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Abstract—Peer-to-peer (P2P) technology has emerged as a
promising scalable solution for live streaming to a large group.
In this paper, we address the design of an overlay mesh which
achieves low source-to-peer delay, accommodates asymmetric and
diverse uplink bandwidth, and continuously improves delay based
on an existing pool of peers. By considering a streaming mesh as
an aggregation of data flows along multiple spanning trees, the
peer delay in the mesh is then its longest delay (including both
propagation and scheduling delay) among all the trees. Clearly,
such delay can be very high if the mesh is not designed well. In this
paper, we propose and study a mesh protocol called Fast-Mesh,
which optimizes such delay while meeting a certain streaming
bandwidth requirement. Fast-Mesh is particularly suitable for
a mildly dynamic network consisting of proxies, supernodes, or
content distribution servers.

We first formulate the minimum delay multiple trees (MDMT)
problem and show that it is NP-hard. Then we propose a central-
ized heuristic based on complete knowledge, which may be used
when the network is small or managed, and serves as an optimal
benchmark for all the other schemes under comparison. We then
propose a simple distributed algorithm, Fast-Mesh, where peers se-
lect their parents based on the concept of power in networks given
by the ratio of throughput and delay. By maximizing the network
power, our algorithm achieves low delay. The algorithm makes
continuous improvement on delay until some minimum delay is
reached. Simulation and PlanetLab experiments show that our dis-
tributed algorithm performs very well in terms of delay and source
workload, and substantially outperforms traditional and state-of-
the-art approaches.

Index Terms—Minimize mesh delay, multimedia communica-
tion, P2P live streaming.

I. INTRODUCTION

I N order to provide live streaming services (such as IPTV)
to a group of peers in the absence of IP multicast support,

traditionally client-server model is used where a server serves
individual participants directly [1]. This model clearly is not
scalable to a large group. Peer-to-peer (P2P) live streaming has
recently been proposed to overcome this problem where the

Manuscript received September 11, 2008; revised June 03, 2009. First pub-
lished September 22, 2009; current version published November 18, 2009. This
work was supported in part by the Cisco University Research Program Fund, a
corporate advised fund of Silicon Valley Community Foundation (SVCF08/09.
EG01), and in part by the Hong Kong Innovation Technology Fund (ITS/013/
08). The associate editor coordinating the review of this manuscript and ap-
proving it for publication was Dr. Gene Cheung.

The authors are with the Department of Computer Science and Engineering,
The Hong Kong University of Science and Technology, Clear Water Bay,
Kowloon, Hong Kong (e-mail: tonyren@cse.ust.hk; hillmanl@cse.ust.hk;
gchan@cse.ust.hk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2009.2032677

server only needs to stream to some peers, who in turn share
their stream received with their neighbors by means of their up-
link bandwidth. Such P2P systems have shown to be effective
in serving quite a large group with very low server bandwidth
required [2], [3].

In P2P live streaming, peers join an overlay in a distributed
manner. In this work, our goal is to design an overlay whose
peer traffic is mildly dynamic (e.g., consisting of supernodes,
proxies, and content distribution servers).1 The overlay achieves
the following.

• Low delay: Our target is live streaming. Therefore, an
overlay offering low source-to-peer delay is desirable. We
would like to design such an overlay which minimizes the
maximum delay of the peers.

• Meeting streaming bandwidth requirement in the presence
of asymmetric uplink bandwidths: Peers in the network
may have diverse uplink bandwidth depending on their ac-
cess network (such as ADSL, broadband Ethernet, Wire-
less LAN, cable, etc.) The overlay should meet a certain
streaming rate requirement for each peer in spite of this
bandwidth heterogeneity or asymmetry.

• Accommodation of peer churn: Peer traffic in the network
can be dynamic, i.e., a peer may join or leave at anytime.
The overlay structure should accommodate this network
dynamic and be adaptive to such peer churn to achieve high
performance.

• Distributed, simple, and self-improving: The protocol
should be distributed and its performance should be scal-
able to a large number of peers. The protocol should be
self-improving in the sense that it continuously improves
and adapts to the overlay based on the heterogeneous peer
characteristics. It should also be simple so that it can be
implemented.

