
1456 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 14, NO. 5, OCTOBER 2012

Global 1-Mbps Peer-Assisted Streaming: Fine-Grain
Measurement of a Configurable Platform

Joe Wenjie Jiang, S.-H. Gary Chan, Senior Member, IEEE, Mung Chiang, Fellow, IEEE, Jennifer Rexford,
D. Tony Ren, and Bin Wei

Abstract—High-resolution video is defining a new age of
peer-assisted video streaming over the public Internet. Streaming
over 1-Mbps videos in a scalable and global manner presents
a challenging milestone. In this work, we examine the fea-
sibility of 1-Mbps streaming through a global measurement
study. In contrast to previous measurement studies that crawl
commercial applications, we conduct fine-grain, controlled exper-
iments on a configurable platform. We developed and deployed
FastMesh-SIM, a novel peer-assisted streaming system that lever-
ages proxies, scalable streaming trees and IP multicast to achieve
1-Mbps streaming at a global scale.
With the configurability-enabled design, we are allowed to con-

duct controlled experiments by varying design decisions under a
wide range of operating conditions, and measuring in-depth, fine-
grain metrics at a per-hop, per-segment level. We collected hun-
dreds of hours of streaming traces that broadcast live TV channels
to more than 120 peers and 30 proxies, with a global geographic
footprint over 8 different countries. Data analysis demonstrates
how a set of design decisions collectively overcome the 1-Mbps bar-
rier. The various operational issues we uncovered provide insights
to service providers that want to deploy a commercial system at a
larger scale and a higher streaming rate. By comparing theory and
practice, we also confirm theory-inspired architectural decisions,
and show that our system indeed achieves throughputs close to the-
oretical upper-bound calculated under many ideal assumptions.

Index Terms—Communications technology, communication sys-
tems, computer networks, peer-to-peer computing.

I. INTRODUCTION

M OST existing commercial peer-assisted streaming sys-
tems [1] deliver a streaming rate at a few hundreds of

kbps, which does not meet the growing demand for high-res-
olution videos. A decent viewing experience on today’s home
TV or iPad screen usually requires a sustained streaming rate
on the order of Mbps. While 1-Mbps streaming is happening

Manuscript received August 15, 2011; revised January 13, 2012; accepted
April 04, 2012. Date of publication April 25, 2012; date of current version
September 12, 2012. This work was supported in part by AFOSR MURI grant
FA9550-09-1-0643 and in part by the General Research Fund from the Re-
search Grant Council of the Hong Kong Special Administrative Region, China
(611209). The associate editor coordinating the review of this manuscript and
approving it for publication was Dr. Christophe De Vleeschouwer.
J. W. Jiang and J. Rexford are with the Department of Computer Science,

Princeton University, Princeton, NJ 08540 USA (e-mail: wenjiej@princeton.
edu; jrex@princeton.edu).
S.-H. G. Chan and D. T. Ren are with the Department of Computer Sci-

ence and Engineering, Hong Kong University of Science and Technology, Hong
Kong (e-mail: gchan@cse.ust.hk; tonyren@cse.ust.hk).
M. Chiang is with the Department of Electrical Engineering, Princeton Uni-

versity, Princeton, NJ 08540 USA (e-mail: chiangm@princeton.edu).
B. Wei is with AT&T Labs Research, Florham Park, NJ 07932 USA (e-mail:

bw@research.att.com).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TMM.2012.2196509

today, it often relies on the pervasive deployment of expensive
infrastructure such as content distribution networks (CDNs), or
is offered to a limited number of premium users only. Providing
high-quality, reliable service to a large user population at a rea-
sonable cost is the lifeblood to today’s service operators.
It is commonly believed that the conventional P2P approach

does not sustain a high streaming rate due to insufficient band-
width resources. A number of architectural choices were pro-
posed to improve the system performance and scalability, in-
cluding the use of proxies or helper nodes [2], packing multiple
trees [3], IP-multicast integration [4], etc. Other design deci-
sions, ranging from the segment size, and the scheduling policy,
to parallel TCP connections, also have a great impact on the
performance and reliability. In order to examine whether these
ideas collectively push the envelope to above 1Mbps under real-
istic Internet conditions, and which decisions are the key factors
that affect the performance, we need a systematic and quantita-
tive understanding of these design choices. This study is driven
by the following requirements:
• a highly instrumented and configurable platform;
• fine-grain and detailed measurement data;
• reproducible results that do not rely on proprietary com-
mercial applications;

• underlying network support such as IP-multicast capa-
bility;

• dedicated resources in each peer that isolate performance
disruption.

