
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 5, MAY 2015 723

Bucket-Filling: An Asymptotically Optimal
Video-on-Demand Network With

Source Coding
Zhangyu Chang and S.-H. Gary Chan, Senior Member, IEEE

Abstract—There has recently been growing interest for
content providers to provide video-on-demand (VoD) as a cloud
service. In such a network, the content provider may rent
heterogeneous resources (such as streaming and storage capacities)
from geographically distributed data centers deployed close to user
pools. These data centers (or proxy servers) collaboratively share
content with each other to serve their local users. A critical
challenge is to optimize movie storage and retrieval to minimize
the deployment cost consisting of streaming, storage, and network
transmission between data centers. We propose a novel and
effective movie storage and retrieval using linear source coding.
All the movies are source-encoded once at the repository, by
taking every source symbols of movie to generate coded
symbols. These coded symbols are then distributed to the servers
in the cloud. Based on a general and comprehensive cost model,
we optimize and the number of symbols to retrieve from
remote servers for a local movie request. The optimal solution
can be efficiently computed with a linear programming (LP)
formulation. Our solution is proved to asymptotically approach
the global minimum cost as increases. Even when is low,
near optimality can be achieved. To accommodate large movie
pool and system parameter changes, we propose algorithms for
movie grouping and on-line re-optimization which significantly
reduce the computational complexity with little compromise
on optimality. Through extensive simulation, our algorithm is
shown to achieve the lowest cost, outperforming traditional and
state-of-the-art heuristics with a substantially wide margin.
Index Terms—Distributed video-on-demand (VoD) cloud, linear

programming (LP), optimization, source coding.

I. INTRODUCTION

T HERE has been growing interest for content providers
to provide video-on-demand (VoD) as a cloud service.

In order to cost-effectively provide such distributed service, a
content provider may rent resources (bandwidth and storage)
at data centers. These data centers cooperatively store and re-
trieve movies, greatly reducing network load and scaling up the
streaming and storage capacities [1]–[3].

Manuscript received January 08, 2014; revised May 18, 2014, October 15,
2014, and February 19, 2015; accepted March 09, 2015. Date of publication
March 25, 2015; date of current version April 15, 2015. This work was sup-
ported in part by the Hong Kong Research Grant Council (RGC) General Re-
search Fund under Grant 610713, by HKUST under Grant FSGRF13EG15, and
the Hong Kong Innovation and Technology Fund under Grant UIM/246. The
associate editor coordinating the review of this manuscript and approving it for
publication was Prof. Tommaso Melodia.
The authors are with the Department of Computer Science and Engineering,

The Hong Kong University of Science and Technology, Hong Kong (e-mail:
zchang@cse.ust.hk; gchan@cse.ust.hk).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TMM.2015.2416636

Fig. 1. Distributed servers architecture for VoD service.

We show in Fig. 1 a cooperative VoD network with dis-
tributed data centers (servers). The network consists of a central
server (repository) storing all the movies and data centers, also
termed as proxy servers in this paper, placed geographically
close to user pools.1 While the central server stores all the
movies, the proxy servers may be of limited, and possibly
heterogeneous, storage which can only locally store a fraction
of the movies (full replication at all the proxy servers is not
cost-effective, especially for VoD applications where movie
popularity is often skewed). Each user has a home (or local)
proxy server to serve his movie request. If the home server
has the requested content (a hit), it directly streams to the
users from its local storage. Otherwise (i.e., a miss), the home
server requests the content from a remote server, which is
either a proxy or the central server. The missed content is then
streamed “via” the home server to the request. To minimize
user delay, movies are not downloaded at the clients before they
are played back. (The user startup delay can be further reduced
by pre-storing the “prefixes” of the leading, say, 30 seconds of
movies at each server. In any case, such technique is orthogonal
to our current study.)
In the VoD cloud, a critical challenge for the content provider

is to minimize the total deployment cost given by the sum of
server and network costs through optimizing movie storage and
retrieval at the servers. We consider server cost as a general
function of its own storage and streaming bandwidth (maximum
capacity or utilized). In addition, we consider network cost as
the bandwidth cost to stream data from a server to another (a
function of the data traffic between two locations). As different
from previous work [4]–[12], our cost model is much more
general and captures the important cost components for system
deployment.

1In this paper, “client” and “user” are used interchangeably, and so are
“movie,” “video,” and “content.”

1520-9210 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

724 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 5, MAY 2015

Optimal movie storage and retrieval in a VoD network is gen-
erally regarded as NP-hard [5], [13]. This is mainly because a
movie (or its constituent segments) at a server is often regarded
as either stored or not, resulting in a 0-1 integer programming
problem. Because of the intractability of the problem, many
heuristic algorithms have been proposed. It is often not clear
how well these heuristics perform as compared with the op-
timum, let alone approaching such optimum.
We propose a novel movie storage and retrieval algorithm

which achieves asymptotically optimal solution, i.e., the deploy-
ment cost can be arbitrarily close to the global minimum (by in-
creasing a system parameter which trades off optimality gap
and coding complexity). Even under practical and realistic con-
dition, the system performs very close to the optimum, signifi-
cantly better than the other state-of-the-art heuristics (often by
many times).
In the VoD network, movie is source-encoded only once

at the repository by taking every source symbols to generate
coded symbols using a general linear source coding

technique (such as Reed-Solomon code, Maximum-Distance-
Separable (MDS) systematic erasure code, etc.), where
is the optimizing parameter in our study, and is a tunable
network-wide parameter depending on how much coding com-
plexity and decoding delay one is willing to accept.
The repository stores of these coded symbols, and the

remainder is distributed at the other proxy servers without du-
plication (obviously no more than at each server). So long as
any out of the symbols are collected, the original source
symbols can be recovered at the proxy. As the decoding over-
head of linear coding has been shown to be low (as compared
with video decoding), such decoding can be done either at the
proxies or directly at the users [14].
To serve a local request for a movie, one hence may imagine

that the request carries a “bucket” of size symbols. The bucket
is first filled by downloading the coded symbols at its home
server. If this does not fully fill up the bucket, the home server
collects by pulling the remaining symbols from the other servers
(including the repository). Once coded symbols are collected,
the source symbols can then be played back.
It is clear from above that by distributing and retrieving sym-

bols from servers in an intelligent manner, the deployment cost
can be minimized. The major issues are hence, given , what
the optimal is for movie , how many symbols should be
stored at a server, and how many symbols to retrieve from each
of them for a movie request.
Our contributions are three-fold, as follows.
• Bucket-filling: A novel movie distribution and retrieval al-
gorithm based on source coding (SC):We propose a novel
video-on-demand network using linear source coding. Our
scheme, termed bucket-filling, is a remarkably simple and
effective movie distribution and retrieval scheme mini-
mizing system cost.

• Provably asymptotically optimal performance for dis-
tributed video-on-demand: By optimizing for movie
, bucket-filling is able to minimize deployment cost con-

sisting of server storage, server bandwidth, and network
access. Bucket-filling uses an efficient linear program (LP)
and discretization to optimize symbol distribution and
retrieval at servers. Its cost can be proved to be arbitrarily

close to the exact global minimum as increases, i.e.,
asymptotically optimal in terms of . We illustrate that
even under the most general and realistic condition of
low values of (around 30), the system performs closely
optimal.