Clearly, to meet the above objectives, streaming mesh should
be used [4]. In mesh, each peer maintains a list of neighbors
to exchange information. A peer obtains its stream by aggre-
gating the flows from its many parents using either pull-based
or push-based methods. Fig. 1(a) shows an overlay example of
streaming using mesh. is the streaming source and , , ,
and are four peers in the streaming session. streams media
to peers and , who in turn stream to peers and . Due
to insufficient uplink bandwidth between and , streams
part of the stream to . This is similar for , which has two par-
ents. Note that the ancestor-descendant relationship in the net-
work may have loops; the loop formed between and simply
means that gets some part of the stream earlier and shares it

1In this paper, “peers” refer to proxies, supernodes, or content distribution
servers.
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Fig. 1. Streaming with mesh and its constituent underlying spanning trees. (a)
Overview. (b) Trees.

with while gets the other part earlier and shares it with
. By exchanging their contents with each other, both and

can assemble a full stream. Since each spanning tree delivers a
unique piece of stream, it is not possible to loop the same piece
of data among two peers. The asymmetric bandwidth problem
is overcome by aggregating the bandwidth of multiple parents
to achieve the bandwidth requirement of a full stream.

However, this bandwidth guarantee comes with the cost of
delay. Refer to Fig. 1(b) where we show how overlay delay is
accumulated by representing the streaming mesh in Fig. 1(a)
equivalently as two spanning trees of certain data bandwidth
(labeled in solid and dashed lines). The number by the arrows
is the overlay delay (in units), consisting of end-to-end propa-
gation delay and scheduling delay due to the packet transmis-
sion time and scheduling policy. The square boxes indicate the
source-to-end delay of the peer, which is given by the largest
delay of the node in all the spanning trees. For example node
B has a delay of 15 given the same overlay paths in both trees.
Because node D has a delay of 26 in one tree and 24 in another,
its delay is . Similarly ’s delay can
be obtained as and ’s delay as

. We see that the delay accu-
mulates quite quickly as the number of peers increases.

From the above example, it is not difficult to see that in
general, streaming mesh can be pictured as the superposition

(or aggregation) of packet flows along multiple spanning trees.
The mesh delay of a node is the number indicated in the square
boxes in Fig. 1(b). Such delay is due to the longest path from
the source to the node in all the spanning trees. Mesh delay
captures the path length of packets from the source to the node.
Minimizing such delay also leads to low packet scheduling
delay arising from different packet arrival time at a node. In
P2P streaming, there are other uncontrollable packet delay
factors, such as packet transmission jitter, loss, etc. These are
not particularly sensitive to the number of peers and can hardly
be optimized, and hence will not be considered in this paper.
Mesh delay can be high especially when the peer population is
large and the mesh is not designed properly. Such mesh delay
accumulates fast as the stream has to go through many hops
and many constituent trees. In this work, we focus on mesh
construction minimizing the mesh delay of the nodes. The
design principle is to begin with a mesh with an “optimized”
low delay using a mesh construction algorithm, then applying
some buffering to mitigate jitters, we achieve an overall low
delay for live streaming.

To the best of our knowledge, this represents the first body
of work addressing the optimization of mesh delay for P2P
streaming. We address the problem from the following three
directions.

1) Problem formulation and a centralized heuristic. As pre-
viously discussed, low source-to-end delay is one of the
most important requirements for live streaming service. In
our work, we try to minimize this delay so that all peers
can have low delay in real-time streaming. Therefore, we
first formulate the minimum delay multiple trees (MDMT)
problem, which is to form a low-delay mesh meeting a cer-
tain streaming rate requirement for all nodes. Note that the
mesh may have loops and two peers are allowed to ex-
change contents between each other, e.g., nodes and in
Fig. 1. We represent the mesh as the aggregation of packet
flows along multiple spanning trees. We seek to minimize
the maximum delay of the peers in the mesh. We show that
the problem is NP-hard, and propose a centralized heuristic
(based on complete knowledge) which achieves very good
performance. This serves as a benchmark for our later com-
parison study.

2) Fast-Mesh: A distributed protocol for low-delay
high-bandwidth mesh. Based on the approach of our
centralized heuristic, we propose a novel distributed pro-
tocol called Fast-Mesh which builds a mesh with random
peer joins and leaves. Here,“Fast” means low delay and
high bandwidth (i.e., meeting a certain streaming rate
requirement). Our protocol works especially well when
frequent peer failures are unlikely, e.g., a proxy or super
node network. In a proxy-based peer-to-peer streaming
network, Fast-Mesh can build a robust, efficient, and
high-bandwidth proxy backbone to provide better stream
delivery to the peers. In Fast-Mesh, a new arrival initially
settles for a good set of parents. The mesh continuously
improves itself with the peers locating and connecting to
better parents to further reduce their delay. Such adapta-
tion mechanism is able to move the nodes to appropriate
positions in the mesh with very few steps.
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3) Simulation and experimental studies on the algorithms. We
conduct simulation and Planetlab study on our centralized
and distributed algorithms, and compare them with tradi-
tional and state-of- the-art approaches (closest-parents and
Outreach [5]). Results show that our algorithms achieve
substantially lower delay and server workload.