This paper is about the deployment, experiment, measurement,
and data analysis over an operational system satisfying all of
the above needs. The deployed FastMesh-SIM is a novel push-
based P2P streaming system that consists of multiple trees—as
suggested by recent theoretical studies on P2P streaming ca-
pacity [3], [5], [6]—to offer high-quality streaming at a global
scale, in contrast to other studies that primarily focus on pull-
based systems. The two recurring themes of this paper are: 1) en-
gineer 1-Mbps peer-assisted streaming and 2) learn from fine-
grain measurement through controlled experiments. Through
statistical studies of the data, we also have the opportunity to
uncover many practical issues in operating a global streaming
service.

A. Enabling Fine-Grain Measurement of a Configurable
Platform

Identifying the obstacles to 1-Mbps streaming requires new
methodologies to obtain a finer-grained understanding of the
system bottlenecks. New metrics need to be introduced to mea-
sure and identify the effectiveness for every design decision we
make. In addition, a distributed system providing a global-scale,

1520-9210/$31.00 © 2012 IEEE

JIANG et al.: GLOBAL 1-MBPS PEER-ASSISTED STREAMING 1457

resource-demanding service is more sensitive to the behavior of
underlying communication network and customers, and noise
can unintentionally amplify or diminish the importance of cer-
tain design parameters. Measurement in a controlled environ-
ment allows us to focus on one set of factors in each experiment
while controlling for other elements that may affect the system
performance.
Previous measurement studies usually consist of “black box”

characterizations of proprietary, commercial P2P streaming ser-
vices [7]–[12]. Complementary to prior work, we focus on the
following approach: controlled experiments on a configurable
P2P streaming system that is designed, implemented, and de-
ployed by the same team that carried out themeasurement study.
This enables us to collect fine-grainedmeasurements, e.g., a rich
set of per-segment per-hop timestamp information, under a wide
range of design choices, while running experiments over the
public Internet. Our goal, then, is to gain qualitative and quan-
titative understandings of how major design decisions and en-
vironmental conditions affect the streaming performance, i.e.,
rate, delay, and reliability.

B. Experience With Realizing Global 1-Mbps Streaming

The in-depth measurement study is conducted on our hybrid
proxy-P2P streaming system, FastMesh-SIM [13], [14], which
broadcasts live TV channels at a 1-Mbps quality, with a large
geographic footprint over 8 countries in 5 continents. We ana-
lyzed more than 200 h of streaming logs from over 20 exper-
imental trials, including more than 120 peers and 30 proxies.
The rich dataset collected from our tightly controlled experi-
ments in a highly instrumented system offers a unique perspec-
tive intomany design choices proposed separately. In particular,
we summary our main insights as follows:
1) Capability of Proxy Nodes: We revisit the common

wisdom that the pure P2P approach does not sustain a high
streaming rate due to insufficient peer bandwidth. Many
studies proposed the use of proxies or hybrid CDN-P2P for
cost-effective streaming. We carefully quantify the capacity
of proxy nodes needed to meet the 1-Mbps requirement, and
demonstrate that a small population of “super” nodes (e.g.,
campus LAN users) is competent for the proxy functionality,
in contrast to other work that suggest dedicated servers with a
high bandwidth.
2) Scalability of a Two-Tier Architecture: Scalability is the

key requirement for any service provider who wishes to pro-
vide consistent and reliable high-rate streaming. The proposed
two-tier architecture that separates the design space into groups
of peers clustered by geographic proximity—a carefully opti-
mized proxy mesh (FastMesh) at the core, and simple resilient
trees (SIM) at the peripheral with layer-3 multicast support—is
a promising approach to attain a high streaming rate among a
reasonably large population of users. The 120 peers in our ex-
periment, are supported by only 5 proxies located at two cam-
puses, with each proxy serving tens of peers. A straightfor-
ward back-of-the-envelop calculation extends the system scale
to close to a thousand peers with our current proxy network size.
3) Complexity of Tree Construction: A number of recent