• Efficient grouping and on-line re-optimization for large
movie pool: To further address large movie pool, we
propose a movie grouping algorithm based on K-means
clustering which significantly reduces computational
complexity (by a factor of , where is the
number of movies) with little compromise in optimality.
Our scheme also easily applies to system changes due to,
for example, introduction and removal of movies, change
in network cost, introduction of servers, etc.

We conduct extensive simulation and comparison study with
other traditional and state-of-the-art schemes. Our results show
that bucket-filling achieves asymptotic optimality in system
cost, outperforming the other schemes by a significantly wide
margin (multiple times in most cases). The results show that the
performance of many previously proposed heuristics are still
far from the global optimum, and bucket-filling can achieve
performance arbitrarily close to it. Furthermore, with very low
computational cost, our grouping scheme can still achieve close
to optimal performance.
This paper is organized as follows. We first review related

work in Section II. We then describe how the VoD system works
with source coding and formulate the optimization problem in
Section III. In Section IV, we present symbol storage and re-
trieval solutions for bucket-filling, movie grouping algorithm
for large movie pool, and system re-optimization due to param-
eter changes. In Section V, we show illustrative simulation re-
sults on the performance and comparison of bucket-filling. We
conclude in Section VI. We review linear source coding and
prove the asymptotic optimality of bucket-filling in Appendix
A and B, respectively.

II. RELATED WORK

We briefly discuss previous work below. There has been
much work applying network coding or fountain codes in
peer-to-peer VoD [15]–[19]. These schemes incur significant
processing and re-encoding overhead in the peer network and
may lead to duplicated symbols, which decreases network
efficiency. As receiving duplicated symbols affects stream
continuity, the work in [20] discusses the design of
for source-coded VoD to reduce duplicated symbols in the
network. The objective of the work, together with the recent
work on peer-to-peer VoD [21]–[24], is to fully utilize the up-
loading bandwidth of the peers. The work in [25], [26] presents
heuristics to efficiently search for movie segments in order to
support user interactivity. All the work in [15]–[26] has not
considered the optimal movie storage and retrieval to minimize
the deployment cost due to bandwidth and storage. Our work
presents an asymptotically optimal solution for a novel VoD
network. The use of source coding is a one-step encoding
process without any symbol duplication in the network, which
leads to storage and access efficiency.
For the work studying the cost issue for VoD [4]–[12],

they often have not sufficiently considered the general case

CHANG AND CHAN: AN ASYMPTOTICALLY OPTIMAL VOD NETWORK WITH SOURCE CODING 725

including all the cost components. We consider a realistic and
general VoD deployment model, which captures a comprehen-
sive set of parameters with major cost components in regards
to network access cost, storage constraint and streaming cost
of the servers.
As movie replication and retrieval problem is typically re-

garded as NP-hard, various heuristics have been proposed [4],
[5], [13], [27], [28]. These algorithms are generally sub-optimal.
As the performance bounds of these algorithms are not easy to
analyze or derive, it is not clear how far their performance is
from the optimum. In contrast, bucket-filling achieves asymp-
totically optimal performance, i.e., it can be arbitrarily close
to the exact minimum cost by increasing the system parameter
. Such optimality is hence achieved with increasing decoding
overhead given by . Our optimality is shown to be significantly
better than the state-of-the-art schemes. Furthermore, previous
algorithms are often based on iteration [29][, [30], which may
have convergence issue for a large network. Bucket-filling, on
the other hand, is efficient as it is not based on iteration and has
a guaranteed worst-case algorithmic complexity.
In summary, our work distinguishes and advances from the

previous ones in the following major aspects.
1) We propose a novel video-on-demand network based on

source coding for efficient movie distribution and retrieval.
This architecture ensures efficient video access without du-
plicated symbols.

2) We comprehensively consider the major cost components
of a realistic VoD network and address its cost optimization
issue.

3) Our algorithm is provably asymptotically optimal and
has guaranteed worst-case time complexity, which out-
performs the state-of-the-art schemes in terms of both
deployment cost and algorithmic complexity.

A video-on-demand network called LP-SR has been pre-
sented in [31], [32]. In this scheme, the movies are partitioned
into many segments for storage and retrieval. Compared with
it, bucket-filling advances in the following ways.
1) Bucket-filling substantially reduces the time complexity of

the optimization. It is not based on segments, and uses a
radically different and efficient discretization process by
means of source coding. As any of coded symbols
can recover the original source symbols, bucket-filling is
flexible and amendable to system changes. Such novel use
of source coding markedly reduces the time complexity
of the solution, and leads to a much different joint movie
storage and retrieval strategy (see Section IV).

2) Bucket-filling is provably asymptotically optimal. Due to
the simplicity and tractability of bucket-filling, we are able
to prove that bucket-filling approaches the exact optimum
as increases.

3) We propose an efficient movie grouping algorithm based
on K-means clustering, which substantially reduces the
time complexity. Simulation results show that our scheme
can optimize a typical VoD network with thousands of
movies in seconds with little sacrifice on performance (see
Section V-C). Besides, we give an on-line re-optimization
algorithm to accommodate system changes with minimal
symbol redistribution.

A preliminary version of this work has been reported in [33].
This work extends it in various major ways, as follows.
1) We prove the asymptotic optimality of bucket-filling. This

proof demonstrates that bucket-filling can be arbitrarily
close to the exact optimum as increases.

2) We propose an efficient movie grouping algorithm based
on K-means clustering, which greatly reduces the running
time of the algorithm for large movie pool with close-to-
optimal performance.

3) We present a novel and efficient re-optimization method
with little overhead in symbol redistribution when re-opti-
mizing the system.

4) We showmore substantial illustrative results to validate the
strong performance of bucket-filling, our new clustering
and re-optimization methods.

III. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

In this section, we first present how bucket-filling works in
the VoD network (Section III-A). We then present the cost opti-
mization problem of the VoD network for the asymptotic case

(Section III-B). In this case, the formulation becomes an
LP which can be solved efficiently. For finite , the LP solution
requires further discretization which is discussed in Section IV.

A. System Operation

A movie is source-coded only once at the repository by
taking every equal-sized source symbols to generate
coded symbols of the same size. (Given a certain symbol size
(in bits), a movie of longer length hence generates more number
of source symbols and thereof coded symbols.) Out of the
coded symbols, the repository stores any of the coded sym-
bols, and distributes the remainder without replication to the
proxy servers. Note that the repository and servers do not need
to store more than symbols out of , because the original
source symbols can be fully reconstructed with any of the

symbols.
In bucket-filling, the symbols are “streamed” to the server and

the number of symbols to retrieve from each server for a request
is determined in the optimization process at the repository. Such
retrieval decision is deterministic where a fixed number of sym-
bols are retrieved from a server (a non-probabilistic approach).
As the solution can be obtained with a simple table look-up, the
communication overhead of servers is minimal.
In the network, movies are distributed and retrieved ac-

cording to the following.
• Coded symbol distribution: Given , the repository com-
putes the optimal for each movie. It then encodes the
movies accordingly once and distributes the coded sym-
bols of the movies to each server. Such symbol distribution
needs to be done only upon major system changes, e.g.,
upon the introduction and removal of movies or change in
movie popularity which affects movie storage in a major
way. (We address how this re-distribution can be done ef-
ficiently due to re-optimization in Section IV-C.)

