improvement in F1 score, while others are
less than 2%. With this setting, ELESON has achieved 0.92 in
F1 score, improving at least 14% compared to the previous
approaches.

Fig. 10 shows the performance of ELESON under different
levels of behavior perturbation, where the level is classified
by a threshold of angular velocity (1.5 rd/s), and around 40%
instances are of the high level. Compared with their performance
in the low level of perturbation, all schemes, including ELESON,
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Fig. 11. ELESON benefits higher F1 score from the same UD ratio due to the
effective confidence estimation.

degrade under the high level. This is because the behavior
perturbation undermines the signal-to-noise ratio. Specifically,
the general classification approaches, as they leverage neural net-
works, perform better than the previous approaches for conveyor
state classification; however, their performance is not satisfac-
tory, because they lack sufficiently precise labels of pedestrian
behaviors. In comparison, ELESON shows superior F1 scores
over 0.85 in both levels without the need for any behavior labels.

Fig. 11 shows how the F1 score varies with the UD ratio, which
is tuned by the confidence threshold. In the experiment, the
comparison schemes use the Softmax-based classifier as in their
original setting. Compared with the other schemes, ELESON
gains significant improvements in F1 score under the same UD
ratio. This validates that the confidence estimation of ELESON
can further enhance the system reliability. Therefore, we set the
confidence threshold as 0.5, which leads to 3% improvement in
F1 score with merely the UD ratio of 0.05.

Phone carriage style is a coarse but explainable way to la-
bel pedestrian behaviors. Table I shows the F1 scores of the
comparison schemes under different phone carriage styles with
the confidence threshold of O (or UD ratio of 0). From the
table, all schemes perform relatively better in stable carriage
styles (such as reading) than dynamic styles (such as swing-
ing). However, the F1 score of the previous works is less than
satisfactory under all phone carriage styles. This validates that
they cannot achieve satisfactory results without precise labels of
behaviors. In comparison, ELESON achieves a satisfactory F1
score (> 0.84) under various carriage styles, which is consistent
with the previous results.

Fig. 12 shows an ablation study on the conveyor causal and
magnetic features with the confidence threshold of 0. From the
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Fig. 12.  Ablation study on conveyor causal and magnetic features (with the
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figure, the causal feature contributes to the majority of accuracy,
and the magnetic feature further boosts the classification effec-
tiveness. This is because they characterize the conveyor state
of pedestrians from different aspects. Furthermore, the figure
shows that the F1 score of the “elevator” state is higher than
that of the “escalator” state. This is because, in our observation,
pedestrians in elevators usually perform fewer actions than on
escalators, thus introducing less perturbations.

Fig. 13 shows the performance of ELESON on unseen ele-
vators and escalators. In this experiment, we separate training
and testing data by shopping malls, such that the conveyors
in testing are unseen to the model. In the figure, the F1 score
of ELESON slightly reduces by around 3% compared with
previous results, due to the subtle shifts of motion patterns and
magnetic environments. Despite so, with the enhanced robust-
ness, ELESON achieves satisfactory F1 scores (more than 0.85)
on unseen elevators and escalators. This validates the generality
of ELESON in practice.

We further evaluate ELESON beyond mall scenarios through
acrowdsourcing experiment, and the results are shown in Fig. 14.
In the experiment, we collect INS signals from users’ daily
usage and let the users to mark the time slots (by 15min) in
which they used a conveyor. Also, the data are from the user
devices that are unseen in the training data. We regard it as a
true positive if ELESON recognizes the conveyor in a marked
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slot or if it remains “neither” state in an unmarked slot. From the
figure, ELESON performs similarly to the experimental results
in shopping malls, yet the F1 score may slightly slide due to the
noisy labels. This validates the generality of ELESON in more
real-world scenarios.

Fig. 15 shows the comparison of different confidence es-
timation approaches on conveyor state classification by ROC
curves. The curve indicates a better discriminability of confi-
dence when it is closer to the upper-left corner, and vice versa.
In the figure, the entropy-based approach (Softmax) shows poor
discriminability due to overconfidence. TempScale universally
reduces Softmax confidence, but its improvement in discrim-
inability is limited. While the Bayesian approach can capture
epistemic uncertainty, its performance is not stable due to the
sampling nature, and more sampling operations lead to heavier
computations that are not favorable for the mobile computing.
Overall, the evidential state classifier shows strong discrim-
inability of confidence of 0.81 in AUROC with lightweight
computation.

Fig. 16 shows the ablation study on the uncertainty optimiza-
tion in (31). The classifier without uncertainty optimization is
labeled by “Without”. In the figure, the uncertainty optimization
does notinfluence the F1 score, because it optimizes the evidence
collection over all states. This validates that the uncertainty op-
timization can improve the confidence discriminability without
compromising classification effectiveness.

C. System Parameters

In this section, we study the system parameter of ELESON
with the confidence threshold of 0.

Fig. 17 shows how the F1 score varies with the weight w; in
the loss function of causal feature extractor in (17). From the
figure, the F1 score increases with the weight when it is less
than 0.4 and flats off after that. The gain is because the recon-
struction prevents the information loss from decomposition. In
the experiment, we use w; = 0.6.
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Fig. 20. Ablation study on differential feature extractor.

