
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 8, NO. 2, APRIL 2006 219

Lateral Error Recovery for Media Streaming
in Application-Level Multicast

W.-P. Ken Yiu, Student Member, IEEE, K.-F. Simon Wong, S.-H. Gary Chan, Senior Member, IEEE, Wan-Ching Wong,
Qian Zhang, Senior Member, IEEE, Wen-Wu Zhu, Senior Member, IEEE, and Ya-Qin Zhang, Fellow, IEEE

Abstract—We consider media streaming using application-level
multicast (ALM) where packet loss has to be recovered via re-
transmission in a timely manner. Since packets may be lost due to
congestion, node failures, and join and leave dynamics, traditional
“vertical” recovery approach where upstream nodes retransmit
the lost packets is no longer effective. We therefore propose lateral
error recovery (LER). In LER, hosts are divided into a number
of planes, each of which forms an independent ALM tree. Since
error correlation across planes is low, a node effectively recovers its
error by “laterally” requesting retransmission from nearby nodes
in other planes.

We present analysis on the complexity and recovery delay on
LER. Using Internet-like topologies, we show via simulations that
LER is an effective error recovery mechanism. It achieves low
overhead in terms of delivery delay (i.e., relative delay penalty)
and physical link stress. As compared with traditional recovery
schemes, LER attains much lower residual loss rate (i.e., loss rate
after retransmission) under a certain deadline constraint. The
performance can be substantially improved in the presence of
some reliable proxies.

Index Terms—Application-level multicast (ALM), error re-
covery, retransmission deadline, streaming applications.

I. INTRODUCTION

I P MULTICAST-CAPABLE routers are still not commonly
deployed to achieve global multicast at the network layer.

Furthermore, IP multicast is generally based on UDP, which
leads to flow control and reliable difficulties. To overcome these
limitations in IP-multicast, application-level multicast (ALM)
has been proposed for point-to-multipoint streaming applica-
tions such as video conferencing, movie streaming, etc [1]–[3].
In ALM, multicast functionalities are shifted from the network
layer to end-hosts, whereby hosts forward messages from one
to another via piece-wise unicasts. Due to the flexibility and
freedom in tree configuration at the application layer, ALM is a
much more practical approach than protocol design at the net-
work layer for real-time applications [4]–[7]. It does not require

Manuscript received January 24, 2005; revised October 18, 2005. This work
was supported in part by the Areas of Excellence (AoE) Scheme on Informa-
tion Technology funded by the University Grant Council in Hong Kong (AoE/E-
01/99), and by the Research Grant Council in Hong Kong (HKUST6199/02E &
HKUST6156/03E). The associate editor coordinating the review of this manu-
script and approving it for publication was Dr. Benjamin W. Wah.

W.-P. K. Yiu, K.-F. S. Wong, S.-H. G. Chan, W.-C. Wong, and Q. Zhang
are with the Department of Computer Science, the Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon, Hong Kong (e-mail:
kenyiu@cs.ust.hk; cssm@cs.ust.hk; gchan@cs.ust.hk; wwilliam@cs.ust.hk;
qianzh@cs.ust.hk).

W.-W. Zhu is with the Intel Communication Technology China Lab, Beijing
100080, China (e-mail: wenwu.zhu@intel.com).

Y.-Q. Zhang is with Microsoft Research Asia, Beijing 100080, China.
Digital Object Identifier 10.1109/TMM.2005.864268

any support of multicast-capable infrastructure and flow-con-
trol and error recovery can be more readily introduced due to
the piece-wise end-to-end connections.

Traditionally, most ALM research has been focusing on the
connectivity among end-hosts by addressing how messages are
routed from one point (the server or origin) to all the other group
members. In order to successfully deploy streaming service with
ALM, we need to further address its quality-of-service (QoS) is-
sues [8]. In this work, we consider error recovery issue in ALM
networks. For streaming service, there is usually a certain play-
back (or recovery) deadline within which lost packets have to be
recovered. The goal is to achieve low residual loss rate (i.e., the
loss rate after error recovery within the deadline) without com-
promising ALM tree performance (in terms of link stress and
relative delay penalty).

Given that TCP is not so applicable for streaming applications
(where timely recovery rather than 100% reliability is more im-
portant), we focus on using UDP in this paper. In UDP, packet
loss has to be recovered by the applications. Besides congestion
in underlay links, loss may arise from nodal join and leave ac-
tivities or failures, which lead to transient tree reconfiguration.1

Since loss may persist for some time, a good recovery mecha-
nism is essential.

Traditional ALM protocols tend to cluster or chain nearby
hosts together to form a tree for data delivery. While this re-
duces ALM delay and stress, it is not effective for error re-
covery. Whenever there is an upstream error, all downstream
hosts are affected. Since hosts close together are clustered, their
losses are correlated, leading to low retransmission efficiency.
The problem becomes even more serious when the number of
hosts increases, because loss rate increases with the depth of the
tree.

A natural way to deal with packet loss is to request the
upstream hosts for retransmission, the so-called “vertical”
recovery. However such mechanism suffers from the following
problems.

• High error correlation: As mentioned above, the errors
of all downstream nodes are correlated upon an upstream
error. Therefore, the parent of a failed node is also likely
in error. Given a node does not know where the error
occurs, the retransmission request may have to be for-
warded upstream multiple times before the packet is re-
transmitted. This incurs long recovery delay.

• Implosion problem: Vertical recovery may lead to implo-
sion if retransmission requests from downstream nodes

1We use the terms “host” and “node” interchangeably in this paper.

1520-9210/$20.00 © 2006 IEEE

220 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 8, NO. 2, APRIL 2006

Fig. 1. Lateral error recovery using tree planes. HostsA andC are the recovery
neighbors of B.

are not aggregated (which is often the case for simplicity).
Therefore, the parent where the error originates may be
overwhelmed by requests.

• Outage due to network dynamics: Due to the failure of a
node/link or group dynamics such as join/leave activities,
tree reconfiguration would lead to temporary outage for
all downstream nodes from their upstream. In this case,
many nodes do not even know their parents and hence
vertical recovery is simply not possible.

To address these weaknesses, we propose the use of lateral
error recovery (LER). Hosts are first divided into different
planes, each of which independently forms an ALM tree. Due
to the random nature of dividing hosts into planes, hosts close to-
gether likely belong to different planes. Since data are delivered
along different trees independently, the error correlation across
different planes is greatly reduced. This greatly increases the ef-
ficiency of recovering error across planes.

We show the basic idea of LER in Fig. 1, where hosts are
distributed into multiple planes with the source indicated as the
“origin.” The origin first sends data to each of the plane sources,
where ALM trees are formed independently among all the hosts
in the planes. Consider an arbitrary host . It first identifies

hosts in each of the other planes as its recovery neighbors
(in the example). Whenever an error occurs, host
performs “lateral” retransmission with its recovery neighbors
according to some precomputed retransmission sequence. One
may picture host as temporarily attached to its recovery
neighbors upon an error. A strength of this system is that
recovery no longer depends on upstream nodes, but adjacent
“lateral nodes.” This greatly alleviates error correlation and the
implosion problem.

We address the following two major issues in LER.

• Identification of plane sources
The nodes close to the origin are chosen as the plane

sources. This reduces end-to-end delay and physical link
stress. To achieve this, we first obtain host coordinates
by means of a positioning technique such as global net-
work positioning (GNP) or Vivaldi [9], [10]. Based on
the coordinates, the closest nodes to the origin can be

found with Voronoi diagram. We discuss how to construct
the Voronoi diagram by a centralized and a distributed
algorithms.

• Identification of one’s recovery neighbors and, upon
an error, the sequence with which the neighbors are
requested for retransmission.

A good choice of recovery neighbors leads to low re-
covery delay. We show how to identify the set of close re-
covery neighbors from the constructed Voronoi diagram
and how to sequence them for retransmission requests.

We also propose a simpler LER which does not require
network coordinates to identify plane sources and recovery
neighbors. Since recovery neighbors are identified from a
set of randomly chosen nodes, the scheme is called random
neighbor selection (RNS). The recovery mechanism of RNS
is the same as the original one based on network coordinates,
i.e., retransmissions are conducted across planes. The scheme
is simple to implement, but trades off some recovery efficiency.

We compare LER with two vertical recovery schemes,
namely, Source Recovery (recovery from the origin) and Parent
Recovery (recovery from one’s parent). We have also simulated
a recently proposed recovery scheme, Probabilistic Resilient
Multicast (PRM) [11]. By using Internet-like topologies, we
show that LER achieves low overhead in terms of streaming
delay (i.e., relative delay penalty) and physical link stress.
As compared with vertical recovery schemes and PRM, LER
achieves substantially lower residual loss rate.