literatures [3], [5], [6], [15] studied how to achieve the P2P

streaming capacity, i.e., the maximum streaming rate that can
be supported given a set of peers. Most solutions propose so-
phisticated tree packing algorithms that require a large number
of trees. In this work we show that a simple mesh construction
that involves a limited number of trees work well in practice,
and as demonstrated in our experiment achieves over 85% of
the streaming rate upper-bound.
4) Optimizability of Streaming Delay: The user-perceived

streaming delay and jitters are also important performance met-
rics that service providers care about. We characterize various
delay components, and show that the wide-area (propagation)
delay is dominated by other components such as transmission
and protocol delays that are affected by many design choices
like the scheduling policy and segment size. We quantify how
to carefully tune these parameters to improve the delay bound.
5) Reliability Under Varying Network Conditions: Through

a highly instrumented traffic monitor, we are able to identify
and traceback the performance degradation that happens at a
particular hop and segment. This gives us a unique opportunity
to improve the system reliability by dissecting the performance
bottleneck, e.g., edge versus core of the network, which would
be difficult without a fine-grain measurement.
Our work has the obvious limitation that some of the quan-

titative results may depend on specific design and implemen-
tation choices in our system, or the details of our current de-
ployment. However, experimenting with an operational, inte-
grated system with ample geographic diversity provides valu-
able experiences to operators who wish to deploy similar ser-
vices and revisit many design choices that were proposed pre-
viously as a joint solution. The rest of the paper is organized
as follows. Section II gives an overview of the design and im-
plementation of the FashMesh-SIM system. Section III presents
the fine-grained measurement methodology and the design pa-
rameters we vary in the experiments. Sections IV–VI, the core
sections, present the analysis of the measurement data and our
answers to the questions raised above. Section VII discusses
the theory-practice similarities and discrepancies illuminated by
this study, and the lessons we learned through the interaction be-
tween the development engineers andmeasurement researchers.
We further discuss related work in Section VIII, and conclude
in Section IX.

II. DESIGN OF FASTMESH-SIM

We briefly review our design choices in FastMesh-SIM
aimed at improving the performance metrics of streaming
rate (i.e., throughput), delay, and scalability. FastMesh-SIM
constructs application-level multicast trees. As illustrated in
Fig. 1(a), it consists of two push-based protocols: 1) FastMesh
that constructs a streaming backbone among an upper tier of
more stable proxies with low delay, and 2) SIM (scalable island
multicast) by which a lower tier of end-user peers self-organize
into one or multiple trees, leveraging local IP multicast sup-
port wherever possible. While FastMesh and SIM have been
separately reported in prior publications [13], [14], this paper
reports the first deployment of an integrated streaming service
of FastMesh-SIM and the first in-depth global measurement

1458 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 14, NO. 5, OCTOBER 2012

Fig. 1. System designs of FashMesh-SIM. (a) Proxy-based peer-assisted two-
tier architecture. (b) Combining IP-multicast with overlay tree streaming in
SIM.

study of the system. The system design consists of the following
key concepts:
1) Push-Based Stream Delivery: FastMesh-SIM is a pure

push-based system that constructs one or more application-level
multicast trees. The video is divided into multiple sub-streams,
each of which is delivered by a tree. The tree structure is main-
tained at every peer in a distributed manner. As segments in
a substream arrive, parent nodes immediately push the data to
their children.
2) Low-Delay Proxy Mesh: Each video substream is sent

through the proxies before reaching the lower tier of peers. The
proxies are stable and bandwidth-rich machines, such as dedi-
cated infrastructure nodes contributed by the content provider.
The proxies run the fully distributed protocol FastMesh [14],
which builds multiple high-bandwidth low-delay spanning
trees. The protocol is adaptive such that the delay is constantly
optimized given any change of server availability. As the
number of proxies may change over time, FastMesh continues
to perform local network measurements and adaptations in
order to construct trees that minimize the worst-case delay
in delivering data from the servers, subject to constraints on
upload capacity.
3) Scalable Local Streaming Trees: A swarm of peers close