Fig. 18 plots how the F1 score varies with the weight ws in the
loss function of causal feature extractor in (17). In the figure, the
accuracy shows a U-shape as the weight increases. The F1 score
increases because the constraint stabilizes the causal feature.
The decrease, on the other hand, is when the weight is so large
that the extracted features become inflexible. In the experiment,
we use wy = 0.3.

Fig. 19 shows how the F1 score varies with the weight w3
in the loss function for the magnetic feature extractor in (33).
Similar to Fig. 18, the F1 score shows a U-shape varying with
the weight. The increases because the behavior filter enhances
the differential feature to be robust against pedestrian behaviors.
However, leaning too much on adversarial learning may cause
the feature to be inflexible. In the experiment, we use ws = 0.4.

In Fig. 20, we compare the different implementations for
the differential feature extractor in Equation (22). Specifically,
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“Raw3D” stands for the 3D magnetic signal, “Raw1D” is the
intensity of the magnetic signals, “Diff3D” is the temporal
differential of the magnetic signals, “Diff1D” is the differential
of the intensity, and “VarHist” is the histogram on “Diff1D”. In
the figure, the differential features generally achieve higher F1
score than the raw signals because they are more independent of
locations. On the other hand, the intensity of magnetic signals
outperforms the 3D orientation as it reduces noise. Finally,
the “DiffHist” fails to improve the F1 score as it reduces the
important temporal feature of conveyor states.

In Fig. 21, we study how the F1 score varies with the weight
wy in (33), which is the weight for the loss function of the causal
feature extractor. In the figure, the F1 score increases with the
weight because the loss function supervises the extraction of
the conveyor causal features. In the experiment, we use wy = 1,
where the F1 score flattens off after that.

Fig. 22 shows the distribution of confidence over the whole
dataset. The figure shows that the UD ratio grows exponentially
with the confidence threshold, with a short tail on the left side.
This indicates that ELESON is confident about most decisions.
In the experiment, we set the confidence threshold as 0.5, which
leads to a UD ratio of 5%.

D. Efficiency Study

In this section, the efficiency studies are conducted on a
mobile phone for illustrative purposes, and the conclusion is
not limited to the experimental device.

Fig. 23 shows how the error rate and inference time (for
making one prediction) vary with the model size. The model size
is adjusted by the neuron quantity of each layer, and the error
rate equals one minus the F1 score. In the figure, the inference
time increases with model size, while the error kneels down at
the model size of 9 MB. Therefore, we choose the model size
of 9 MB, which is around 0.3% of the phone memory, and each
model inference takes around 0.4 seconds. With this setting,
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ELESON operates in real time (i.e., inference time is less than
step size) with a minimal memory budget.

Finally, we show the power consumption of ELESON on a
smartphone in Fig. 24. In the experiment, we turn on the INS
sensor and use ELESON to process the INS signals. In contrast,
we maintain the phone states and turn on the INS sensor without
running ELESON. From the figure, INS consumes around 18%
of the battery (from 90% to 72%) in 150 minutes, and running
ELESON only additionally takes 2% more battery in the same
duration. This validates the minimal cost of ELESON in terms
of power consumption.

VI. CONCLUSION

In this paper, we study classifying the conveyor state of a
pedestrian with arbitrary behaviors to elevator, escalator, or
neither, or simply the conveyor state classification, using the
inertial navigation system (INS) on his/her smartphone (i.e.,
accelerometer, gyroscope, and magnetometer). This research
problem is fundamental to many smart city applications, such as
indoor navigation and people flow management. The challenge
is posed by the arbitrary behaviors of pedestrians, because they
entangle with the conveyor states, perturb INS signals, and
obscure the classification decision on the states.

We propose ELESON, anovel, effective, and lightweight deep
learning approach that classifies the conveyor state under arbi-
trary pedestrian behaviors using phone INS without the need for
any behavior labeling. ELESON separates the motion features
of moving elevators and escalators from pedestrian behaviors
based on causal decomposition and extracts the magnetic feature
of conveyor states based on adversarial learning. Given those
features, it uses an evidential classifier to estimate the confidence
of each state, which reflects the similarity of an input INS signal
to its training data. Through extensive experiments on 36,420
instances of conveyor state data with arbitrary unlabeled pedes-
trian behaviors collected from ten shopping malls, ELESON
shows satisfactory performance, achieving high accuracy of over
0.9 in F1 score and sound confidence discriminability of 0.81 in
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AUROC (Area Under the Receiver Operating Characteristics),
which improves from previous approaches by 14% in F1 score.
Additionally, our efficiency study demonstrates ELESON to
operate on a mobile phone in real time (0.4 s for one inference),
requiring only 9 MB memory usage and consuming merely 2%
battery in 2.5 hours.

ELESON is a pioneering work on classifying the conveyor
states of pedestrians using deep learning. In the future, we will
extend the scheme to infer the direction of transport or floor
transition, and incorporate barometer reading to accomplish
richer tasks, higher accuracy, and stronger robustness. We would
also like to cover other conveyor types, such as travelators and
wheelchairs.
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