We briefly discuss previous work here. Many ALM proto-
cols have been proposed in literature, such as ALMI, CoopNet,
NICE, YOID, Narada, DT, etc. [12]–[24]. All these schemes do
not consider the error recovery issue and are based on a single
tree. Our approach differs by considering error recovery issues
by using multiple plane-trees. Our work is complementary to
this body of work in the sense that in each plane, we may con-
struct the delivery tree by any of the schemes.

An error recovery scheme named PRM has been recently pro-
posed [11]. It adds some extra paths or “links” into the ALM
tree. Packets are replicated along these links with some prob-
ability. Though this approach reduces the error rate, it intro-
duces redundant packets and hence high bandwidth overhead.
Our LER scheme is shown to offer a lower error rate and band-
width overhead. As different from [25], we propose in this paper
a simpler scheme (RNS) which does not depend on network
coordinates and present a simpler alternative to identify plane
sources and recovery neighbors. We also consider how reliable
proxies can be integrated with LER to provide better recovery
capability, and how to recover packet loss in the presence of
membership changes. Note that forward error correction (FEC)
can be integrated with LER to further reduce the error rate (for
FEC as used in streaming applications, readers may refer to
[26]–[32]). We may first perform FEC to repair the lost packets.
After such repair, LER can then be applied.

There has been much work on providing reliable services
over IP multicast networks. Our work differs from them in
addressing streaming service with a certain recovery deadline.
Furthermore, much of the previous work focuses on the design
of scalable feedback mechanisms for the source-implosion
problem [33]–[37]. In ALM, recovery from the source is costly

YIU et al.: LATERAL ERROR RECOVERY FOR MEDIA STREAMING 221

in terms of delay and bandwidth. Because some ALM nodes
may buffer the lost packets, retransmission requests do not need
to go all the way to the source. This fundamentally changes how
recovery mechanism should be designed. Recovering loss from
local groups of users in IP multicast has also been discussed in
[38], [39]. In these schemes, group members in proximity with
each other collaborate to recover each other’s errors. These
groups are usually fixed or determined administratively without
much flexibility in self-configuration. In ALM, the particular
nodes to recover losses can be adaptively chosen to improve the
recovery probability. We show how this is done in this paper.
Using proxies to recover loss in IP multicast has been investi-
gated in [40]–[43]. It generally involves intelligent placement
of proxies either in the IP multicast tree or as a separate tree so
that recovery can be done by traversing upstream of the proxy
tree. LER does not require the proxies to be preconfigured in
any special manner as above, and hence is more flexible and
self-adaptive.

The remainder of this paper is organized as follows. The oper-
ation and the complexity analysis of lateral error recovery is pre-
sented in Section II. We address the use of proxies and join/leave
activities in Section III. Illustrative simulation results are shown
in Section IV, followed by the conclusion in Section V. We also
present an analysis on recovery delay of LER in Appendix.

II. LATERAL ERROR RECOVERY

In this section, we first give an overview of LER operation in
Section II-A. Then, we discuss in detail each step in the oper-
ation, namely, selection of plane sources (Section II-B) and se-
lection of recovery neighbors and retransmission schedule (Sec-
tion II-C). We also describe a distributed version of LER in Sec-
tion II-D. Lastly, we present the computational complexity of
LER in Section II-E.

A. LER Overview

In this section, we present the overview of LER. There are two
variants of LER: one based on network coordinates, and another
based on random neighbor selection (RNS). For concreteness
in our exposition and simulation, we will use GNP to identify
nodal coordinates, though other technique such as Vivaldi can
also be used [9], [10].

In LER, there are planes, where (the system de-
generates to the traditional single-tree approach when).
A joining host is randomly assigned to any one of the planes.
Due to this random assignment, hosts close together are likely to
be distributed into different planes. This simple mechanism also
roughly balances the number of nodes in each plane. (Note that
LER operation does not depend on the exact balanced distribu-
tion of nodes among the planes.) By adjusting the parameter ,
we achieve different levels of tradeoff between network perfor-
mance (in terms of delay and link stress) and recovery efficiency.

Once nodes are assigned to planes, the plane sources and the
recovery neighbors for each node are identified. The issues are
to identify the nodes that are close to the origin as plane sources
and that are close to a node/host as its recovery neighbors. Given
that it is costly to ping every pair of nodes to find their mu-
tual distances, each host first estimates its network coordinates

and identify the closest nodes by Voronoi diagrams. We de-
note this approach as LER(GNP). (We discuss another version
based on random neighbor selection denoted as “LER(RNS)” in
Section II-D.)

An ALM delivery tree is constructed in each plane using
any traditional ALM tree/mesh building scheme (e.g., ALMI,
CoopNet, Narada, DT, etc). In our study, we have arbitrarily
chosen an existing distributed protocol called Delaunay Trian-
gulation (DT) to build the tree [17].

The origin marks each packet in the media stream with
increasing sequence number. Transient packet loss and node
failures can be detected by gaps or timeout in the sequence
number. LER may be integrated with other more sophisticated
mechanism to discover errors [40]. Upon detecting an error, the
host performs lateral error recovery with its recovery neighbors.
In this paper, we are interested in such recovery time after an
error is detected. The steps of LER can be summarized as
follows.

1) Assignment of hosts into planes.
2) Estimation of network coordinates for each host using

any coordinate location technique.
3) Construction of the Voronoi diagram for each plane.

(Steps 2 and 3 are not necessary for RNS.)
4) Plane source selection for each plane.
5) ALM tree construction for each plane.
6) Identification of recovery neighbors and the sequence of

retransmission request.
7) Data delivery.
8) Upon detecting an error, a node sequentially requests re-

transmission from its recovery neighbors according to the
precomputed schedule as given in Step 6.

For LER(GNP), we discuss Steps 3 and 4 in Section II-B and
Step 6 in Section II-C. We present LER(RNS) in Section II-D.

B. Selection of Plane Sources

Network coordinates can be used to efficiently estimate the
distance between two hosts. LER(GNP) makes use of network
coordinates to construct the Voronoi diagram, which is then used
to find the closest neighbors.

With the network coordinates of all the hosts, LER constructs
for each plane a Voronoi diagram, using which LER finds the
closest node in each plane to the origin. The Voronoi diagram
can be constructed in a centralized or distributed manner, dis-
cussed below and illustrated in Fig. 2.

• Centralized approach
Each node sends its network coordinates to a specific

central server. The server then constructs the Voronoi di-
agram for each plane (excluding the origin) by, for ex-
ample, Fortune’s algorithm [47]. The algorithm sectors
the nodes into different regions. The server then informs
the origin the closest neighbor of each plane as obtained
from the sector with the origin in the Voronoi diagram.
We show an example of Voronoi diagram in Fig. 2(a).
The square indicates the origin and the circles indicate
the coordinates of the nodes in plane 1. From the Voronoi
diagram, since node shares the same sector with the
origin, it is the closest to the origin.

222 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 8, NO. 2, APRIL 2006

Fig. 2. Finding the closest neighbor in LER(GNP). (a) With a Voronoi Diagram (centralized approach). (b) By successive probing (distributed approach).

Fig. 3. Tree formation of LER with ! = 2. (a) Finding the closest nodes as the plane sources. (b) Resultant delivery trees.

• Distributed approach
We construct Delaunay Triangulation (DT) meshes

among the hosts by the incremental construction al-
gorithm as discussed in [17]. DT has a property that
closer nodes (in the coordinate space) are connected by
edges. Note that the DT mesh constructed has already
embedded the Voronoi diagram and hence the closest
node can be identified easily by successive probing as
follows. The origin probes the node one by one. In each
step, a closer node is found until the probing terminates
at the closest node.

We illustrate the idea in Fig. 2(b), where the origin (in-
dicated by the circle) is to identify the closest node in
a plane, say plane 1 (indicated by squares). The nodes
are placed according to their coordinates. The origin first
finds an arbitrary node, say node , in plane 1. Node
checks its connected nodes in the DT mesh and replies to
the origin with another node closer to the origin. By re-
peating this process, the origin eventually finds the closest
node in the plane.

Fig. 3 shows an example of LER tree formation with
in 2-D coordinate space. Users are divided into two planes

indicated by squares and circles [Fig. 3(a)]. The origin finds the
closest node in each plane to be the plane source, indicated in
the figure by crosses. After identifying the plane sources, ALM
trees are built independently to span all the nodes in the plane
[Fig. 3(b)].