to a proxy server run the lightweight SIM [13] protocol to con-
struct low-delay trees with minimal overhead. As a new peer
joins the system, it contacts a rendezvous point (RP) that returns
its local proxy, which in turn gives a random list of existing peers
rooted at the proxy to bootstrap the process. The peer selects a
set of nodes as its parents, taking both RTT and bandwidth into
consideration. The tree formation is distributed and adaptive, as
the underlying network conditions and node availability change
over time.
4) IP-Multicast Integration: A unique feature of SIM is to

integrate IP-multicast with application-layer multicast to im-
prove bandwidth efficiency. Although IP multicast is not glob-
ally available on today’s Internet, many local area networks are
multicast-capable. SIM capitalizes on local support for IP mul-
ticast by embedding these “multicast islands” into the overlay
streaming trees, as illustrated in Fig. 1(b). Peers within a mul-
ticast island receive data using IP multicast, and communicate

Fig. 2. Format of segment delay timestamps.

with the outsiders through border nodes on streaming trees. SIM
has a distributedmechanism to decide whichmulticast nodes are
in an island so as to eliminate duplications, thus improving the
efficiency of bandwidth usage in a local network.
5) Reactive Error Recovery: FastMesh is able to adapt to

server churns by re-optimizing the mesh. SIM implements a
more sophisticated error-recovery mechanism to respond to
temporary or unexpected packet or stream losses [16]. Through
backup parents and distributed tree re-formation, SIM achieves
fast error recovery, even under frequent peer churns.

III. MEASUREMENT METRICS AND METHODOLOGY

Conducting experiments with the FastMesh-SIM system en-
ables both visibility (through fine-grained instrumentation of the
software) and control (by configuring many tunable design pa-
rameters).

A. Visibility: Fine-Grained Metrics Instrumentation

Traditional measurement studies in P2P streaming often
employ a large-scale user pool generating real traffic on the
Internet. However, due to the large user population and peer
churns, they often rely on random or statistical sampling, which
provides a view that is partial or coarse-grain. As an alternative
approach, we use a relatively smaller set of peers over diverse
geographic locations, which allows us to perform an in-depth
examination of every peer and every segment throughout all
experiments, while not losing the geographic properties of large
systems. We install a built-in monitor for each peer that is able
to observe packet-level activities.
Our monitor generates a record for every segment it receives.

A segment record contains several timestamps about the seg-
ment’s lifetime, as shown in Fig. 2. The fields of and

specify which peer and which segment this record be-
longs to. specifies when the segment is generated at the
source. records when the segment is received at the local
peer. records when the segment is scheduled to be sent
(and to which peer). A peer’s local clock is synchronized by the
NTP servers to ensure the validity of the timestamp. Together
with the data payload, the record is sent to the next hop peer and
used to infer more delay information. By collecting the records
from all peers, we can reconstruct the lifetime for every segment
in the network.
Besides the segment delay log, our monitor also records a

peer’s local information periodically, e.g., every 10 s. Fig. 3 lists
the most important quantities we recorded. The measured and
inferred quantities, in general, can be grouped into the following
five categories:
1) Node: The peer’s ID, IP address, port number, and the

time that the record is generated.
2) Topology: The peer’s parent list , child list , the

longest path from the source and its depth . records
the incoming degree and outgoing degree. All the information

JIANG et al.: GLOBAL 1-MBPS PEER-ASSISTED STREAMING 1459

Fig. 3. Fine-grained measurement quantities.

helps track how the overlay topology changes during churns and
failovers.
3) Bandwidth: The peer’s upload/download data bytes

transmitted during a monitoring interval, e.g., 10 s.
We can further differentiate various data sources, i.e., overlay
unicast , IP-multicast or recovery server .
is the total upload/download traffic, including data payload
and control messages. are the average peer upload and
download bandwidth derived by dividing the data bytes by the
length of a monitoring interval.
4) Buffer: A snapshot of the current playback buffer.