The rest of this paper is organized as follows. We first review
related works in Section II. Then we present the formulation of
the MDMT problem and the centralized heuristic in Section III.
In Section IV, we discuss Fast-Mesh, a distributed algorithm
to build a low-delay high-bandwidth mesh. Illustrative results
and comparisons based on both simulation and Planetlab exper-
iments are presented in Section V. We conclude in Section VI.

II. RELATED WORK

In this section, we briefly review previous work. Because a
peer in a mesh is served by many parents, a packet scheduling
mechanism is needed to decide when a parent should send which
packet. There has been much study on this to reduce packet re-
assembly delay or to improve throughput (see, for examples,
[6]–[9] and references therein). Our work is orthogonal to this
body of work, and the mesh built may apply any of the sched-
uling algorithms to achieve low-delay streaming.

It has been proposed to use a single tree to distribute streams
among peers, where all peers are arranged into a tree rooted
at the source [10]–[13]. The media is streamed down from
the source to every peer along the tree edges. Though the
tree approach is simple and achieves low delay, the streaming
rate cannot be guaranteed as it is limited by the least uplink
bandwidth of the nodes in the tree. Furthermore, opposite to
mesh, tree cannot accommodate network dynamics well to
achieve stream continuity. There has been much work on how
to construct trees for overlay streaming. Centralized algorithms
such as CoopNet and ALMI build a tree rooted at the streaming
source [11], [12]. Narada first constructs an overlay mesh, and
then spanning trees with multiple sources are generated on top
of the mesh for data delivery [13]. NICE and ZIGZAG are
distributed protocols which arrange the participating peers into
clusters and layers in a distributed manner to minimize delay
and workload [14], [15]. However the structures cannot be
easily maintained.

Mesh-based streaming systems are most popular nowadays
[16], [17]. Most of the existing work on mesh is based on
randomly connecting the participating peers to neighbors for
data exchange in a rather ad hoc or random manner (and leave
no mesh optimization) [18]–[20]. Based on gossip, the peers
gradually connect to some closest parents for data exchange.
Such closest parents approach leads to high delay from the
source-to-end hosts. Chainsaw is built based on request-re-
sponse data dissemination and gossip protocol [21]. Peers
request fresh data from neighbors in a BitTorrent-like manner.
As compared to the above, we present a formal study on mesh
optimization and a distributed protocol which achieves much
lower delay by optimizing the mesh structure through parent
selection and adaptations.

The asymmetric bandwidth problem has been studied in Out-
reach, which aims to minimize the source workload by making

full use of the peers’ uplink bandwidth [5]. Every peer in the net-
work estimates its upstream and downstream bandwidth differ-
ence. A newcomer randomly asks one of the source children to
perform the estimation and connects to the peers with the largest
bandwidth difference. As compared with Outreach, Fast-Mesh
achieves better performance because it continuously adapts and
improves the streaming mesh, and strategically places powerful
peers in appropriate upstream locations, e.g., at positions where
they enjoy low delay.

We have studied the problem of reducing mesh delay in our
previous work, which formulates the minimum delay mesh
(MDM) problem [22]. Our current work differs and advances
from it in three major ways: 1) MDM assumes no loops in the
network, i.e., the ancestor-descendant relationship cannot have
cycle(s). Under this setting, the problem formulation is more
restrictive than the current work. The “no loop” assumption
limits itself to fully make use of the uploading bandwidth
of peers. In the new MDMT formulation of this paper, we
consider the streaming mesh as an aggregation of multiple
trees. Each tree delivers a unique substream to all the nodes.
In this way, nodes are allowed to exchange substreams with
each other, hence allowing loops, i.e., parent-child relationship
may have cycles. Our current MDMT formulates a much more
general, common, effective, and useful case of peer-to-peer
streaming network than MDM. It is hence more powerful and
reflects reality. 2) We also propose a new centralized heuristic
and present the benefit of loops in the result section. Without
the “no loop” constraint, the heuristic algorithm for MDMT
formulation achieves lower peer delay because of a better
utilization of the uploading bandwidth of peers, especially
when the network resource (average peer bandwidth) is scarce.
3) Besides simulations, we have implemented our algorithm
and conducted Planetlab experiments on real Internet, and our
algorithm is shown to perform very well.