C. Selection of Recovery Neighbors and Retransmission
Schedule

In this section, we discuss how a node finds its recovery
neighbors and computes its retransmission schedule (i.e., the
node sequence for retransmission requests).

In -LER, a node finds nodes in each plane close to it-
self as recovery neighbors for lateral recovery. For , the
neighbors can be found from the constructed Voronoi diagrams
for each plane or in a distributed manner as discussed in Fig. 2
in the previous section. For example, in Fig. 3(b), hosts A and B
are recovery neighbors of each other, since they belong to dif-
ferent planes and are close to each other. For , we may
find the set of neighbors by DT. Suppose a node finds its closest
neighbor, say node , using DT. The other recovery neighbors
can be the connected hosts of node in the mesh by comparing
their distances with node .

In addition to the origin, a node puts its recovery
neighbors into a list called “Potential Recovery-Neighbors List”
(PRL). (Therefore, including the origin, the number of nodes in
the PRL is at most .) The node then prioritizes
the list according to their turnaround time for retransmission
purpose. This is done as follows.

Let and be the total delay from the origin to node and
node , respectively, where of . Let and be the
one-way delay from to and to , respectively. We illustrate
the definitions in Fig. 4, which shows the time diagram upon

YIU et al.: LATERAL ERROR RECOVERY FOR MEDIA STREAMING 223

Fig. 4. Time diagram for recovery neighbor selection for the case
t > t + d .

an error detected at time in node , given that the packet is
transmitted from the origin at time 0. Node requests a retrans-
mission from node . Clearly, the retransmission request arrives
at node at time . Let be the waiting time for the re-
quested packet at node from the arrival of the retransmission
request of node to the arrival of the data packet. (The figure
shows the case when .) It is not difficult to see that

(1)

The minimum turnaround time, , defined as the delay from
the time when node requests a retransmission from node until
the time the packet arrives at node , is hence given by

(2)

We see that it is better to request a node with low as it leads
to faster recovery delay.

We may obtain the time of arrival (i.e., and) from the
origin to a node as follows. The origin distributes control mes-
sages to each plane source, which in turn multicasts it to its plane
nodes using ALM. There is a hop-count field in the control mes-
sage. Every time a node receives a control message, before for-
warding downstream, it increments the hop counter by 1 and
appends its IP address and its delay from the origin along the
tree. From the control message, a node hence knows all its up-
stream nodes along the branch from itself to the origin and its
corresponding delay from the origin.

In media steaming, there is usually a certain recovery dead-
line (in seconds) after detecting an error. If a lost packet cannot
be recovered within , it is as good as lost. Clearly, in order
to meet the recovery deadline, node needs to keep only those
nodes, say node , in the PRL which satisfy (see Fig. 4):

(3)

i.e., the packet arrival time at node and its transmission to node
(LHS) has to meet the playback deadline of node (RHS).

Furthermore, we also need

(4)

i.e., the round-trip time has to be less than playback deadline.

Failure to meet (3) and (4) means that it is not possible for
the requested node to retransmit the packet in time. After elim-
inating all nodes violating such conditions from PRL, node
then orders the nodes according to their and sequences its
retransmission requests according to this order. Note that the
identification and ordering of recovery neighbors are performed
before data delivery or during tree reconfiguration. Therefore,
they do not need to be run continuously. The overhead is hence
relatively low.

D. Random Neighbor Selection (RNS)

In random neighbor selection (RNS), nodal coordinates are
not required. It is a simpler way to obtain the plane sources and
recovery neighbors as compared to LER(GNP).

As in LER(GNP), each node in LER(RNS) finds recovery
neighbors in each plane as follows. Each node is first randomly
given nodes in each of the other planes, where .
The node then pings the nodes and selects nodes with the
lowest turnaround time as its recovery neighbors. For central-
ized ALM algorithm (e.g., ALMI and CoopNet), the random
nodes can be easily obtained from the central server. For dis-
tributed ALM algorithm (e.g., Narada, DT), a node may perform
a random walk on a plane tree to find the random nodes.

Clearly, RNS is a suboptimal solution as compared with the
GNP scheme. Indeed, as shown in Fig. 14 later, it has a higher
error rate as compared with LER(GNP). However, it can be
easily implemented in reality.

E. Computational Complexity

The nodal computational complexity refers to the computing
steps each node executes in the network. We divide our discus-
sion into two categories—the centralized LER and distributed
LER—as follows.

• Centralized LER
In centralized LER, the major complexity comes from

the central server which keeps the network locations of
nodes and constructs a Voronoi diagram for each plane
by Fortune’s sweep line algorithm [47].

Let be the number of nodes in the network. Since
the number of nodes in each plane are roughly equal to

, the running time complexity for each plane using
the Fortune algorithm is . Therefore,
with planes, the total complexity at the server is

The closest node to the origin in each plane can be
identified during the construction of each diagram (by
simple bookkeeping operation in time). Therefore,
this identification step does not increase the complexity
of the process.

• Distributed LER
In distributed LER, a Delaunay triangulation mesh

is formed among the nodes. The distributed protocol to
form such DT mesh overlay was discussed in [17]. Ac-
cording to the results in [17], the protocol only consumes

bandwidth and computation at each node.

224 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 8, NO. 2, APRIL 2006

We next discuss both the time and space complexity for re-
covery retransmission. Note that a node has a total of

recovery neighbors, and hence sorting them
takes time. A node needs to request for re-
transmission of its lost packet from its recovery neighbors one
by one. This can be done in time using the sorted sequence.
In LER, all a node needs to keep is only a PRL of re-
covery nodes, therefore the state maintenance cost at each node
is .

III. PROXIES AND JOIN/LEAVE ISSUES

In this section, we discuss other issues of LER. We present
how to use reliable proxies to improve the loss recovery of the
system (Section III-A) and how LER recovers packet loss arisen
from dynamic membership changes (Section III-B).

A. Use of Proxies

In order to further improve the error recovery capability, we
may put some permanent (or long-lived) proxies in the network.
These proxies are unlikely to fail in the system, though they may
still experience transient packet drops in the network as in other
hosts.

In this section, we consider how to integrate these proxies into
the framework of LER by taking advantage of their reliability
to strength the overall error recovery. We know which hosts are
proxies in the system. Though these proxies are not essential in
LER, we show that only a small fraction of them (say, 10–20%)
would greatly improve the system performance.

To integrate the proxies into LER, we put them into a separate
plane to form a “reliable plane.” Every node finds the closest
proxy on this plane as its recovery neighbor and put the proxy
in its PRL (the number of nodes in the PRL hence becomes

, where, as before, is the number of “unreliable”
planes in the network and the “2” is due to a reliable proxy and
the origin.) The PRL is then ordered as discussed before.

Fig. 5 shows an example of reliable plane with . Users
are divided into two planes indicated by squares and circles. The
reliable proxies, indicated by triangles, form a reliable plane
themselves. Hosts and identify proxy as one of their
recovery neighbors.

Note that, in general, the number of proxies is much lower
than the group size. Therefore, a node is more likely to request
retransmission from other nodes before requesting a proxy. This
greatly relieves the implosion at the proxies. Since the proxies
have low packet loss and likely closer to the hosts than the
origin, they provide a good alternative for retransmission.

B. Packet Loss Due to Membership Changes

In this section, we present how LER recovers packet loss
arisen from dynamic membership changes. After a member
joins or leaves, it often takes some time for a new tree to
form, during which packets may be lost. LER can be used to
recover packet loss during tree reconfiguration. Note that our
approach is independent on how the underlying ALM protocol
reconfigures its tree.

In the following, we discuss the join and leave/failure pro-
cesses for LER:

Fig. 5. Plane formed by reliable proxies (indicated by triangles) with ! = 2.

• Member joins
For LER(RNS), the PRL of the joining node can

be obtained by random ping as mentioned before. For
LER(GNP), a new member first computes its network
coordinate, and is randomly assigned to one of the
planes. The coordinate is then either forwarded to a cen-
tral server (the centralized algorithm) or used in forming
the DT mesh (the distributed algorithm).

Streaming to the new node starts when the new tree
is formed. Once the new node knows its parent and chil-
dren, it updates its PRL with the aforementioned recovery
identification processes. Whenever the tree is reconfig-
ured, the affected node reconstructs its PRL.

• Member leaves/failures
There are two types of leaving: graceful leaving and

failure (treated as sudden leaving without notification). A
gracefully leaving node notifies its children of its leaving,
while a failure node can be detected by the absence of sev-
eral successive packets in the stream. In any case, packet
loss occurs when a node discovers that its parent has left
the system. Under this circumstance, it temporarily at-
taches to its recovery neighbor to enter a transient state
before a new plane tree is formed.