• Coded symbol retrieval: A movie request carries a bucket
of size symbols. If its home server has not stored, and
hence cannot supply, symbols to serve the request, it

726 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 5, MAY 2015

Fig. 2. Illustrative example for bucket-filling with , one movie,
, and two proxy servers.

“pulls” the missing ones from the other proxy or cen-
tral servers so as to fill up the bucket. Through this
bucket-filling mechanism, the servers cooperatively store
and supply symbols on-demand with each other to fulfill
requests.

We present an illustrative example of bucket-filling in Fig. 2,
which shows a simple VoD network with 1 movie and 2 proxy
servers. Given , suppose the optimal solution is ,
i.e., the repository (central server) encodes the movie using 7
source symbols to generate 12 coded symbols.
After storing coded symbols itself, the repository dis-

tributes the remaining coded symbols to the proxy
servers. In this example, servers and get 2 and 3 symbols,
respectively.
An interactive request for the movie has a bucket of size

symbols. To fulfill it at server , server supplies its
stored 2 symbols and gets 2 and 3 symbols from the repository
and server , respectively. On the other hand, server fulfills
its request by supplying 3 local symbols and getting 2 symbols
from the repository and server each.

B. A Linear Programming Formulation

In this section, we present the cost-optimization problem of
our VoD network for the asymptotic case given movie
popularity (how to estimate movie popularity is beyond the
scope of this work. Interested readers may refer to [25], [26],
[34] and references therein). For this case, the optimization
becomes an LP which can be solved efficiently and exactly.
We show in Table I the important symbols used (similar no-

tations have also been used in [31], [32]). The overlay network
is modeled as a directed graph , where is the
set of central and proxy servers and is the set of
overlay edges connecting nodes in (may not be complete).
Let be the set of movies and be the movie length (i.e.,
movie length before source coding). Let be the popularity
of movie , which is the probability that a user requests movie
, where .
Each movie is source-coded to different length (obviously no

less than). Let (seconds) be the amount of coded
movie that server stores. Obviously, we have

(1)

Note that for the repository (i.e., central server), we require
, .

TABLE I
MAJOR SYMBOLS USED IN THIS PAPER

Server has a certain storage capacity (seconds). To meet
storage requirement, we require

(2)

Let be the total movie request rate at server (requests
per second); the request rate for movie at the server is
hence . Further let be the average holding (or
viewing) time for movie , where .
Each user retrieves data from the servers (including his home

server) proportional to his holding time. Let (seconds) be
the amount of movie supplied from server to server for a
user holding time of . We hence must have

(3)

Note that we have considered user interactivity on movie
through , which may be different for different movies
(interesting movies may have , or vice versa). Fur-
thermore, we are interested in average holding time, as we
are considering time-averaged cost at steady state (hence the
distribution of the holding time may be different for different
movies). While interacting with the movie, a user holds up a
stream and may uniformly visit any symbols of the movie over
time.
Therefore, the actual amount of streamed data is given by

. As the server cannot supply more than that it stores,
we need

(4)

and, by definition, .

CHANG AND CHAN: AN ASYMPTOTICALLY OPTIMAL VOD NETWORK WITH SOURCE CODING 727

Let (bits/s) be the total network bandwidth used for
symbol transmission from server to , which can be obtained
as

(5)

for , and, by definition, .
Let be the network cost due to the directed traffic from

server to . It is a monotonically non-decreasing piece-wise
linear function in , i.e., for all
with . Note that our model is general as does not
have to be the same as .
The total network cost is hence

(6)

The servers help each other using “cache and stream” model,
i.e., a remote server streams to a user through his home server.
In other words, the home server is an intermediate node between
the remote server and the users. For any remote server ,
the data rate the server “pulls” from server for movie is

. The total rate (bits/s) that server serves
other servers is hence

(7)

While network cost depends on the traffic between pairs of
servers, the cost of a server depends on its total storage and
uploading rate used (in order to serve other servers in the net-
work). Such storage and rate are limited by its disk capacities
independent of other servers. Let be the cost of operating
server , which is a monotonically non-decreasing piece-wise
linear function in and , i.e., for all

. In other words, the server cost consists of storage cost
and streaming cost.
Therefore, the aggregated server cost is

(8)

Finally, the total system deployment cost is

(9)

We state our cost-optimization problem as optimal movie dis-
tribution and retrieval problem to minimize deployment cost:
Given topology , user demand , storage capacity ,
movie popularity and cost functions and , we
seek to minimize the total cost given by (9), subject to (1) to (5).
The output is the optimal solution of the amount of the movie
stored in each server (i.e.,) and the retrieval amount be-
tween servers (i.e.,).
Note that, for arbitrary piece-wise linear functions of and
, the above problem becomes a linear programming (LP)

problem which can be solved efficiently.
Time complexity of the LP solution: To solve the LP, we may

employ CVX [35] which implements the wide-region cen-
tering-predictor-corrector algorithm (an interior-point method)
to solve this problem [36]. The number of variables of the above

formulation is . Therefore, it has an
worst-case iteration bound and overall expected
time complexity.

IV. BUCKET-FILLING: SYMBOL STORAGE AND RETRIEVAL
The solution of the LP formulation in Section III-B is for the

case , which requires further discretization for finite .
We present a discretization process which achieves closely op-
timal and is asymptotically optimal in . The system approaches
exactly optimum as approaches infinity (Section IV-A). In ad-
dition, we propose an efficient movie grouping algorithm based
on K-means clustering for large movie pool (Section IV-B) and
an efficient symbol redistribution scheme to respond to changes
in system parameters (Section IV-C).
Note that the solutions for symbol distribution and retrieval

can be implemented in a central optimizer, and updated regu-
larly based on the prediction interval on user traffic and movie
popularity over time.

A. Parameter Discretization to Achieve Asymptotic Optimum
The LP yields optimal solution for system parameters

and for movie . Given these parameters, the movie
can then be encoded, distributed, and retrieved according to the
following (for large).
• Movie encoding: To obtain the encoding parameter ,
observe that the source-coded and raw movie lengths must
satisfy the following equation:

i.e.,

(10)

• Symbol distribution (storage): The number of symbols that
server stores out of coded symbols is given by

(11)

• Symbol retrieval (collection): The number of symbols for
server to stream to server out of coded symbols is

(12)

It is clear that , and in (10)–(12)
are exactly the LP optimal solutions as . For finite
, they should be discretized to integral values. We present
below a simple discretization approach which converges to
the asymptotic optimum as increases. The basic idea is that
each proxy tries to match the optimal LP solution as much
as possible through integer rounding. In symbol retrieval by
filling a bucket, the shortfall in symbols due to rounding can be
obtained from the repository.
• Discretize : We first round down the result
as obtained in (11) to its closest integers. For each server ,
it first stores according to these integers for all the movies.

728 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 5, MAY 2015

This clearly does not violate its storage constraint given
in (2). For the residual storage it then stores a symbol of
each movie in decreasing popularity until its total storage
is fully used up.
After this, the new are of integral values. The
coding information for movie is then given by

(13)

• Discretize : This is similar to the discretization of
. First we write in (12) as the sum of an inte-

gral part and a positive fractional part. Clearly, the integral
part does not violate the supply constraint as given in (4).
To recover the source packets, we first rank the movies
according to decreasing popularity. We then conditionally
round up the fractional parts to 1 of the movies until (3) is
satisfied, and the remaining fraction is rounded down to 0.
If (3) is still violated after all the rounding, the remaining
symbols are assigned to the repository.