III. PROBLEM FORMULATION AND A CENTRALIZED HEURISTIC

In this section we first present the formulation of the MDMT
problem in Section III-A. Given the complete knowledge of the
overlay network, we then present a centralized heuristic to solve
the problem in Section III-B.

A. Problem Formulation

We model the overlay network as a complete directed graph
, where is the set of vertices including the

streaming source and the participating peers. is the
set of overlay edges. For any edge in , the cost of
the edge is the worst-case delay from node to node , given by
the sum of the underlay unicast path delay from node to node

in the physical network and the worst-case scheduling delay
(given by segment size times the maximum number of children
that the node can serve divided by its upload bandwidth).

We consider that bandwidth is normalized according to some
units. Each unit is the minimum packet flow rate between any
two nodes. For example, if a unit is 100 kbps, then the streaming
rate of a 300 kbps video is 3 units. A single source node
streams data to all nodes at a rate of units (the streaming rate),
where , . Each unit of stream is delivered to all
the nodes in by a specific spanning tree. Note that each tree
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delivers a unique unit, and hence, there are exactly spanning
trees in total. We consider the general case that the network core
is not the bottleneck of the network (i.e., bandwidth is limited
by the end hosts since the mesh is designed with close peers
connecting with each other). Denote as the spanning tree of
the th unit, and as the source-to-end delay of node in
spanning tree . Note that ’s do not need to be distinct and
they may share some edges. Clearly if node is the parent of
node in , . Denote the mesh delay
of node as , which is given by its maximum source-to-end
delay among all its spanning trees, i.e.,

(1)

For every node in , it has an uplink bandwidth of units,
, which represents the maximum number of children

it can serve in all spanning trees. For any node in , if it gets
an aggregate stream of units from its parents, we call node

fully served. In other words, if node receives streams from
all spanning trees, it is fully served and can play back the
video smoothly. Note that has a uplink bandwidth of units,
and it does not need to be served by other nodes. We assume
a streaming mesh exists, which requires the total uplink band-
width to be larger than the total downstream bandwidth, i.e.,

(2)

The MDMT problem is to find a mesh which minimizes the
maximum of the peer delay, i.e.,

(3)

subject to the streaming requirement, i.e., all nodes receive an
aggregate incoming stream of units.

1) Claim: The MDMT problem is NP-hard.
Proof: Travelling salesman problem (TSP) is reducible to

our MDMT problem in polynomial time. An input to TSP is
a weighted, undirected complete graph and a vertex

. Note that the TSP is to find a tour of minimum cost
through all vertices exactly once (Hamiltonian cycle) such that

is both the starting point and ending point.
The problem is in P. The maximum delay of a mesh can

be calculated in polynomial time. Therefore given a graph
and the min-max delay of the problem, we can verify

whether the mesh is the optimal solution. Now we prove that
TSP can be reduced into MDMT problem. The polynomial
time transformation is as follows. Let be the graph
of a TSP instance. We transform into
by adding a vertex and edges from all the vertices to .
In this way, the vertices in represent peers and the weight
on the edges are the delay between the two adjacent peers.
We let be the source, and consider the special case that the
uplink bandwidth of each peer is 1, and has zero uplink
bandwidth. Consider also the streaming rate to be 1. In this
way, the resulting overlay topology must be a chain starting at

and ending at . equals to the delay of which
is the sum of all delays preceding it. Hence, it is obvious that

in is minimum if and only if the cost of a tour in
is minimum. Therefore, TSP is polynomially reducible to

MDMT.

B. Centralized Heuristic

Given the NP-hard nature of our problem, we propose a cen-
tralized heuristic based on complete knowledge (i.e., knowledge
of the user pool at the beginning and pairwise distances between
them). The algorithm is suitable for small networks and serves
as a benchmark for the evaluation of our proposed distributed
protocol.

From (1), we can see that the mesh delay of a node is deter-
mined by the spanning tree with longest delay. Clearly, in order
to achieve overall low delay in the mesh, each node should main-
tain low delay in all spanning trees constructed. Since the node
delay is determined by the slowest tree, a good heuristic should
balance the delay of each node in all trees. Therefore for each
node, we reserve a certain amount of uplink bandwidth for every
tree. In this way if a node connects to a parent with low delay in
one tree, it could also connect to the same parent in other trees.
As a result, the source-to-end delay of a node in all trees would
be similar. In this way, there would be no bottleneck trees which
may significantly bring up the overall delay for a peer.