Fig. 6 illustrates the idea for two planes. The parent of
host in plane 2 leaves the system [Fig. 6(a)]. Host
then temporarily attaches to its recovery neighbor, host

, to get its packets and to recover any packet lost during
the reconfiguration of the plane tree [Fig. 6(b)]. One may
picture that Host temporarily adopts the subtree rooted
at Host . Once a new tree is formed, the node detaches
itself from its recovery neighbor in the other plane.

Note that only the children (not all its descendants) of
a failure node need to be temporarily adopted by their
recovery neighbors. Once the tree is reconfigured in the
plane and the nodes detach from their recovery neighbors,
the PRL in the affected nodes is then reconstructed.

Note that the adoption of children from other planes
would increase the forwarding load of a node, particularly

YIU et al.: LATERAL ERROR RECOVERY FOR MEDIA STREAMING 225

Fig. 6. Node leaving/failure in LER. (a) A leaving/failure node leads to its downstream node, Host A, high loss rate. (b) Host A temporarily attaches to its
recovery neighbor, B, while tree is being reconfigured.

when the number of adoptions is large. To relieve its load,
a node may have a certain (branch-out) degree constraint
and refuses a temporary adoption when it is beyond the
constraint. Furthermore, a node may detach an adoption
if it temporarily experiences high load. For that node, it
can then simply request another node from its PRL for
itself to be adopted.

IV. ILLUSTRATIVE SIMULATION RESULTS

In this section, we present illustrative simulation results for
LER using Internet-like topologies. We run many experiments
on the system, and the results presented here represent the gen-
eral qualitative conclusions of the study. We first discuss the ex-
perimental setup in Section IV-A. Then we present the perfor-
mance characteristics of LER in Section IV-B. In Section IV-C,
we compare LER with other schemes and show its performance
in the presence of reliable proxies.

A. Simulation Setup

We generate a number of Transit Stub topologies with the
Georgia Tech random graph generator (GT-ITM) [48]. The gen-
erated topologies are a two-layer hierarchy of transit networks
(with four transit domains, each with 16 randomly-distributed
routers on 1024 1024 grid) and stub networks (with 64 do-
mains, each with 15 randomly-distributed routers on a 32 32
grid). A host is connected to a stub router via a LAN (of a 4 4
grid), with a 1 ms delay to the router attached. For ALM tree, we
use DT as our mesh construction and compass routing to multi-
cast data as given in [17].

Packets are multicast using ALM and are randomly dropped
in physical links of the network in accordance with the parame-
ters based on real measurements [49]: with probability 0.95 the
loss rate of a link is uniformly distributed between 0 and %,
and with probability 0.05 the loss rate is uniformly distributed
between % to %, where is a scaling constant affecting
the link loss in our simulation (real network measurements in
[49] indicate). In terms of failure model, we consider
that a node is in failure state with a certain probability indepen-
dent of each other. There are two kinds of packets, data packets

(of size 1024 bytes) and control packets for retransmission re-
quest (of size 64 bytes).

We are interested in the following performance measures.

• Physical link stress (PLS), defined as the number of iden-
tical copies of a packet traversing a physical link. Besides
its average, we are also interested in its distribution in
terms of 95th and 90th percentiles.

• Relative delay penalty (RDP), defined as the ratio of the
delay in the overlay with the shortest-path delay in uni-
cast.

• Residual loss rate, defined as the overall loss rate for all
packets within a certain deadline s after error is de-
tected.

• Retransmission overhead, defined as the total traffic gen-
erated, normalized by the size of the data packet, for each
lost packet. This includes control packets, retransmitted
but lost packets, and the final correctly-received packet.
The overhead is always greater than one. For PRM (dis-
cussed later), this includes the duplicated packets.

In our simulation, we use GNP to estimate nodal coordinates
(A distributed alternative of GNP which performs similarly is
Vivaldi). Unless otherwise stated, we use the baseline or default
parameters as follows: LER(GNP), the number of hosts is 128,

, failure rate of 5%, and s. In
case of LER(RNS), we default . With these parameters,
the average node-to-node delay is 1.24 s, and node-to-origin
delay is 1.23 s. In the absence of node failures, the network has
end-to-end loss rate without error recovery of 6.93%. We will
see that LER(GNP) is able to cut the loss rate to less than 1%.

B. LER Performance

We show LER(GNP) performance in terms of RDP and PLS
in Fig. 7, given . As shown in Fig. 7(a), RDP increases with
the number of hosts due to deeper ALM trees. It decreases with
the number of planes due to shorter trees. Fig. 7(b) shows that
PLS increases with the number of hosts, because more packets
are duplicated in the network and they may traverse the same
link. PLS increase with the number of planes, because multiple
parallel trees in general are less efficient than a single one. The

226 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 8, NO. 2, APRIL 2006

Fig. 7. LER performance versus the number of hosts. (a) Average RDP. (b) Average PLS. (c) 90th and 95th percentiles of PLS.

increase in PLS, however, is not so high; in general, LER intro-
duces slightly higher (5–20%) higher stress as compared with
the single tree approach. Fig. 7(c) shows the PLS distribution
in terms of its 90th and 95th percentiles. The stress is not
much higher than the average, showing that most of the link
stress is concentrated around the average. For a large number
of planes, some links may have relatively high stress, because
packets from different planes may cross each other in underlay.
In summary, Fig. 7 shows that LER achieves better RDP with
some cost in stress as compared with single-tree approach.

We show in Fig. 8 residual loss rate versus . Clearly, there
is an optimal to minimize the residual loss rate. This is be-
cause when is too small, there are too few recovery neighbors
and the recovery is not effective. On the other hand, when is
too high, the loss rate among recovery neighbors is likely to be
correlated and a node may need to try many times in order to
recover its loss, leading to ineffective recovery. Note that the
loss rate drops sharply when increases from 1 to 2 and stays
relatively flat beyond that. In order to balance complexity and
performance, should be low but greater than one. We see that

is a good value to use.

Fig. 8. Residual loss rate versus N for LER(GNP).

We show in Fig. 9 the residual loss rate of LER(RNS) versus
(the set of random neighbors). The loss rate decreases mono-

YIU et al.: LATERAL ERROR RECOVERY FOR MEDIA STREAMING 227

Fig. 9. Residual loss rate for LER(RNS) versus M .

Fig. 10. Residual loss rate versus �.

tonically with , because the system has a higher probability to
find close recovery neighbors. However, a large implies more
ping overheads to find recovery neighbors and hence higher
complexity. Note that from the figure does not need to be
high to achieve low loss. In fact, if a node is interested in the
closest 10% of the nodes, on average it only needs to randomly
ping hosts.

We next examine the sensitivity of parameters in LER. In
Fig. 10, we show the residual loss rate versus retransmission
deadline for LER(RNS) and LER(GNP). Clearly, the higher
is, the lower is the loss rate. The figure shows that LER is very
effective: for a delay of merely a few seconds, the loss rate is
negligible. LER(GNP) performs better than LER(RNS) because
it can find closer neighbors (with some cost of complexity).

We show in Fig. 11 the residual loss rate versus , the scaling
factor of link loss. The residual loss rate increases with , as
the link loss increases with . Note that if link loss is doubled
(by doubling), the residual loss rate more than doubles. This

Fig. 11. Residual loss rate versus �.

Fig. 12. Residual loss rate versus failure rate.

is mainly because high link loss increases packet loss, which in
turn reduces the efficiency of error recovery. As decreases,
there is a loss “floor” due to node failures.

We examine the influence of nodal failures on residual loss
in Fig. 12. As nodal failure increases, residual loss rate first re-
mains rather flat and then increases quickly. This is because a
high failure reduces the probability of, and hence efficiency of,
recovering from one’s neighbors. When failure rate is low, LER
is quite effective to achieve low residual loss.

We finally show in Fig. 13 the effect of the number of planes
on the performance of LER. The residual loss rate decreases

to a low value as increases. This is because when is low,
tree tends to be deep and hence nodes generally suffer higher
loss. Furthermore, for low , a node has few recovery neigh-
bors and hence the origin often has to retransmit the lost packets,
making the recovery expensive and not efficient. As increases,
loss rate reduces due to more recovery neighbors and more ef-
fective recovery. For large , LER(RNS) performs as well as

228 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 8, NO. 2, APRIL 2006

Fig. 13. Residual loss rate versus the number of planes.