In discretization, all the home servers and movies are
traversed, and the time complexity is ; in
discretization, all the home servers, remote servers and movies
are traversed, and the time complexity is . The time
complexity of the discretization steps is hence .
Therefore, the total time complexity of our algorithm is

.
The discretization steps guarantee that all the movies can be

recovered at each server. In Section V-B, we can see from the
simulation that the performance penalty due to rounding is very
low. We prove that the system cost can be arbitrarily close to
the exact optimum as increases (i.e., asymptotically optimal)
in Appendix B.

B. Efficient Computation for Large Movie Pool
In terms of the number of movies , the computational

complexity of linear programming for bucket-filling is
(Section IV-A). Even though it is of polynomial complexity, for
a large movie pool, it is necessary to find a more efficient way
to compute the solutions.
We propose an efficient movie grouping algorithm based on

K-means clustering which achieves a polynomial reduction of
a substantial factor of in complexity with close-to-op-
timal deployment cost. We begin by denoting the load index

as

(14)

since the access and its holding time indicate the streaming load
of the movie. The key idea is to put the movies with the sim-
ilar load indices into one group and minimize the sum of the
difference on load index within each group. Let be the set of
groups and be the th group in , and the number of groups

is given as a network parameter. We illustrate the perfor-
mance with simulation results in Section V-C.
To motivate our grouping algorithm, consider a set of movies

. From (5) and (12), we get the network transmission due
to movies in as

(15)

If all the movies has the same (given by) and
(given by), (15) can be written as

(16)

Namely, if we group the movies with the same and let
be the same, can be treated as a “super movie” with load index

and length for the linear program.
In the case that the movies are of different , we hence

may put the movies with similar into a group and min-
imize the sum of the differences of load index within each
group. To formulate it mathematically, the objective of our
movie grouping algorithm is

(17)

where is the mean of group . This formulation is
exactly K-means [37], a method to partition data into clusters
in which each data belongs to the cluster with the nearest mean.
Note that the group size of each group may not be the same by
K-means clustering.
The above grouping scheme leads to the following:
• Length: Each group size satisfies

(18)

• Group load index: The group load index is given by

(19)

After movie grouping, we run linear programming on these
groups by treating them as “super movies” with load index

and length . In the phase of parameter discretization,
we use the methods described in Section IV-A to get the storage
and retrieval parameters and for each “super movies”
. Then we need an extra step to get the storage and retrieval

parameters and for each movie .
In the server , we have space to store all the movies

. The guiding principle of our placement algorithm is
that all the movies in the same group should have similar .
Accordingly, we use rarest first in symbol placement. Specifi-
cally, when a server makes a symbol placement for a group ,
it increases the smallest by 1 for movie until the
space budget of is fully consumed. In our retrieval algorithm,
we make for . If for some ,
we reduce to make and the remaining sym-
bols are assigned to the repository.
General K-means clustering problem is usually regarded as

NP-hard. However, K-means clustering in one dimension (our
case) can be solved exactly in time by dynamic
programming [38]. After we group the movies, the complexity

CHANG AND CHAN: AN ASYMPTOTICALLY OPTIMAL VOD NETWORK WITH SOURCE CODING 729

to solve the linear program has been reduced to .
As the discretization still takes time, the total com-
plexity is . In terms of the
number of movies , the complexity is reduced by a factor
of . In addition, because is usually quite large,
for the running time of linear programming, the complexity re-
duction from to is also significant.

C. Re-Optimization Due to Changes in System Parameters

Due to changes in system parameters, a VoD network needs
to be periodically “re-optimized” for the best performance. Such
changes in system parameters may be due to, for example, the
following.
• Movie changes: The VoDmovie pool may be updated from
time to time, due to movie introduction, movie removal,
change in the expected movie popularity, etc.

• Server changes: Servers may be introduced, replaced or
removed from the network. The storage and bandwidth of
some of the servers may also be increased or reduced due
to a change in longer-term user traffic.

• Network changes: Network transmission cost may change
due to changes in network technologies or contractual
terms in bandwidth.

Though we do not expect the system going through signifi-
cant changes very frequently (e.g., on the daily or weekly basis),
such change needs to be considered to achieve the best perfor-
mance over time through symbol redistribution (retrieval mech-
anism is similar and hence will not be discussed here).
A strength of bucket-filling is that it is easily amendable

to system changes, and does not lead to much overhead in
symbol redistribution in times of re-optimizing the system. We
present here a simple and efficient solution which involves only
incremental network transmission upon system changes which
requires no re-encoding or re-distributing all the movies. This
is due to source coding we use—stored coded symbols can be
independently re-used, added, or replaced to reduce symbol
transmission. This greatly saves the re-optimization work of
the network.
We redistribute the movie symbols when

the system changes from time to . Let
be the number

of symbols for movie that server stores at time
(). Let
be the symbol difference between time and , given by

for all .
Therefore, if , the repository will transfer

symbols of movie to server . On the other hand,
if , server will discard symbols of
movie .
To make the encoding more efficient, the repository may ini-

tially generate coded symbols once off-line by a generator ma-
trix with some high . This is to avoid encoding the same
movies again under system changes. In this way, the repository
only needs to send its pre-computed symbols to proxy servers
upon system changes. Note that our symbol redistribution is
a one-step process (and hence no convergence problem), and
is able to maintain the optimal movie distribution among the
servers while keeping the symbol transmission minimal.

TABLE II
BASELINE PARAMETERS USED IN OUR STUDY

V. ILLUSTRATIVE SIMULATION RESULTS

A. Simulation Environment and Performance Metrics
In this section, we present our simulation environment and

performance metrics to study the performance of bucket-filling.
Bucket-filling can be applied to any movie popularity. For

concreteness in our simulation, we consider that movie popu-
larity follows the Zipf distribution with Zipf parameter , i.e.,
the request probability of the thmovie, denoted as , is given
by . In our simulation, we consider that requests ar-
rive at each proxy server according to a Poisson process with
total rate (req./second). It is clear from Section IV that the
optimization of bucket-filling does not depend on the specific
request process at server but its arrival rate . Therefore, the
results and conclusions may be extended to any request pro-
cesses or traces so long as they share the same request rate. The
proxy servers have heterogeneous storage space and bandwidth
following a Zipf distribution (independent of each other). The
repository stores all the movies with a streaming capacity twice
of the average streaming capacity of the proxy servers. The VoD
network consists of a number of distributed proxy servers. All
our results are obtained at steady state. Unless otherwise stated,
we use the default values shown in Table II for our system pa-
rameters (the baseline case).
We consider the network cost function from server to server
proportional to the bandwidth between them, i.e.,

(20)

where is some constant (by definition,).
The server cost is a function of its storage and its total band-

width used to serve the remote servers, modeled as

(21)

where is a constant (in our simulation),
and is a piece-wise linear function monotonically in-
creasing in . We show in Fig. 3 versus in our
simulation, where is the streaming capacity of the server and
hence is the bandwidth utilization of the server. There
are three linear segments formed by points (0,0), (0.8,0.125),
(0.93,0.4375) and (0.99,1.925) (these coordinates are obtained
from the queueing model , where is some
constant). The cost increases with the bandwidth utilization. As

730 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 5, MAY 2015

Fig. 3. Streaming cost model at proxy server.