Without loss of generality, we assume that the spanning trees
are constructed in order from to . Let the total residual
bandwidth of node be , . Note that varies over
time as the trees are formed. Let be the maximum
amount of bandwidth that node uses for , . We
consider that the residual bandwidth , given trees
have been formed, is equally shared among the
remaining trees, i.e.,

(4)

Note that under this bandwidth allocation scheme, there is
enough uplink bandwidth reserved for each spanning tree to
fully serve all the nodes. This is because given that

(5)

we have

(6)

(7)

(8)

(9)

which simply says that the bandwidth is enough to serve all the
nodes.
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Define as the residual bandwidth of node as tree
is being formed. Our algorithm runs according to Algorithm 1.
We iteratively construct spanning trees. At the beginning of
each iteration, we calculate according to (4) for each
node . Starting with the source node as the root of the
tree, we push all the nodes in into the spanning tree one
by one using Prim’s minimum spanning tree algorithm, with
as the link cost, and nodes are connected to all of the parents in
the subtree with a positive . After all the nodes are pushed
into tree , we move to the next iteration to construct tree .
The algorithm ends when all spanning trees are constructed.

Algorithm 1 Pseudocode for the Centralized Algorithm

Input:

source node:

uplink bandwidth: for

edge delay: for

streaming rate:

Output:

Mesh composed of spanning trees with minimum
source-to-end delay

foreach do

end

for do

;

foreach do

Calculate ;

;

end

;

while do

;

;

foreach do

if then

foreach do

if then

;

;

;

end

end

end

end

Connect to ;

;

;

;

end

end

The complexity of the centralized algorithm is . The
algorithm constructs independent spanning trees one by one.
The time needed to construct one spanning tree is since
pushing each node into the tree needs to search for the
most suitable parent and child. Therefore, the time complexity
of the centralized algorithm is .

IV. FAST-MESH: A POWER-BASED DISTRIBUTED ALGORITHM

Given complete knowledge of the network topology and user
pool, the centralized heuristic works well to minimize delay.
Such a centralized heuristic works well for a small or managed
network. In practice, we do not usually have such global infor-
mation. A joining peer does not know all other current peers, let
alone all the distances between them. Besides, if the user pool
is large, we cannot have central planners keep track of thou-
sands of peers. In this case, our centralized heuristic can serve
as a benchmark for comparison. As our centralized heuristic per-
forms well, we propose a simple, efficient, and distributed pro-
tocol called Fast-Mesh which is scalable to a large group.

We first introduce the parent selection algorithm for newly
joining peers (Section IV-A). By selecting the right parents,
newcomers are able to have a low source-to-end delay and good
streaming quality. We then discuss the mesh adaptation mecha-
nism, which is used to further adapt the existing mesh to achieve
a better performance than the current one (Section IV-B). We
end by discussing node leave operation (Section IV-C).

A. Node Joins and Parents Selection

In a distributed streaming system, it is not feasible to con-
struct spanning trees one by one. Therefore, we construct a mesh
directly by connecting joining peers to multiple parents. Each
parent serves several units/s of streams until the streaming rate
is received by the joining peer. For protocol simplicity, we do
not keep track of the delays in each spanning tree; instead, the
delay of peer is calculated as , where

is the set of parents of node .
In mesh construction, we need to find a balance between delay

and bandwidth. Ideally peers should connect to a parent with
low delay to the source, but such parents may have residual
bandwidth lower than a full stream. If more parents are con-
nected, the delay inevitably increases. Therefore, a greedy ap-
proach based only on delay is not expected to perform well. We
propose to make use of a concept similar to power to achieve
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a balance between the delay and residual bandwidth. Tradition-
ally in networking, power is defined as the throughput divided
by delay. In this paper, we define the power between a peer
and its parent , denoted as , as the rate that is serving
divided by the source-to-end delay of from , i.e.,

(10)

where

(11)

The larger is, the better node is as a parent of node .
[We have used such power concept in our centralized heuristic,
where in (10) is replaced by 1, as each substream is of one unit
of bandwidth.]

A new peer contacts a rendezvous point (RP) which caches
a list of recently arrived peers. The RP returns a few nodes to
. Peer checks its delay from these nodes and requests their

residual bandwidth. It then evaluates its power to each of them
according to (10), and chooses parents in a greedy manner, i.e., it
first connects to the parent with the highest power. If this parent
cannot fully serve it, it then connects to the second one and this
process repeats until it is fully served. If the peers returned by
the RP cannot fully serve the newcomer, the newcomer requests
the neighbor of those peers. Then the above process is repeated
until it is fully served.