LER(GNP) because RNS can find many close recovery neigh-
bors as in GNP. Due to the sharp decrease in loss rate, the figure
shows that we do not need a high (around 4 is enough) to
achieve good performance.

C. Scheme Comparison and the Presence of Reliable Proxies

In this section, we compare LER with the following schemes,
the first two of which being variants of vertical recovery.

• Source Recovery
A node always asks the origin for retransmission upon

detecting an error. A strength of this scheme is that the
origin is certain to have the lost packet. However, as men-
tioned before, this scheme suffers from source implosion.
Furthermore, if the source is far away, the recovery delay
can be high.

• Parent Recovery
A failed node always requests retransmission from its

parent. Whenever a lost packet is recovered, the node de-
livers it immediately downstream. This recovery is simple
and effective. However, it cannot deal with node failure:
if an upstream node fails or leaves the system, all down-
stream nodes can no longer recover their errors and would
experience service outage.

• Probabilistic Resilient Multicast (PRM) [11]
PRM employs two mechanisms to reduce the residual

loss rate for streaming service, namely randomized
forwarding and triggered NAKs. For randomized for-
warding, each node introduces a certain number of
redundant connections with other nodes and with prob-
ability forward a packet in each of these connections.
For triggered NAK’s, a failed host performs retransmis-
sion with the parent (the same idea as parent recovery).
We set and because they are reason-
ably good parameters in the scheme. As compared with
parent recovery, PRM addresses the problem of node
failure. However, since PRM duplicates packets in its
randomized forwarding, it incurs extra retransmission
overhead in the network.

Fig. 14. Comparison of residual loss rate for different recovery schemes.

Fig. 15. Average retransmission overhead per lost packet versus number of
hosts.

We compare all the schemes in Fig. 14. Also shown is the
loss rate without any error recovery (the worst case). Generally
the loss rate increases with the number of hosts, because the
tree is deeper and packets are more likely to be lost. The perfor-
mance without loss recovery is clearly unacceptable. Source re-
covery is better, and parent recovery performs even better than
source recovery, due to its shorter distance to recovery nodes.
PRM cuts the loss rate further as compared with parent recovery.
LER achieves by far the lowest loss rate among all the schemes.
LER(GNP) performs better than LER(RNS) due to its better se-
lection on recovery neighbors.

We compare the retransmission overhead of all the schemes
in Fig. 15. PRM incurs high overhead due to its constant du-
plicate packets in randomized forwarding. Source recovery has
the lowest overhead, because the source always has the packet
requested. LER achieves similar level of overhead as source re-
covery without implosion problem, but substantially lower loss
rate.

YIU et al.: LATERAL ERROR RECOVERY FOR MEDIA STREAMING 229

Fig. 16. Residual loss rate versus the number of reliable nodes.

We finally examine the effect of permanent proxies in LER.
In Fig. 16, we show the residual loss rate versus the number of
reliable proxies. In the figure, we also compare the case where
the proxies are treated the same way as hosts and hence they
themselves do not form a separate reliable plane (upper dotted
line). As the number of proxies increases, the residual loss rate
decreases. Clearly, it is beneficial to put all proxies in a sepa-
rate plane and the presence of proxies substantially reduces the
loss rate. Note that only a small fraction of proxies (10–20%) is
enough to bring the loss rate to a low value.

V. CONCLUSION

In this paper, we propose and investigate lateral error re-
covery (LER) to recover packet loss in application-level mul-
ticast (ALM). We consider streaming applications where there
is a deadline within which lost packets have to be retransmitted.
In order to guarantee a certain level of quality, the loss rate after
retransmission (i.e., residual loss rate) has to be low.

In LER, nodes are divided into planes, which form indepen-
dent ALM trees. A node recovers its losses by retransmission
from some nearby recovery neighbors of other planes. Since
data is sent along the planes independently, the recovery neigh-
bors have low error correlation with the failed node, leading
to effective retransmission. We propose two variants of LER,
one based on network coordinates and another based on random
neighbor selection (RNS). We also describe how to make use of
permanent proxies to further improve recovery capability, where
the proxies themselves form a separate reliable plane.

LER is simple and effective. As compared with source
recovery, parent recovery and probabilistic resilient multicast
(PRM), LER achieves substantially the lowest residual loss
with good tree performance in terms of RDP and stress. We
have also quantified the computational complexity of LER.
Our analysis on recovery delay agrees well with simulation.
Our result also shows that only a small fraction (10–20%) of
proxies in the system is enough to cut the loss rate further to a
low value.

APPENDIX

ANALYSIS OF RECOVERY DELAY OF LER

In this section, we present an analysis on recovery delay of
LER. We derive the average recovery delay defined as the av-
erage delay for a node to recover its error. We further define
normalized recovery delay as the average recovery delay for
all nodes divided by the average source recovery delay for all
nodes.

LER, despite of its simplicity and ease of implementation,
does not readily lend itself to analysis. As a matter of fact, its
performance analysis capturing every detail of its operation is
quite complicated, mainly due to the fact that packet loss among
the nodes is correlated depending upon the network location and
tree position of the nodes. In order to keep the analysis tractable,
we need to make the following assumptions.

• Symmetric assumption: We assume that the network as
seen by any node is the same. Therefore, the performance
of an arbitrary node reflects and represents the overall
network performance. With this assumption, our analysis
can be greatly simplified: we may choose any node in the
network and by analyzing its performance, the network
performance is obtained. This assumption is often used
for symmetric regular networks. Since LER network is
tree-based, the assumption may not hold very well. As
we show later, our results are pretty good despite of this
assumption.

• Identical and independence assumption: We assume that
each node has the same retransmission loss as any of its
neighbors, independent of each other. The retransmission
loss is due to two reasons: the loss due to upstream nodes
at the retransmission neighbor, and the network loss be-
tween the requester and retransmission neighbor. This as-
sumption clearly is over-simplifying because nodes to-
ward the leaves of the tree are expected to experience
higher loss than the ones closer to the root, and nodes
farther apart experience higher network loss.

• Far origin/Close neighbor assumption: We assume that
the origin is always the farthest among all the recovery
neighbors of a node. Recall that a node ranks its
neighbors in PRL in terms of their turnaround time
(2). Therefore, the origin may not be the last one in the
sequence. However, we expect that the assumption is rea-
sonably good given that the origin is usually far away
from a node which always find its recovery neighbor in
its vicinity. This assumption also leads to somewhat pes-
simistic result.

Associated with this assumption is close neighbor as-
sumption. As we assume that the neighbors are close, we
need in LER(RNS).

• Large assumption: Because the analysis on the distribu-
tion of recovery delay is intractable, we analyze the ex-
pected recovery delay given that is large (i.e.,).
Our analysis hence shows how long a node takes to re-
cover its error completely.

Using the above assumptions, we analyze the normalized re-
covery delay as follows. Consider an arbitrary node in the net-
work. Let be its average recovery delay, and be the av-

230 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 8, NO. 2, APRIL 2006

erage recovery delay if it requests retransmission solely from
the source (i.e., average source recovery delay). According to
our definition and using the symmetric assumption, the normal-
ized recovery delay is given by

(5)

The node sorts the turnaround time of its recovery neighbors
in ascending order. Let

be the number of recovery neighbors of the node, and
be the sequence of the average turnaround

times of these neighbors. Clearly

and, from (2), we have

(Without causing any confusion, we have dropped the index
for brevity as the arbitrary node index is implicit here.)

Because the node requests its neighbors according to the
sorted sequence, using independence assumption, the average
recovery delay of the node is given by

(6)

The above equation may be equivalently written as

(7)

Due to the analytic complexity of LER(GNP) in obtaining
, we analyze only LER(RNS) where neighbors are randomly

chosen in each plane. In this case, we assume that is
equally spaced from 0 to because they are randomly chosen
and this gives an approximate closed-form expression for

, i.e.,

Fig. 17. Normalized recovery delay versus ! for LER(RNS), given E[w].
(N = 2;M = 10, number of hosts 128; p = 0:1, and no node failure.)

is expected to be low, because in PRL, those nodes
among the lowest are likely to be requested first. However,
analytically obtaining is difficult, but from our simu-
lation a value of 0.05–0.1 is reasonably good to use. We validate
our model using simulation. We show in Fig. 17 a typical plot of
normalized recovery delay versus . For , LER(RNS) de-
generates to the source recovery and hence its normalized delay
starts from 1. We use parameters , number of
hosts , no node failure, with and
0.1. (Details of the network topologies used in the simulation
are described in Section IV.A.) The figure shows that our ana-
lytic curves based on (7) agree well with simulation.