TABLE III
NETWORK TRANSMISSION COST

the consumed bandwidth approaches the bandwidth capacity
, the server cost increases more sharply.
To validate the streaming cost in our simulation setting, we

have conducted an experiment to measure the queueing time of
a server given the bandwidth utilization levels.2 Fig. 3 shows
that the experiment results match our queueing model well.
We validate our storage and network transmission cost in our

simulation with the data of Google Cloud Platform.3 We show
in Table III the network transmission cost in North America
and Asia, which indicates that linear functions fit the price well.
The cloud platform also indicates the storage cost as fixed at

for a GB per month, which agrees well with our simula-
tion setting.
The performance metrics we are interested in are:
• Total cost (unit/s), which is the sum of server cost and net-
work cost according to (9). This is the deployment cost of
the network.

• Server cost (unit/s), which is the sum of its storage and
streaming defined in (8) and (21). We further examine the
following cost components:
— Storage cost, which is the total cost due to server

storage.
— Streaming cost, which is the server bandwidth cost to

support other servers.
• Network cost (unit/s), which is the network transmission
cost defined in (6) and (20).

• Movie cost (unit/s), which is the average cost to access
movie .

• Computation time, which is the running time of the
optimization.4

We compare bucket-filling with the following traditional and
recent movie replication schemes:
• Random, where each server randomly stores movies
without considering their popularity. This is a simple
storage strategy.

2We use a 64-bit ThinkCenter with Intel Core 2 4400 CPU 2.00 GHz and
RAM 1.00 GB. The unit is in seconds.

3[Online]. Available: https://cloud.google.com/products/cloud-storage/. Ac-
cessed on: May 6, 2014.

4As the running time depends on the machine used, we have normalized the
time in terms of some unit. For a 64-bit ThinkPad T420s with Intel i7 2620M
CPU 2.70 GHz and RAM 8.00 GB, the unit is in seconds.

Fig. 4. Total cost versus request rate given .

Fig. 5. Optimal versus movie index.

• Most popular first (MPF), where each server stores the
most popular movies. This is a greedy strategy, but does
not take advantage of cooperative replication.

• Local greedy [4], which divides the movies into three cat-
egories: those popular ones which all servers store (full
replication), those medium popular ones which only one
proxy server store (single copy), and those unpopular ones
which only the repository stores (no copy). By formulating
an LP problem, it seeks tominimize network cost. As Local
Greedy assumes homogeneous access cost, we set its ac-
cess cost to be equal to the average access cost between
servers in our network.

• LP-SR [31], [32], which partitions movies into segments
for storage and retrieval. LP-SR is also based on linear
programming to achieve closely optimal solution.

For all the comparison schemes except LP-SR, upon a miss
request, the home server chooses an available server which
has the requested content with a probability proportional to

. It is a reasonable, simple and effective strategy because
the server with lower access cost has higher chance to be
chosen. With this probabilistic approach, a server with low
access cost is not always selected so as to avoid congestion,
and hence high streaming cost, at the server.

B. Bucket-Filling Performance
We plot in Fig. 4 the total cost versus request rate given .

The total cost increases with the request rate mainly because of
the increase in network traffic. As increases, the network ap-
proaches the exact optimum given by linear programming (cor-
responding to the case). However, for humble value of
(say 30), the performance is already very close to the optimum

(less than 6% deviation in this). This shows that our network is
highly efficient, with closely optimal performance even for all
the practical (finite) value of .
We show in Fig. 5 the optimal versus movie index. Also

shown is the corresponding movie popularity (default setting)

CHANG AND CHAN: AN ASYMPTOTICALLY OPTIMAL VOD NETWORK WITH SOURCE CODING 731

Fig. 6. Total cost and the cost components versus proxy storage.

Fig. 7. Total cost versus request rate given different schemes.

and the number of raw/source symbols . We see that the movie
popularity exhibits some skewness with a tail (with
and , the top 30% of the movies account for close to
60% of the total traffic). The optimal decreases with movie
popularity. This is reasonable because the servers tend to locally
store more of those popular movies to reduce transmission cost
in the network. For the unpopular ones, fewer symbols are gen-
erated and stored in the whole network. We see that no matter
how unpopular the movie is, the number of symbols is higher
than , meaning that some symbols are stored in the network
besides those at the repository.
We show in Fig. 6 the cost components (server streaming,

server storage and network traffic) and total cost versus proxy
storage (the average storage at proxies). The total cost falls off
quite sharply initially but rises up gradually again, showing a
minimum at some storage point. At the beginning when the
proxy servers have little storage, all the traffic concentrates on
the repository, leading to high overall streaming cost. As proxy
storage increases, the repository load decreases and so does the
streaming and network transmission cost. As storage further in-
creases, storage cost becomes the major cost component.
We compare in Fig. 7 the total cost versus the request rate

for different schemes. Total cost increases with request rate
mainly due to the increase in network traffic. Bucket-filling
clearly achieves much lower total cost among all the schemes,
beating them by multiple times except LP-SR. In other words,
given the same deployment budget, bucket-filling can support
much higher request rate (i.e., more concurrent users in the
system). MPF does not perform well because it mainly relies
on the central server to serve the requests for the unpopular
movies. Random, due to its popularity-blind nature, stores
insufficient copy of the popular movies, leading to considerable
cost. As Local Greedy is based on LP optimization and has a
proven upper bound of optimality gap, it performs substantially

Fig. 8. Computation time versus movie number given different schemes.

Fig. 9. Total cost versus Zipf parameter of movie popularity given different
schemes.

better as compared with other approaches in practice (MPF and
Random). Bucket-filling achieves by far the best performance
(near optimality) because of its use of source coding to achieve
design simplicity and comprehensive consideration of every
components of the deployment cost. Though bucket-filling
is similar and slightly better than the state-of-the-art scheme
LP-SR, it has much lower computation time as shown in Fig. 8.
We show in Fig. 8 the computation time of bucket-filling

and LP-SR for different movie numbers. The computation
time increases with the total number of movies. It is because
both bucket-filling and LP-SR capture the information of every
movie, and hence increasing movie number introduces more
variables to the linear program. Unlike LP-SR which considers
every movie segment in the linear program, bucket-filling has
a simple and efficient discretization algorithm with orders of
magnitude improvement in running time. Bucket-filling can be
readily and practically applied to a VoD network with thousands
of movies which is not generally feasible with LP-SR. Due to
the complexity of LP-SR, we do not further compare it in the
following figures.
We plot in Fig. 9 the total cost versus the Zipf parameter

of movie popularity given different schemes. The total cost in
general decreases with the skewness. This is because more re-
quests are concentrated on fewer popular movies, which leads
to lower miss rate, and hence lower streaming and network cost.
Bucket-filling achieves substantially the lowest total cost even
for low skewness (i.e. when the popularity is quite uniform).
This shows that bucket-filling makes good decision on movie
storage and retrieval. Local Greedy performs better than MPF
because it takes network cost into consideration. The cost of
Random increases with skewness because it is popularity-blind.
The popular movies, due to the fact that its copy does not in-
crease with its popularity, suffers from high streaming and net-
work cost.

732 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 5, MAY 2015

Fig. 10. Server cost distribution given different schemes.