is the first (earliest) segment. is the last (latest) segment.
is the current segment fed into the player. is the conti-

nuity index, defined as one minus the segment loss rate, i.e., the
number of holes divided by the buffer length.
5) Delay: With the segment delay records, we can measure

or infer a set of delay components: playback delay , transmis-
sion delay , propagation delay and scheduling delay .
The precise definition of these delay quantities are given below.
All collected quantities are averaged over the one monitoring
period, e.g., 10 s by default.
Definition 1: Playback (or end-to-end) delay is the time

elapsed from a segment’s generation at the source, to its com-
plete receipt (including error recovery) at the local peer, i.e.,

Definition 2: Transmission delay is the total elapsed time
from when a segment is scheduled to be sent, to the completion
of this transmission, over all hops the segment traverses, i.e.,

Definition 3: Scheduling (or protocol) delay is the total
waiting time before a received segment is scheduled to be sent,
over all hops the segment traverses, i.e.,

We can immediately validate the following relationship
for the above defined playback, propagation, transmission
and scheduling delay, and this is how we infer from

measurements. Since ,
we have

With this information above, we can reconstruct the lifespan
of every segment.

B. Control: Configurable Streaming Platform

In this measurement study, we study design space by inten-
tionally turning on/off some features and tuning system param-
eters. We present a taxonomy of the “control knobs”:
1) Experimenting With Architectural Choices:
• Layer-3 support: IP-multicast can be enabled or disabled.
We let a fraction of peers to be IP-multicast capable, either
on the same local network, or across different networks.

• Proxy functionality: A proxy node can play two roles:
proxy server and proxy helper, and their difference will
be explained later. This knob controls the achievable
streaming rate given a certain number of proxies.

2) Varying Degrees of Design Freedom:
• Parallel connections: We allow a peer to set up multiple
TCP connections for data transmission. Enabling multiple
TCP connections may overcome the TCP throughput lim-
itation over one single long-haul connection.

• Segment size: Segment size is the smallest replication unit
used in a P2P system. It determines how quickly a peer can
disseminate the data it receives. The segment size knob
controls the tradeoff between the transmission delay and
the protocol overhead.

3) Synthesizing Streaming Environment:
• Peer churns:We synthesize churns by letting peer behav-
iors follow our pre-programmed script. We consider two
types of dynamics, peer churns and server churns. Tuning
the knob to allow different churn rates affects the system
dynamics and reliability.

• Streaming workload: We tune the video rate such that the
system operates under different workloads, over the wide
range of 100 kbps to 4 Mbps. This allows us to explore the
limit of streaming capacity over the Internet.

• Node access: Nodes, which can be proxies or peers, are
selected from different ISPs or locations (e.g., continents).
Peers are campus users or residential home users. Nodes
can be dedicated machines with excellent network access,
or virtual machines from resource-shared platforms.

These knobs together allow us to perform a set of controlled
experiments and study the design tradeoffs, by decoupling a
large number of factors.

C. Deployment

In our trials, we deploy 34 standard commodity laptops and
desktop machines with dedicated bandwidth as proxies, located
on 7 collaborator sites on different continents. In one trial,
we also select a few PlanetLab nodes to allow us to compare
the performance of two types of nodes: those with dedicated
and those with shared resources. All of them serve as proxy
servers (or helpers) in our experiments, and run the FastMesh
protocol. We also employ 100 desktop machines on the campus
network from two collaborators: Hong Kong (China) and
Princeton (US). These machines serve as peers and run the SIM
protocol. They are connected to the Internet via campus LAN,
and with IP-multicast enabled. We also invite 20 residential
broadband/DSL home users from Hong Kong to participate in
these experiments.
The geographic locations of the proxies and peers are shown

in Fig. 4, and node statistics are given in Table I. Although we do

1460 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 14, NO. 5, OCTOBER 2012

Fig. 4. Global deployment of proxy nodes.

TABLE I
GEOGRAPHIC LOCATIONS AND NODE ACCESS PROPERTIES OF PROXY

SERVERS AND PEERS USED IN OUR EXPERIMENTS

not employ a large number of peers in our experiments, having
around 50 peers in a local swarm, e.g., close to the same proxy
server, represents a reasonable size of a practical scenario. A
higher-level mesh network with tens of proxies also provides a
good starting point to study proxy deployments and steaming
performance at a global scale.
The data analyzed in this work are collected in more than 20

experiment trials conducted during December 2009–September
2010 that broadcast live TV channels (with the streaming source
in Hong Kong), which in total contribute a set of traces of more
than 200 h.