REFERENCES

[1] V. O. K. Li and Z. Zhang, “Internet multicast routing and transport con-
trol protocols,” Proc. IEEE, vol. 90, no. 3, pp. 60–391, Mar. 2002.

[2] K. Sripanidkulchai, B. Maggs, and H. Zhang, “An analysis of live
streaming workloads on the internet,” in Proc. Internet Measurement
Conf. (IMC), Taormina, Sicily, Italy, Oct. 2004.

[3] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang, “The feasi-
bility of supporting large-scale live streaming applications with dynamic
application end-points,” in Proc. ACM SIGCOMM, Portland, OR, Aug.
30–Sep. 1 2004.

[4] R. Keller, S. Choi, D. Decasper, M. Dasen, G. Fankhauser, and B. Plat-
tner, “An active router architecture for multicast video distribution,” in
Proc. IEEE INFOCOM 2000, vol. 3, Israel, Mar. 2000, pp. 1137–1146.

[5] H. M. Radha, M. van der Schaar, and Y. Chen, “The MPEG-4 fine-
grained scalable video coding method for multimedia streaming over
IP,” IEEE Trans. Multimedia, vol. 3, no. 1, pp. 53–68, Mar. 2001.

[6] H. Oouchi, K. Takahashi, H. Nagata, and K. Kamasawa, “Multi-rate con-
trol method using layered content,” in Proc. IEEE 2005 Symp. Applica-
tions and the Internet, Jan. 31–Feb. 4 2005, pp. 311–317.

[7] C.-M. Huang and P.-C. Liu, “A ubiquitous 1-to-k media streaming ar-
chitecture using the IPv4/IPv6 multicast transition gateway approach,”
in Proc. 18th Int. Conf. Advanced Information Networking and Applica-
tions, vol. 2, 2004, pp. 204–207.

[8] L. Subramanian, I. Stoica, H. Balakrishnan, and R. H. Katz, “OverQoS:
Offering QoS using overlays,” in Proc. 1st HotNets Workshop, Oct.
2002.

[9] T. S. E. Ng and H. Zhang, “Predicting internet network distance with
coordinates-based approaches,” in Proc. IEEE INFOCOM 2002, New
York, Jun. 2002.

[10] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A decentralized
network coordinate system,” in Proc. ACM SIGCOMM, Portland, OR,
USA, Aug. 30–Sep. 1 2004.

[11] S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan, “Resilient
multicast using overlays,” in ACM SIGMETRICS 2003, Int. Conf. on
Measurement and Modeling of Computer Systems, San Diego, CA, Jun.
2003.

YIU et al.: LATERAL ERROR RECOVERY FOR MEDIA STREAMING 231

[12] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel, “ALMI: An ap-
plication level multicast infrastructure,” in Proc. 3rd USENIX Symp. In-
ternet Technology and Systems, San Francisco, CA, Mar. 2001.

[13] P. A. C. Venkata, N. Padmanabhan, and H. J. Wang, “Supporting het-
erogeneity and congestion control in peer-to-peer multicast streaming,”
in Proc. 3rd Int. Workshop on Peer-to-Peer Systems (IPTPS’04), Feb.
2004.

[14] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable applica-
tion layer multicast,” in Proc. ACM SIGCOMM, Pittsburgh, PA, Aug.
2002.

[15] P. Francis. (2000, Apr.) Yoid: Your Own Internet Distribution. ACIRI.
[Online]. Available: http://www.isi.edu/div7/yoid/.

[16] Y. H. Chu, S. G. Rao, S. Seshanand, and H. Zhang, “A case for end
system multicast,” IEEE J. Sel. Areas Commun., vol. 20, no. 8, pp.
1456–1471, Oct. 2002.

[17] J. Liebeherr, M. Nahas, and W. Si, “Application-layer multicasting with
Delaunay triangulation overlays,” IEEE J. Sel. Areas Commun., vol. 20,
no. 8, pp. 1472–1488, Oct. 2002.

[18] W.-C. Wong and S.-H. Chan, “Improving delaunay triangulation for ap-
plication-level multicast,” in Proc. IEEE GLOBECOM 2003, San Fran-
cisco, CA, Dec. 2003, pp. 2835–2839.

[19] M. Castro, P. Druschel, A.-M. Kermarec, and A. I. T. Rowstron, “Scribe:
A large-scale and decentralized application-level multicast infrastruc-
ture,” in IEEE J. Sel. Areas Commun., vol. 20, Oct. 2002, pp. 1489–1499.

[20] D.-K. Kim, K.-I. Kim, K.-D. Kim, I.-S. Whang, and S.-H. Kim, “Scheme
for scalable ALM architecture based on topology-awareness,” in IEEE
Consumer Communications and Networking Conf. 2004, Las Vegas, NV,
Jan. 2004.

[21] W.-P. K. Yiu, K.-F. S. Wong, and S.-H. G. Chan, “Bridge-node selection
and loss recovery in island multicast,” in Proc. IEEE ICC, Seoul, Korea,
May 16–20, 2005.

[22] X. Jin, Y. Wang, and S.-H. G. Chan, “Fast overlay tree based on effi-
cient end-to-end measurements,” in Proc. IEEE ICC, Seoul, Korea, May
16–20, 2005.

[23] K.-L. Cheng, K.-W. R. Cheuk, and S.-H. G. Chan, “Implementation
and performance measurement of an island multicast protocol,” in Proc.
IEEE ICC, Seoul, Korea, May 16–20, 2005.

[24] W.-P. Yiu and S.-H. Chan, “SOT: Secure overlay tree for application-
layer multicast,” in Proc. IEEE Int. Conf. Communications (ICC), Paris,
France, Jun. 2004, pp. 1451–1455.

[25] K.-W. Cheuk, S.-H. Chan, and J. Lee, “Island multicast: The combi-
nation of IP-multicast with application-level multicast,” in Proc. IEEE
Int. Conf. on Communications (ICC), Paris, France, Jun. 2004, pp.
1441–1445.

[26] A. El-Sayed, V. Roca, and L. Mathy, “A survey of proposals for an al-
ternative group communication service,” IEEE Network, vol. 17, no. 1,
pp. 46–51, Jan./Feb. 2003.

[27] M. Castro, M. Jones, A. Kermarrec, A. Rowstron, M. Theimer, H. Wang,
and A. Wolman, “An evaluation of scalable application-level multicast
built using peer-to-peer overlays,” in Proc. IEEE INFOCOM 2003, vol.
2, San Francisco, CA, Apr. 2003, pp. 1510–1520.

[28] K.-F. S. Wong, S.-H. G. Chan, W. Wong, Q. Zhang, W.-W. Zhu, and
Y.-Q. Zhang, “Lateral error recovery for application-level multicast,” in
Proc. IEEE INFOCOM 2004, Hong Kong, Mar. 2004, pp. 2708–2718.

[29] J. Cai, Q. Zhang, W. Zhu, and C. Chen, “An FEC-based error con-
trol scheme for wireless MPEG-4 video transmission,” in Proc. Wire-
less Communications and Networking Confernce’00, vol. 3, 2000, pp.
1243–1247.

[30] P. Frossard and O. Verscheure, “Joint source/FEC rate selection
for quality-optimal MPEG-2 video delivery,” in IEEE Trans. Image
Process., vol. 10, Dec. 2001, pp. 1815–1825.

[31] R. Kermode, “Scoped hybrid automatic repeat request with forward
error correction (SHARQFEC),” in Proc. ACM SIGCOMM’98, Sep.
1998, pp. 278–289.

[32] T.-W. A. Lee, S.-H. G. Chan, Q. Zhang, W.-W. Zhu, and Y.-Q. Zhang,
“Allocation of layer bandwidths and FEC’s for video multicast over
wired and wireless networks,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 12, no. 12, pp. 1059–1070, Dec. 2002.

[33] T. Noguchi, M. Yamamoto, and H. Ikeda, “Reliable multicast pro-
tocol applied local FEC,” in Proc. IEEE ICC 2001, vol. 8, 2001, pp.
2348–2353.

[34] W.-T. Tan and A. Zakhor, “Video multicast using layered FEC and scal-
able compression,” IEEE Trans. Circuits Syst. Video Technol., vol. 11,
no. 3, pp. 373–386, Mar. 2001.

[35] T. Lestayo, M. Fernández, and C. López, “Adaptive approach for FEC
reliable multicast,” Electron. Lett., vol. 37, no. 22, pp. 1333–1335, Oct.
2001.