Fig. 11. Cost of each movie given different schemes.

We plot in Fig. 10 individual server cost for different
schemes. We sort the proxy servers according to their storage
in ascending order (as their streaming capacity is the same in
the default setting), and the last one refers to the repository.
As the storage of a proxy increases, its cost increases because
it needs to serve more remote requests. Bucket-filling utilizes
very well the finite storage and bandwidth resources of proxy
servers, leading to significantly lower repository streaming
cost. It has strong server cooperation to achieve near optimal
system performance. As MPF only stores the most popular
movies at the proxy servers, it has lower proxy cost at the steep
sacrifice of repository cost. The proxies barely contribute their
bandwidth and storage to cooperatively help each other. Local
Greedy, with network cost optimization, outperforms Random
in both proxy server cost and repository cost.
We show in Fig. 11 the cost of each movie for different

schemes. The movies are sorted according to their popularity
in descending order. The popularity-based schemes (i.e.,
bucket-filling, Local Greedy and MPF) tend to locally store the
popular movies, and hence those popular ones enjoy lower cost
at much sacrifice of those not-so-popular movies. Bucket-filling
makes better movie storage decision by cooperatively storing
unpopular movies. While bucket-filling has slightly higher cost
for popular movies, most of the movies have quite uniform
access cost. Bucket-filling accomplishes much better optimality
with the cost of unpopular movies strikingly much lower by
orders of magnitude than the other schemes. This is the main
factor of its success. For MPF, its high cost mainly comes from
the less popular movies. Random treats each movie equally and
thus has the most uniform cost distribution.

C. Movie Grouping With K-means Clustering
We conduct simulation to study the performance of our

grouping algorithm. For Fig. 12, we use the same baseline
parameters as given in Section V-A with the group number

Fig. 12. Total cost versus Zipf parameter of movie popularity given different
schemes.

Fig. 13. Total cost versus group number given different schemes.

Fig. 14. Total cost versus computation time given different schemes.

TABLE IV
PARAMETERS FOR LARGE MOVIE POOL

. Due to the time complexity of linear programming,
we cannot get the super-optimum with a very large movie
pool. For Figs. 13 and 14, we use the parameters shown in
Table IV for large movie pool. We choose 3 comparison
schemes. Super-optimum is the result from the linear pro-
gramming and serves as a lower bound. No grouping is the
performance of bucket-filling without any grouping scheme. In
uniform clustering, we still group the movies with similar load
indices together, but the number of movies in each group is the
same.
We plot in Fig. 12 the total cost versus the Zipf parameter of

movie popularity given different schemes. Total cost goes down

CHANG AND CHAN: AN ASYMPTOTICALLY OPTIMAL VOD NETWORK WITH SOURCE CODING 733

with the Zipf parameter mainly because there are fewer requests
for not-so-popular movies, which usually have higher cost.
K-means clustering performs better for large Zipf parameter.
This is because, when Zipf parameter is small, the load index
difference among movies is also small. Therefore, K-means
clustering and uniform clustering will give similar grouping re-
sults. Note that in some cases K-means clustering may slightly
outperform no grouping because, while the grouping scheme
approximates the exact movie load index, a smaller group
number indicates less discretization and less performance loss
due to such discretization.
We show in Fig. 13 the total cost of bucket-filling given

different group sizes and grouping schemes. Due to the large
movie number, it is impossible to calculate the super-optimum.
The total cost decreases with the total number of groups. It is
because, with more groups, the load indices in the same group
are closer to each other. For K-means clustering, the total cost
achieves satisfactory level even with a small group number
() and K-means clustering outperforms with a 10%
margin compared with uniform clustering. As the group number
increases, both K-means clustering and uniform clustering
converge to the same value given by the case .
We next examine the total running time to compute the

bucket-filling solution with grouping algorithms. We plot in
Fig. 14 the tradeoff curve between total cost and running time
for movie grouping. K-means clustering already achieves
good performance even for very short time and increasing
running time has little impact on performance. As running time
increases, uniform clustering achieves better performance and
the gap between two grouping schemes becomes very small.
Since for both K-means clustering and uniform clustering,
the running time is quite short. The time complexity would
not be a bottleneck for a VoD network with bucket-filling
implementation.

D. Re-Optimization Due to System Changes

We conduct simulation to study the number of symbols which
need to be transferred from the repository (i.e., the overhead)
upon movie changes. We use the same baseline parameters
as given in Section V-A. The approach for server or network
change is similar and will not be discussed here for brevity.
Wemainly study the changes inmovie as follows (while using

the same Zipf distribution) during the changes:
• Introduction: The additional movies are the most popular
ones, and the “older” movies have lower popularity due to
such movie introduction.

• Replacement: The most unpopular movies are replaced
with new movies, which are the most popular.

• Removal: The most unpopular movies are removed.
We show in Fig. 15 the number of transferred symbols versus

the number of movie change. The number of transferred sym-
bols increases with the number of movie change due to the larger
scale of the system change. As the number of movie change in-
creases, the transmission increases sub-linearly. This is because
there are more not-so-popular movies in the system change, and
hence the number of transmitted symbols does not increase lin-
early. Movie introduction leads to the highest symbol transmis-
sion because popular movies are added, which means that the
proxies have to make much room to store them by replacing

Fig. 15. Number of transmitted symbols versus number of movie change.

others. Movie replacement transfers fewer symbols than intro-
duction because the removed movies have already made room
for the newly introduced movies. Movie removal has the least
number of transferred symbols because the additional space re-
leased by the removed movies is used to store more of the other
movies, leading to less shuffling, and hence transmission, of
symbols.

VI. CONCLUSION
In this work, we have proposed and studied a VoD network

based on source coding, and studied optimal movie distribution
and retrieval to minimize deployment cost. Movies, encoded in
symbols with a parameter , are distributed and retrieved effi-
ciently using a “bucket-filling” algorithm. The deployment cost
captures the costs of server streaming, server storage and net-
work transmission cost. We have presented a solution which
asymptotically achieves the exact optimum as increases.
We have formulated the optimization problem for large as

a linear program which can be solved efficiently. For finite ,
we have presented a discretization process which is closely and
asymptotically optimal. For very large movie pool, we have pro-
posed a movie grouping algorithm based on K-means clustering
which greatly reduces the running timewith closely optimal per-
formance. We have also presented an efficient on-line re-opti-
mization method to ensure good performance with low symbol
redistribution overhead when system parameters change in the
VoD network.
We have conducted extensive simulation to compare

bucket-filling performance with other traditional and
state-of-the-art schemes. The results show that our scheme
achieves close optimality with much lower cost, and outper-
forms the other schemes by a wide margin (multiple times in
many cases, and more than 100% in most cases). Our results
show that many previously proposed heuristics performs quite
far from the optimum, and our VoD network can achieve
performance arbitrarily close to the optimum (depending on the
coding complexity and decoding delay one is willing to accept).

APPENDIX A
LINEAR SOURCE CODING AND ITS USE IN BUCKET-FILLING
In linear source coding (LSC), source symbols are linearly

combined to form coded symbols such that the orig-
inal data can be recovered from any out of the coded sym-
bols. We discuss in the following how bucket-filling makes use
of LSC.

734 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 5, MAY 2015

There is a code generator matrix given by

...
...

...
. . .