B. Adaptation to Support Peer Churn

In a distributed environment, peers may join or leave at any
time. Therefore, an optimal mesh should adapt to the current
network environment. This means that some nodes may need to
shift in position in the streaming mesh to achieve lower overall
delay. This is the goal of our adaptation algorithm.

The adaptation consists of three steps, Request, Grant and
Accept, detailed as follows.

1) Request: If its residual bandwidth is greater than the
streaming rate, a peer sends all its parents a REQUEST
message which contains its total uplink bandwidth and a
time-to-live field (TTL) indicating the number of upstream
levels REQUEST will go.

2) Grant: Upon receiving REQUEST, a node first decre-
ments the TTL. If the TTL is nonzero, it forwards the RE-
QUEST message upstream to all its parents; otherwise, it is dis-
carded. The node also checks whether its uplink bandwidth is
lower than that of the REQUEST sender. If it is, the node re-
sponds to the sender with a GRANT message which contains
its source-to-end delay. The GRANT message gives the RE-
QUEST sender the permission of taking over the node’s position
in the mesh.

3) Accept: A node may receive a number of GRANT mes-
sages, from which the ancestor that is the shortest distance from
the source is chosen. The node replaces all its existing parents
with that ancestor’s parents and adopts the ancestor as its own
child. In this way, the higher-bandwidth node is moved closer
to the source.

The key parameter in the adaptation protocol is the TTL
which determines how far away the REQUEST messages
travel. If TTL is high, on the one hand, more ancestors may
be reached and hence the node may perform a longer jump in
upstream positions. On the other hand in each step, this may
result in flooding the network. Our simulation results show that
a TTL of around 2 gives very good performance.

C. Node Leaves and Failures

When a peer is about to leave, it initiates a LEAVE message to
its parents, which releases the uplink bandwidth to the leaving
peer. It also sends a LEAVE message to all of its children so that
they can look for new parents in the mesh using the join process.
Peers also periodically exchange KEEP-ALIVE messages with
their parent nodes and children. When a node failure occurs, its
parents release their uplink bandwidth and its children seek for
new parents in the mesh.

Note that the protocol described here constructs a loop-free
mesh with low delay. In Section V, we see that if the total
overlay bandwidth is not a terribly scarce resource (the usual
case), the resulting mesh is likely to be loop-free. Therefore, we
choose not to use loops to keep protocol simple.

V. ILLUSTRATIVE SIMULATION RESULTS

In this section, we first present our simulation environments
and metrics (Section V-A), followed by our illustrative simu-
lation results in Section V-B. We have implemented Fast-Mesh
and conduct experiments in the PlanetLab. The experimental re-
sults are discussed in Section V-C.

A. Simulation Environment and Metrics

We use BRITE to generate different two-level top-down hier-
archical topologies [23]. Each topology consists of a number (8)
of autonomous systems, each of which has many (625) routers.
Brite also provides us link latency in a millisecond and peers are
attached to the routers randomly. The peer bandwidth is neither
the same nor uniformly distributed; instead, rich diversity has
often been found in the Internet [24], [25]. Their access link
bandwidth distribution is shown in Table I, which is according
to an extensive bandwidth measurement from a large-scale real-
world streaming event [26]. (For the sake of clarity, we mea-
sure the bandwidth in streaming units, a normalized measure
of bandwidth in kbps.) We have also run the simulations with
other bandwidth distribution, and the results are qualitatively the
same. Unless otherwise stated, we use the following baseline pa-
rameters: , , .
We assume the realistic scenario of a distributed global network
with small segment size (the usual case for tree-push as in our
study), and hence, the scheduling delay is negligible as com-
pared with propagation delay. (Our results are qualitatively the
same if a worst-case scheduling delay is added on each overlay
path.)

We use the following evaluation metrics.
• Delay: The primary concern of our protocol is the

source-to-end delay of the peers. This is the time taken
for data to travel from the streaming server to the peers.
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TABLE I
UPLINK BANDWIDTH DISTRIBUTION OF PEERS

We are mainly interested in the distribution, average, and
maximum delay among all peers in the mesh.

• Hop count: Hop count is the maximum number of interme-
diate peers on the overlay path from the source to a peer.
It gives us an idea of the depth of the overlay. Though a
lower hop count does not necessarily mean lower delay,
it does tell us the depth of the mesh and how the algo-
rithms position peers. Putting high-bandwidth peers near
the source allows branching to occur earlier, thus giving a
flatter topology. We are interested in both the average and
maximum hop count of the peers.

• Source workload: Source workload is defined as the
amount of bandwidth that the source uploads data to the
peers directly connected to it.