[36] M. Grossglauser, “Optimal deterministic timeouts for reliable scalable
multicast,” IEEE J. Sel. Areas Commun., vol. 15, no. 3, pp. 422–433,
Apr. 1997.

[37] D. Towsley, J. Kurose, and S. Pingali, “A comparison of sender-initiated
and receiver-initiated reliable multicast protocols,” IEEE J. Sel. Areas
Commun., vol. 15, no. 3, pp. 398–406, Apr. 1997.

[38] J. Nonnenmacher, E. W. Biersack, and D. Towsley, “Parity-based loss
recovery for reliable multicast transmission,” IEEE/ACM Trans. Net-
working, vol. 6, no. 4, pp. 349–361, Aug. 1998.

[39] J. Nonnenmacher and E. W. Biersack, “Scalable feedback for large
groups,” IEEE/ACM Trans. Networking, vol. 7, no. 3, pp. 375–386, Jun.
1999.

[40] J. Gemmell, T. Montgomery, T. Speakman, and J. Crowcroft, “The PGM
reliable multicast protocol,” IEEE Network, vol. 17, no. 1, pp. 16–22,
Jan./Feb. 2003.

[41] C.-G. Liu, D. Estrin, S. Shenker, and L. Zhang, “Local error recovery in
SRM: Comparison of two approaches,” IEEE/ACM Trans. Networking,
vol. 6, no. 6, pp. 686–699, Dec. 1998.

[42] M. S. Lacher, J. Nonnenmacher, and E. W. Biersack, “Performance com-
parison of centralized versus distributed error recovery for reliable mul-
ticast,” IEEE/ACM Trans. Networking, vol. 8, no. 2, pp. 224–238, Apr.
2000.

[43] M. Calderon, M. Sedano, A. Azcorra, and C. Alonso, “Active network
support for multicast applications,” IEEE Network, pp. 46–52, May/Jun.
1998.

[44] S. K. Kasera, S. Bhattacharyya, M. Keaton, K. Kiwior, S. Zabele, J.
Kurose, and D. Towsley, “Scalable fair reliable multicast using active
services,” IEEE Network, pp. 48–57, Jan./Feb. 2000.

[45] B. Whetten and G. Taskale, “An overview of reliable multicast transport
protocol II,” IEEE Network, pp. 37–47, Jan./Feb. 2000.

[46] E. Kim, S. G. Kang, and J. Choe, “A router-assisted session tree config-
uration mechanism for reliable multicast,” IEEE Commun. Lett., vol. 6,
no. 9, pp. 464–466, Sep. 2002.

[47] S. Fortune, “A sweepline algorithm for Voronoi diagrams,” Algorith-
mica, vol. 2, pp. 153–174, 1987.

[48] E. Zegura, K. Calvert, and S. Bhattacharjee, “How to model an internet-
work,” in Proc. IEEE INFOCOM 1996, San Francisco, CA, 1996.

[49] V. N. Padmanabhan and L. Qiu, “Network tomography using passive
end-to-end measurements,” DIMACS Workshop on Internet and WWW
Measurement, Feb. 2002.

W.-P. Ken Yiu (S’03) received the B.Eng. and
M.Phil. degrees, both in computer science from The
Hong Kong University of Science and Technology,
Hong Kong, in 2002 and 2004, respectively. He
is currently pursuing the Ph.D. degree with the
Department of Computer Science at HKUST.

His research interests include computer networks,
peer-to-peer systems, multimedia networking, and
network security.

Mr. Yiu was awarded the Academic Achievement
Medal from HKUST in 2002, and the Sir Edward

Youde Memorial Fellowship from Sir Edward Youde Memorial Fund in 2005
and 2006. He is a student member of the IEEE Computer Society.

Simon K. F. Wong received the B.Eng. in computer
engineering and M.Phil. degree in computer science
from The Hong Kong University of Science and
Technology (HKUST). His M.Phil. Thesis, super-
vised by Dr. Gary Chan, was on the error recovery
mechanism in application-level multicast.

From 2002 to 2005, he was a Research Assistant
in the Multimedia and Wireless Networking group,
HKUST.

232 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 8, NO. 2, APRIL 2006

S.-H. Gary Chan (S’89–M’98–SM’03) received
the B.S.E. degree (highest honor) in electrical
engineering from Princeton University, Princeton,
NJ, with certificates in applied and computational
mathematics, engineering physics, and engineering
and management systems, in 1993. He received the
M.S.E. and Ph.D. degrees in electrical engineering
from Stanford University, Stanford, CA, in 1994
and 1999, respectively, with a minor in business
administration.

He is currently an Associate Professor with the De-
partment of Computer Science, The Hong Kong University of Science and Tech-
nology, Hong Kong, and an Adjunct Researcher with the Microsoft Research
Asia, Beijing, China. His research interest includes multimedia networking,
peer-to-peer networks and wireless communications networks. He was a Vis-
iting Assistant Professor in networking at the Department of Computer Science,
University of California at Davis, from September 1998 to June 1999. During
1992–1993, he was a Research Intern at the NEC Research Institute, Princeton.
He was a William and Leila Fellow at Stanford University during 1993–1994.

Dr. Chan currently serves as a Vice-Chair of IEEE COMSOC Multimedia
Communications Technical Committee, and is a member of Tau Beta Pi, Sigma
Xi, and Phi Beta Kappa. At Princeton, he was the recipient of the Charles Ira
Young Memorial Tablet and Medal, and the POEM Newport Award of Excel-
lence in 1993.

Wan-Ching Wong received the B.Sc and M.Sc.
degrees, both in computer science, from Hong Kong
University of Science and Technology (HKUST),
Hong Kong, in 2001 and 2003, respectively.

He was an Assistant Researcher at HKUST
until August 2001. His research interests are in
Internet, peer-to-peer networks and aspect-oriented
programming.

Qian Zhang (M’00–SM’04) received the B.S., M.S.,
and Ph.D. degrees from Wuhan University, China, in
1994, 1996, and 1999, respectively, all in computer
science.

She joined Microsoft Research Asia, Beijing,
China, in July 1999. She is currently the Research
Manager of the Wireless and Networking group.
She has published more than 80 refereed papers in
international leading journals and key conferences
in the arew of wireless/Internet multimedia net-
working, wireless communications and networking,

and overlay networking. She is the inventor about 20 pending patents. Her
current research interest includes seamless roaming across different wireless
networks, multimedia delivery over wireless, Internet, next-generation wireless
networks, and P2P network/ad hoc networks.

Dr. Zhang is a member of the Visual Signal Processing and Communication
Technical Committee and the Multimedia System and Application Technical
Committee of the IEEE Circuits and Systems Society. She is also a member
and chair of QoSIG of the Multimedia Communication Technical Committee
of the IEEE Communications Society. She is the Associate Editor for IEEE
TRANSACTIONS ON VEHICULAR TECHNOLOGIES. She is also serving as Guest
Editor for a special issue on wireless video in IEEE Wireless Communication
Magazine. She has also served in the technical committee of numerous IEEE
and other international conferences. She has recently received TR, 100 (MIT
Technology Review) world’s top young innovator award.

Wenwu Zhu (S’92–M’97–SM’01) received the
B.E. and M.E. degrees from National University of
Science and Technology of China (USTC), in 1985
and 1988, respectively, the M.S. degree from Illinois
Institute of Technology, Chicago, and the Ph.D.
degree from Polytechnic University, Brooklyn, New
York, in 1993 and 1996, respectively, all in electrical
engineering.

He joined Communication Technology Lab China
as Co-Director in September 2004. Prior to his cur-
rent post, he was with Microsoft Research Asia, Bei-

jing, China, first as a Researcher in the Internet Media Group and later as Re-
search Manager of Wireless and Networking Group. From 1996 to 1999, he was
with Bell Labs, Lucent Technologies, NJ, as a Member of Technical Staff during
1996–1999. From 1988 to 1990, he was with the Graduate School, USTC, and
the Institute of Electronics, Chinese Academy of Sciences, Beijing. He has pub-
lished over 180 refereed papers in the areas of wireless/Internet multimedia de-
livery, and wireless communications and networking. He participated activity in
the IETF ROHC WG on robust TCP/IP header compression over wireless links.
He is co-inventor of over 20 pending patents. His current research interest is in
the area of wireless communication and networking, and wireless/Internet mul-
timedia communication and networking.