...
(22)

where are the non-zero coefficients from the finite field
for some prime . Denote the source symbols as

, . Let the coded symbols be
, . For each movie, its coded symbol

is computed once from the source symbols by

(23)

or equivalently, .
To apply LSC in our VoD network, we take

. The system-wide parameters of coding coeffi-
cients and can be initially transmitted to
all the proxies, so that they know the code generator matrix
in advance. This only needs to be transmitted once at server
join time. There is no need to change the coefficients upon
changes in system parameters, and coefficients only need to be
incrementally transmitted if the newly optimized system has a
higher . For movie , the server only needs to use the subset

to decode the source packets.
With the knowledge of , anyone in the network only needs

to receive no less than distinct to derive the original data.
Let be distinct integers in the set .
Then the following Vandermonde matrix

...
...

...
. . .

...
(24)

is invertible over the finite field .
Suppose that coded symbols are received and

denoted as . Since A is invertible, solving
gives source content .

APPENDIX B
B PROOF OF ASYMPTOTIC OPTIMALITY OF BUCKET-FILLING

In Section III-B, we have a continuous solution of VoD
optimization problem given by linear program. This solution
serves as the super-optimum (lower bound) since, for any ,
the practical solution always satisfies the constraints given by
Section III-B and cannot be better than the LP solution. For a
particular , the solution that achieves the lowest cost is the
exact optimum. Bucket-filling also gives a solution for this ,
but it may not be the exact optimum. It is not computationally
feasible to know the exact optimum due to the NP-hardness
of this VoD optimization problem. By definition, the total
deployment cost given by bucket-filling (), exact optimum
() and super-optimum () satisfies

(25)

To prove the asymptotic optimality, if we can show that
bucket-filling approaches super-optimum as increases, it also
approaches exact optimum. For clarity, we denote the symbols
related to super-optimum (i.e., the continuous linear program)
with superscript tildes. For bucket-filling, we use plain sym-
bols. We also use to denote the difference of a parameter
between super-optimum and bucket-filling.
Claim: s.t. .
Proof: From (5) and (12) we get

(26)

If is not the repository, is rounded up or down by at most
1. Therefore,

(27)

Consider the worst case that, for a server , is rounded
down by 1 and . In this case, the remaining symbols are
assigned to the repository. Therefore, for repository ,

(28)

As all the parameters other than in (27) and (28) are fixed,
we can increase to make and arbitrarily small.
Similarly, by (7), can also be arbitrarily small
by increasing .

is fixed in the optimization. As functions and
are continuous and depend on , and ,
such that we can also make and small enough (

). Therefore .

REFERENCES
[1] C. Huang, J. Li, and K. W. Ross, “Can internet video-on-demand be

profitable?,” in Proc. Conf. Appl., Technol., Archit., Protocols Comput.
Commun., New York, NY, USA, 2007, pp. 133–144.

[2] S.-H. G. Chan and F. Tobagi, “Distributed servers architecture for net-
worked video services,” IEEE/ACM Trans. Netw., vol. 9, no. 2, pp.
125–136, Apr. 2001.

[3] V. K. Adhikari, Y. Guo, F. Hao, M. Varvello, V. Hilt, M. Steiner,
and Z.-L. Zhang, “Unreeling Netflix: Understanding and improving
multi-CDN movie delivery,” in Proc. IEEE INFOCOM, Mar. 2012,
pp. 1620–1628.

[4] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in Proc. IEEE INFOCOM , Mar. 2010,
pp. 1–9.

[5] A. Nimkar, C. Mandal, and C. Reade, “Video placement and disk load
balancing algorithm for VoD proxy server,” in Proc. IEEE Int. Conf.
Internet Multimedia Services Archit. Appl., Dec. 2009, pp. 1–6.

[6] W. Wu and J. C. S. Lui, “Exploring the optimal replication strategy
in P2P-VoD systems: Characterization and evaluation,” in Proc. IEEE
INFOCOM, Apr. 2011, pp. 1206–1214.

[7] Y. R. Choe, D. L. Schuff, J. M. Dyaberi, and V. S. Pai, “Improving
VoD server efficiency with bittorrent,” in Proc. MULTIMEDIA ’07:
15th Int. Conf. Multimedia, New York, NY, USA, 2007, pp. 117–126.

[8] C. Dana, D. Li, D. Harrison, and C. N. Chuah, “BASS: Bittorrent
assisted streaming system for video-on-demand,” in Proc. IEEE 7th
Workshop Multimedia Signal Process., Nov. 2006, pp. 1–4.

[9] D. Wu, J. He, Y. Zeng, X. Hei, and Y. Wen, “Towards optimal deploy-
ment of cloud-assisted video distribution services,” IEEE Trans. Cir-
cuits Syst. Video Technol., vol. 23, no. 10, pp. 1717–1728, Oct. 2013.

[10] A. Alasaad, K. Shafiee, S. Gopalakrishnan, and V. Leung, “Prediction-
based resource allocation in clouds for media streaming applications,”
in Proc. IEEE Globecom Workshops, Dec. 2012, pp. 753–757.

CHANG AND CHAN: AN ASYMPTOTICALLY OPTIMAL VOD NETWORK WITH SOURCE CODING 735

[11] Y.-M. Chu, N.-F. Huang, and S.-H. Lin, “Quality of service provision
in cloud-based storage system for multimedia delivery,” IEEE Systems
J., vol. 8, no. 1, pp. 292–303, Mar. 2014.

[12] D. Niu, H. Xu, B. Li, and S. Zhao, “Quality-assured cloud bandwidth
auto-scaling for video-on-demand applications,” in Proc. IEEE IN-
FOCOM, Mar. 2012, pp. 460–468.

[13] L. Chang and J. Pan, “Reducing the overhead of view-upload decou-
pling in peer-to-peer video on-demand systems,” in IEEE Int. Conf.
Commun., Jun. 2011, pp. 1–5.

[14] C. Gkantsidis, J. Miller, and P. Rodriguez, “Comprehensive view of a
live network coding P2P system,” in Proc. 6th ACM SIGCOMM Conf.
Internet Meas., 2006, pp. 177–188.

[15] Y. Kao, C. Lee, P. Wu, and H. Kao, “A network coding equivalent
content distribution scheme for efficient peer-to-peer interactive VoD
streaming,” IEEE Trans. Parallel Distrib. Syst., vol. 23, no. 6, pp.
985–994, Jun. 2012.

[16] Y. He, I. Lee, and L. Guan, “Distributed throughput maximization in
P2P VoD applications,” IEEE Trans. Multimedia, vol. 11, no. 3, pp.
509–522, Apr. 2009.

[17] M. Wang and B. Li, “R2: Random push with random network coding
in live peer-to-peer streaming,” IEEE J. Sel. Areas Commun., vol. 25,
no. 9, pp. 1655–1666, Dec. 2007.

[18] Z. Liu, C. Wu, B. Li, and S. Zhao, “UUSee: Large-scale operational
on-demand streaming with random network coding,” in Proc. IEEE
INFOCOM, Mar. 2010, pp. 1–9.

[19] H. R. Oh, D. O. Wu, and H. Song, “An effective mesh-pull-based
P2P video streaming system using fountain codes with variable symbol
sizes,” Comput. Netw., vol. 55, no. 12, pp. 2746–2759, 2011.