We compare the performance of our centralized scheme and
Fast-Mesh with two other schemes, namely, closest parent and
Outreach. In the closest parent scheme, newly-arrived peers
choose parents closest to them. This scheme is slightly better
than picking parents randomly as it can capture the locality
of the peers. This is simple, and therefore, quite a number
of streaming systems nowadays adopt it. Outreach have been
reviewed in Section II, and its details can be found in [5]. At
last, we explore the influence of loops in mesh streaming (by
comparing our loop-based algorithm with the loop-free one as
stated in [22]).

B. Illustrative Simulation Results

To illustrate the benefit of adaptation, in Fig. 2, we show
the average delay of peers against their bandwidth with and
without adaptation. Clearly, we see that the average delay is
reduced by using adaptation. This means that by putting high
bandwidth peers closer to the source, most peers can receive the
data streams sooner.

It should be noted that adaptation does not guarantee band-
width to vary with delay, though the peers with high bandwidth
are moved upwards aggressively. There are two reasons for this.
First, the ancestors of high-bandwidth peer may also possess
high bandwidth, so adaptation does not happen between them.
Second, those ancestors may have some other children (i.e., sib-
lings to the successor) with lower bandwidth. These peers, there-
fore, stay in the upper level of the mesh and enjoy relatively low
delay.

We compare the average and maximum delay of various
schemes versus the number of peers in Fig. 3. As the simulation
shows, delay increases when the number of peers increases.
The data need to go through more hops before reaching all
the peers. The centralized scheme performs the best due to
its complete knowledge of the network. Fast-Mesh performs
close to the centralized algorithm and substantially better than

Fig. 2. Delay of peers with different bandwidths.

Fig. 3. Delay versus number of peers. (a) Average delay. (b) Maximum delay.

the other schemes. Having a small delay with low growth rate
means Fast-Mesh is scalable to a large number of peers. This
illustrates the effectiveness of the heuristic combined with
adaptation in achieving low delay streaming mesh.
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Fig. 4. Hop count versus number of peers. (a) Average hop count. (b) Max-
imum hop count.

Fig. 4 shows the average and maximum hop count of the
schemes versus the number of peers. Similar to delay, the hop
count increases with peer number and Fast-Mesh performs close
to the centralized scheme and outperforms the other schemes.

Fig. 5 shows the amount of bandwidth consumed at the source
(source workload) versus the number of peers. The source up-
loads to more peers as the number of peers increases. The cen-
tralized scheme performs the best since it can most efficiently
utilize the uplink bandwidth of the peers. In Fast-Mesh and
closest parent scheme, the source has roughly contributed the
same amount of resources in order to keep the streaming mesh
performing. In fact, both of these schemes will try to utilize the
peers bandwidth as much as possible. Sometimes after a consid-
erable number of trials searching for good parents, a newcomer
still cannot find satisfactory parents. The best thing it can do is
to connect to the streaming source. Although the source work-
load of these schemes is larger than the centralized scheme, in
the lack of global knowledge, these values are acceptable. Out-
reach actively places peers under source, and thus, its reliance
on the source is relatively larger.

We define the Number of Adaptation Changes as the number
of peer position changes before the mesh settles into a steady

Fig. 5. Source workload versus number of peers.

Fig. 6. Number of adaptations versus TTL.

state. We evaluate the effect of different TTL values in the adap-
tation protocol. Fig. 6 shows the number of adaptation changes
versus the value of TTL. The more the adaptation happens,
the more often peers change their positions in the mesh. We
can therefore think of the cost of adaptation proportional to
the number of adaptations that occur. As expected, small TTL
values result in more adaptation; however, increasing the TTL
does not reduce the amount of adaptation changes by much.
From the simulation, we find that most adaptations, even for
large TTL values, only actually advance peers a few levels. This
indicates that even a small change in peers position can give a
considerable improvement over delay.

Beside comparing the number of adaptation occurrences, we
would like to know the delay reduction with different TTLs.
To this end, we use average (maximum) delay reduction, the
ratio of the average (maximum) delay reduction by adaptation to
the average delay without adaptation, to measure the proportion
of peer delay reduction. If these values are positive, there is a
reduction in delay time; otherwise, the delay has in fact gotten
longer.
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Fig. 7. Delay reduction versus number of peers. (a) Average. (b) Maximum.

Fig. 8. Average peer delay versus TTL.