Dr. Zhu has been on various editorial boards of IEEE journals such as
Guest Editor for the PROCEEDINGS OF THE IEEE, Associate Editor for the
IEEE TRANSACTIONS ON MOBILE COMPUTING, IEEE TRANSACTIONS ON

MULTIMEDIA, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO

TECHNOLOGY (TCSVT). He received the Best Paper Award in IEEE TCSVT in
2001. He currently is also the Chairman of IEEE Circuits and System Society
Beijing Chapter and the Secretary of Visual Signal Processing and Communi-
cation Technical Committee. He is a member of Eta Kappa Nu, Multimedia
System and Application Technical Committee and Life Science Committee in
IEEE Circuits and Systems Society, and Multimedia Communication Technical
Committee in IEEE Communications Society.

Ya-Qin Zhang (F’97) received the B.S. and M.S. de-
grees in electrical engineering from the University of
Science and Technology of China (USTC) in 1983
and 1985, respectively, and the Ph.D. degree in elec-
trical engineering from George Washington Univer-
sity, Washington, DC, in 1989. He had executive busi-
ness training from Harvard University.

He is the Corporate Vice President of Microsoft
Corporation in Redmond, Washington. He is cur-
rently responsible for product development of
Microsoft’s Mobile and Embedded Division, in-

cluding WinCE operating system, Smartphone, PocketPC, and other Windows
Mobile platform and devices. He was the Managing Director of Microsoft Re-
search Asia, Microsoft’s basic research arm in Asia-Pacific region. From 1994
to 1999. he was the Director of Multimedia Technology Laboratory at Sarnoff
Corporation, Princeton, NJ (RCA Laboratories). He was with GTE (now
Verizon) Corporation, Waltham, MA, from 1989 to 1994. He has published
over 300 refereed papers in leading international conferences and journals. He
has been granted over 50 US patents in digital video, Internet, multimedia,
wireless and satellite communications. Many of the technologies he and his
team developed have become the basis for start-up ventures, commercial
products, and international standards. He served on the Board of Directors of
several IT companies, including Sohu.com (NASQ: SOHU) — a top Chinese
portal.

Dr. Zhang served as the Editor-in-Chief for the IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY. He was the Chairman
of Visual Signal Processing and Communications Technical Committee of
IEEE Circuits and Systems. He serves on the Editorial boards of seven other
professional journals and over a dozen conference committees. He has been
a key contributor to the ISO/MPEG and ITU standardization efforts in digital
video and multimedia. He received many awards, including several industry
technical achievement awards and IEEE academic awards.

	toc
	Lateral Error Recovery for Media Streaming in Application-Level
	W.-P. Ken Yiu, Student Member, IEEE, K.-F. Simon Wong, S.-H. Gar
	I. I NTRODUCTION

	Fig.€1. Lateral error recovery using tree planes. Hosts A and
	II. L ATERAL E RROR R ECOVERY
	A. LER Overview
	B. Selection of Plane Sources

	Fig.€2. Finding the closest neighbor in LER(GNP). (a) With a Vor
	Fig.€3. Tree formation of LER with $\omega = 2$. (a) Finding th
	C. Selection of Recovery Neighbors and Retransmission Schedule

	Fig.€4. Time diagram for recovery neighbor selection for the cas
	D. Random Neighbor Selection (RNS)
	E. Computational Complexity
	III. P ROXIES AND J OIN /L EAVE I SSUES
	A. Use of Proxies
	B. Packet Loss Due to Membership Changes

	Fig.€5. Plane formed by reliable proxies (indicated by triangles
	Fig.€6. Node leaving/failure in LER. (a) A leaving/failure node
	IV. I LLUSTRATIVE S IMULATION R ESULTS
	A. Simulation Setup
	B. LER Performance

	Fig.€7. LER performance versus the number of hosts. (a) Average
	Fig.€8. Residual loss rate versus N for LER(GNP).
	Fig.€9. Residual loss rate for LER(RNS) versus M .
	Fig.€10. Residual loss rate versus δ .
	Fig.€11. Residual loss rate versus α .
	Fig.€12. Residual loss rate versus failure rate.
	Fig.€13. Residual loss rate versus the number of planes.
	C. Scheme Comparison and the Presence of Reliable Proxies

	Fig.€14. Comparison of residual loss rate for different recovery
	Fig.€15. Average retransmission overhead per lost packet versus
	Fig.€16. Residual loss rate versus the number of reliable nodes.
	V. C ONCLUSION
	A NALYSIS OF R ECOVERY D ELAY OF LER

	Fig.€17. Normalized recovery delay versus ω for LER(RNS),
	V. O. K. Li and Z. Zhang, Internet multicast routing and transpo
	K. Sripanidkulchai, B. Maggs, and H. Zhang, An analysis of live
	K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang, The feasi
	R. Keller, S. Choi, D. Decasper, M. Dasen, G. Fankhauser, and B.
	H. M. Radha, M. van der Schaar, and Y. Chen, The MPEG-4 fine-gra
	H. Oouchi, K. Takahashi, H. Nagata, and K. Kamasawa, Multi-rate
	C.-M. Huang and P.-C. Liu, A ubiquitous 1-to-k media streaming a
	L. Subramanian, I. Stoica, H. Balakrishnan, and R. H. Katz, Over
	T. S. E. Ng and H. Zhang, Predicting internet network distance w
	F. Dabek, R. Cox, F. Kaashoek, and R. Morris, Vivaldi: A decentr
	S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan, Resili
	D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel, ALMI: An appl
	P. A. C. Venkata, N. Padmanabhan, and H. J. Wang, Supporting het
	S. Banerjee, B. Bhattacharjee, and C. Kommareddy, Scalable appli
	P. Francis . (2000, Apr.) Yoid: Your Own Internet Distribution .
	Y. H. Chu, S. G. Rao, S. Seshanand, and H. Zhang, A case for end
	J. Liebeherr, M. Nahas, and W. Si, Application-layer multicastin
	W.-C. Wong and S.-H. Chan, Improving delaunay triangulation for
	M. Castro, P. Druschel, A.-M. Kermarec, and A. I. T. Rowstron, S
	D.-K. Kim, K.-I. Kim, K.-D. Kim, I.-S. Whang, and S.-H. Kim, Sch
	W.-P. K. Yiu, K.-F. S. Wong, and S.-H. G. Chan, Bridge-node sele
	X. Jin, Y. Wang, and S.-H. G. Chan, Fast overlay tree based on e
	K.-L. Cheng, K.-W. R. Cheuk, and S.-H. G. Chan, Implementation a
	W.-P. Yiu and S.-H. Chan, SOT: Secure overlay tree for applicati
	K.-W. Cheuk, S.-H. Chan, and J. Lee, Island multicast: The combi
	A. El-Sayed, V. Roca, and L. Mathy, A survey of proposals for an
	M. Castro, M. Jones, A. Kermarrec, A. Rowstron, M. Theimer, H. W
	K.-F. S. Wong, S.-H. G. Chan, W. Wong, Q. Zhang, W.-W. Zhu, and
	J. Cai, Q. Zhang, W. Zhu, and C. Chen, An FEC-based error contro
	P. Frossard and O. Verscheure, Joint source/FEC rate selection f
	R. Kermode, Scoped hybrid automatic repeat request with forward
	T.-W. A. Lee, S.-H. G. Chan, Q. Zhang, W.-W. Zhu, and Y.-Q. Zhan
	T. Noguchi, M. Yamamoto, and H. Ikeda, Reliable multicast protoc
	W.-T. Tan and A. Zakhor, Video multicast using layered FEC and s
	T. Lestayo, M. Fernández, and C. López, Adaptive approach for FE
	M. Grossglauser, Optimal deterministic timeouts for reliable sca
	D. Towsley, J. Kurose, and S. Pingali, A comparison of sender-in
	J. Nonnenmacher, E. W. Biersack, and D. Towsley, Parity-based lo
	J. Nonnenmacher and E. W. Biersack, Scalable feedback for large
	J. Gemmell, T. Montgomery, T. Speakman, and J. Crowcroft, The PG
	C.-G. Liu, D. Estrin, S. Shenker, and L. Zhang, Local error reco
	M. S. Lacher, J. Nonnenmacher, and E. W. Biersack, Performance c
	M. Calderon, M. Sedano, A. Azcorra, and C. Alonso, Active networ
	S. K. Kasera, S. Bhattacharyya, M. Keaton, K. Kiwior, S. Zabele,
	B. Whetten and G. Taskale, An overview of reliable multicast tra
	E. Kim, S. G. Kang, and J. Choe, A router-assisted session tree
	S. Fortune, A sweepline algorithm for Voronoi diagrams, Algorith
	E. Zegura, K. Calvert, and S. Bhattacharjee, How to model an int
	V. N. Padmanabhan and L. Qiu, Network tomography using passive e