[20] F. Liu, S. Shen, B. Li, B. Li, H. Yin, and S. Li, “Novasky: Cinematic-
quality VoD in a P2P storage cloud,” in Proc. IEEE INFOCOM, Apr.
2011, pp. 936–944.

[21] Y. Zhou, T. Z. J. Fu, and D. M. Chiu, “A unifying model and analysis
of P2P VoD replication and scheduling,” in Proc. IEEE INFOCOM,
Mar. 2012, pp. 1530–1538.

[22] Y. Zhou, T. Z. J. Fu, and D. M. Chiu, “On replication algorithm in P2P
VoD,” IEEE/ACM Trans. Netw., vol. 21, no. 1, pp. 233–243, Feb. 2013.

[23] B. Tan and L. Massoulié, “Optimal content placement for peer-to-peer
video-on-demand systems,” IEEE/ACM Trans. Netw., vol. 21, no. 2,
pp. 566–579, Apr. 2013.

[24] D. Applegate, A. Archer, V. Gopalakrishnan, S. Lee, and K. Ramakr-
ishnan, “Content placement via the exponential potential function
method,” in Integer Programming and Combinatorial Optimiza-
tion. New York, NY, USA: Springer, 2013, pp. 49–61.

[25] W.-P. K. Yiu, X. Jin, and S.-H. G. Chan, “VMesh: Distributed seg-
ment storage for peer-to-peer interactive video streaming,” IEEE J. Sel.
Areas Commun., vol. 25, no. 9, pp. 1717–31, Dec. 2007.

[26] Y. He, G. Shen, Y. Xiong, and L. Guan, “Optimal prefetching scheme
in P2P VoD applications with guided seeks,” IEEE Trans. Multimedia,
vol. 11, no. 1, pp. 138–151, Jan. 2009.

[27] S. Zaman and D. Grosu, “A distributed algorithm for the replica place-
ment problem,” IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 9, pp.
1455–1468, Sep. 2011.

[28] M. Hefeeda and B. Noorizadeh, “On the benefits of cooperative proxy
caching for peer-to-peer traffic,” IEEE Trans. Parallel Distrib. Syst.,
vol. 21, no. 7, pp. 998–1010, Jul. 2010.

[29] J. Kangasharju, K. W. Ross, and D. A. Turner, “Optimizing file avail-
ability in peer-to-peer content distribution,” in Proc. 26th IEEE IN-
FOCOM, May 2007, pp. 1973–1981.

[30] J. Dai, Z. Hu, B. Li, J. Liu, and B. Li, “Collaborative hierarchical
caching with dynamic request routing for massive content distribu-
tion,” in Proc. IEEE INFOCOM, Mar. 2012, pp. 2444–2452.

[31] Z. Xu and S.-H. G. Chan, “LP-based optimization of storage and
retrieval for distributed video-on-demand,” in Proc. Globecom, Dec.
2012, pp. 2161–2166.

[32] S.-H. G. Chan and Z. F. Xu, “LP-SR: Approaching optimal storage and
retrieval for video-on-demand,” IEEE Trans. Multimedia, vol. 15, no.
8, pp. 2125–2136, Dec. 2013.

[33] S.-H. G. Chan and Z. F. Xu, “Optimizing video-on-demandwith source
coding,” in Proc. Int. Conf. Multimedia Expo, San Jose, CA, USA, Jul.
2013, pp. 15–19.

[34] M. Mehyar, D. Spanos, J. Pongsajapan, S. H. Low, and R. M. Murray,
“Asynchronous distributed averaging on communication networks,”
IEEE/ACM Trans. Netw., vol. 15, no. 3, pp. 512–520, Jun. 2007.

[35] M. Grant and S. Boyd, CVX Research, Inc., Stanford Univ., Stanford,
CA, USA, CVX: Matlab software for disciplined convex programming,
version 1.21, Apr. 2011 [Online]. Available: http://cvxr.com/cvx

[36] J. F. Sturm, “Primal-dual interior point approach to semidefinite pro-
gramming,” Ph.D. dissertation, Erasmus Universiteit Rotterdam, Rot-
terdam,, The Netherlands, 1997.

[37] J. MacQueen et al., “Some methods for classification and analysis of
multivariate observations,” in Proc. 5th Berkeley Symp. Math. Statist.
Probability, Berkeley, CA, USA, 1967, vol. 1, no. 14, pp. 281–297.

[38] H. Wang and M. Song, “Ckmeans.1d.dp: Optimal k-means clustering
in one dimension by dynamic programming,” R Journal, vol. 3, pp.
29–33, 2011.

Zhangyu Chang received the B.Sc. degree in
physics and computer science from the Hong Kong
University of Science and Technology (HKUST),
Hong Kong. China, in 2011. He is currently working
toward the M.Phil. degree at the Department of
Computer Science and Engineering, HKUST.
His research interests include multimedia net-

working and overlay live streaming.

S.-H. Gary Chan (S’89–M’98–SM’03) received
the B.S.E. degree (highest honor) in electrical
engineering from Princeton University, Princeton,
NJ, USA, in 1993, and the M.S.E. and Ph.D. degrees
in electrical engineering from Stanford University,
Stanford, CA, USA, in 1994 and 1999, respectively.
He was previously a Visiting Professor and

Researcher with Microsoft Research (2000–2011),
Princeton University (2009), Stanford University
(2008–2909), and University of California at Davis
(1998–1999). He was a Co-Director of The Hong

Kong University of Science and Technology (HKUST) Risk Management
and Business Intelligence Program (2011–2013) and the Director of the
Computer Engineering Program at HKUST (2006–2008). He is currently
Professor and Undergraduate Programs Coordinator with the Department of
Computer Science and Engineering, HKUST, Hong Kong, China. He is also the
Director of Sino Software Research Institute at HKUST. His research interest
includes multimedia networking, wireless networks, mobile computing, and IT
entrepreneurship.
Prof. Chan was an Associate Editor of the IEEE TRANSACTIONS ON

MULTIMEDIA (2006–2011). He has been a Guest Editor of the IEEE
TRANSACTIONS ON MULTIMEDIA (2011), the IEEE SIGNAL PROCESSING
MAGAZINE (2011), the IEEE Communication Magazine (2007), and Springer
Multimedia Tools and Applications (2007). He was the TPC Chair of the
IEEE Consumer Communications and Networking Conference (2010), the
Multimedia Symposium of the IEEE GLOBECOM (2007 and 2006), IEEE ICC
(2007 and 2005), and the Workshop on Advances in Peer-to-Peer Multimedia
Streaming in the ACM Multimedia Conference (2005). He was the Vice-Chair
of Peer-to-Peer Networking and Communications Technical Sub-Committee
of the IEEE Communications Society Emerging Technologies Committee.
He was the recipient of several Information and Communication Technology
awards in the Hong Kong, Pan Pearl River Delta, and Asia-Pacific regions
(2012–2014). He was the recipient of the Google Mobile 2014 Award (2010
and 2011) and the Silver Award of Boeing Research and Technology (2009).
He was a William and Leila Fellow at Stanford University (1993–1994), and
the recipient of the Charles Ira Young Memorial Tablet and Medal, as well as
the POEM Newport Award of Excellence at Princeton University (1993). He is
a member of Tau Beta Pi, Sigma Xi, and Phi Beta Kappa Honor Societies.