Fig. 7 plots the average and maximum delay reduction versus
the number of peers. For clarity reasons, we only show the ex-
treme cases of TTL equaling 1 and TTL equaling 7 (the graphs
of other TTL values lie in between these two). The delay reduc-
tion TTL equaling to 7 is slightly larger than the case when TTL
equals to 1. The adaptation can significantly reduce peer delay.
It is important to delay sensitive streaming applications because
it allows shorter delivery time to transmit data from the source
to end-hosts. In this way, the peers will be less likely to miss
the playing deadline when it receives the data. Fig. 8 shows that
when the TTL increases from 1 to a higher value (say 7), delay
drops by only a little. Given system complexity considerations,
the TTL does not need to be high. Good values to have range
from one to three.

Finally, we explore the influence of loops in mesh streaming
by comparing our loop-based centralized algorithm with the
loop-free centralized algorithm proposed in [22]. The average
and maximum delays of the two algorithms we study are shown
in Fig. 9, where our algorithm is denoted as “loop-based” and
the algorithm in [22] is denoted as “loop-free”. We see that our

Fig. 9. Delay under loop and loop-free conditions with different bandwidth.

“loop-based” algorithm is generally better than the “loop-free”
algorithm. Moreover, under a scarce resource setting, where
there is little residual bandwidth left after fulfilling the required
stream rate for all the peers, the proposed algorithm significantly
outperforms the loop-free mesh.

Fig. 9 shows that having loops in the mesh helps reduce delay
in a tense bandwidth situation, and under a more realistic band-
width setting, the meshes, with or without loops, have a sim-
ilar delay. This is why we construct a loop-free mesh under a
real-world bandwidth setting, and also because loops compli-
cate the mesh structure and bring new scheduling problems.

C. Illustrative PlanetLab Experiment Results

We have implemented Fast-Mesh and run it in PlanetLab.
PlanetLab is a testbed for overlay networks, and it has been
widely used in the networking community to study the perfor-
mance of new protocols. We present some illustrative experi-
mental results in this section. The PlanetLab nodes in the ex-
periments are mainly located in East Asia, North America, and
Europe. The server is located in HKUST (Hong Kong) with a
ten-unit streaming rate. (We assume each unit is 30 kb/s.) The
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Fig. 10. Peer delay distribution.

distribution of the uplink bandwidth of the nodes follows the
same distribution as in Table I. The TTL field is set to 1 in the
experiment for simplicity.

Fig. 10 shows the delay distribution among all the partici-
pating peers. Most of the peers maintain a relatively low mesh
delay. Since the server is placed in Hong Kong, peers in the U.S.
and Europe have a higher delay than those located in mainland
China, Taiwan, and Japan.

Fig. 11 shows a snapshot of Fast-Mesh at a steady state (for
45 PlanetLab nodes). We make several important observations
below. First of all, the mesh is “tree-like”; most nodes have only
one parent delivering all ten substreams. Not many (10%–20%)
peers have multiple parents to meet the streaming bandwidth re-
quirement; even in this case, the nodes have few parents (mostly
two), and they are mostly located on the leaves. This all agrees
with our simulation results and shows that given a certain band-
width requirement, Fast-Mesh performs well in locating close
parents and constructing low-delay mesh. From the mesh, we
also observe that, due to ISP-peering issues, some substreams
need to go to Japan before going to China, and most of the nodes
in Europe are served via America instead of directly from Asia.

The experiment shows that Fast-Mesh constructs a low-delay
mesh suitable for P2P live streaming. The data we collected
from the experiment agree with our expectation as well as the
simulation results.

VI. CONCLUSION AND FUTURE WORK

In this paper, we investigate mesh construction minimizing
delay for P2P live streaming, with peers of asymmetric band-
widths. We formulate the mesh optimization as the MDMT
problem, which is to form a low-delay mesh meeting a cer-
tain streaming rate requirement. We show that the problem is
NP-hard and derive a centralized algorithm as the benchmark.
We then propose a distributed protocol called Fast-Mesh based

Fig. 11. Mesh formed by Fast-Mesh.

on heuristic and periodic adaptation. In Fast-Mesh, peers select
parents with high bandwidth and low delay based on the power
heuristic. The mesh continuously improves itself with peer
adaptation to further reduce delay.

We have conducted simulation and PlanetLab studies on
our centralized algorithm and Fast-Mesh. Simulation results
show that Fast-Mesh achieves much lower delays than tech-
niques commonly used. The adaptation process significantly
reduces mesh delay and source workload is kept low. From the
PlanetLab experiment conducted, we see that our Fast-Mesh
protocol is able to construct a low-delay mesh suitable for
live streaming. In the future work, we plan to enhance our
Fast-Mesh in terms of robustness to accommodate the highly
dynamic network, i.e., an environment with frequent peer
departures and failures.
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