IV. ACHIEVING 1-MBPS STREAMING RATE

In the following three sections, we analyze the data collected
from the experiment trials and draw lessons on building a global
1-Mbps P2P streaming platform. We first investigate how to
achieve 1-Mbps streaming rate by collectively applying a set
of techniques. For entertainment-grade user experience, delay
and reliability are important metrics. We further investigate the
user playback delay and discuss how to minimize delay by dif-
ferentiating various delay components in the next two sections.
We also study the system reliability under churning behaviors
and varying network conditions.

A. Capability as Proxy Nodes

We first show the capability of the FastMesh protocol to
achieve 1-Mbps streaming rate among a set of geographically
diverse proxy nodes. We select 15 nodes to function as proxies,
10 of which are dedicated servers from our collaborators and 5
from PlanetLab. We also employ PlanetLab nodes in order to
contrast resource-dedicated and resource-shared environments.

The geographic coverage is shown in Fig. 4, which represents
a typical distribution of proxies with diverse RTTs in the wide
area.
Fig. 5 shows the correlation between a node’s streaming capa-

bility and its geographic location. Fig. 5(a)–(c) shows the mean
and variance of the received data rate, uploaded data rate and
RTT distribution of proxy nodes during a 1-h trial, with nodes
grouped by their ISPs and indexed in an increasing order of re-
ceived data rates.1 Seven out of 15 nodes achieve a persistent
1-Mbps streaming rate. Other nodes suffer from rate fluctuations
and some even receive less than 80% of the required bit-rate.
We also measure the RTTs between a node and its most distant
parent, as well as the source (placed in Hong Kong). Comparing
these figures leads to the observation that the streaming rate has
a strong correlation with a node’s physical location, e.g., the
streaming rate degrades sharply as RTTs exceed 100 ms. As the
throughput of long-haul TCP connections are greatly affected
by RTTs, the wide-area distance turns out as an important factor
in achieving a high streaming rate. In particular, the cross-con-
tinent connections are severely impaired. As we will show later,
the use of parallel connections and helper nodes is able to rec-
tify such a problem.
It is interesting to note that nodes with the poorest per-

formance are from PlanetLab—all of them achieve less than
800 kbps rate on average. Bandwidth cap and sharing CPU
cycles with other applications understandably put the sustained
1-Mbps video streaming at a risk. The FastMesh protocol
should avoid using these unstable proxies to deliver video
streams to others. Fig. 5(b) shows that most uploading work-
load is assigned to “good” proxies, so the bandwidth from
resource scarce nodes can be reserved to support their local
peers.

B. Reliable Tree-Based Streaming

We next study the influence of residential peers with slower
and less reliable Internet access in the global 1-Mbps streaming
experiment. A swarm of peers in each location get the com-
plete set of substreams from one or two nearby proxy servers,
and forward the stream within themselves by constructing an
application layer multicast tree. In this trial, we deploy three
proxy servers in Hong Kong and let a mixture of 30 campus
users and 20 residential broadband/DSL users join the streaming
channel. We perform two sets of experiments, one with 500-
kbps streaming rate and the other with 1-Mbps streaming rate,
each lasting 45 min. The results are presented in Fig. 6.
In the 500-kbps experiment, both campus and residential

users achieve a very steady streaming rate, which demonstrates
the robustness of the constructed streaming tree. However, they
make significantly distinct contributions to the system in terms
of their uploading capability. Most campus users serve as in-
ternal nodes on the tree due to their stable connectivity on both
uplink and downlink. Residential DSL users usually have poor
uplink capacity and become leaf nodes as the system stabilizes.
A few residential users with sufficient resources can achieve
up to 2-Mbps uplink capacity and therefore play an important
role in an environment when few campus users are present.

1Two of the 13 ISPs contain two proxy nodes, and hence there are in total 15
nodes.

JIANG et al.: GLOBAL 1-MBPS PEER-ASSISTED STREAMING 1461

Fig. 5. FastMesh achieves 1-Mbps streaming among a mixture of dedicated servers and PlanetLab nodes at a global scale. Proxy servers are categorized by their
locations, ordered with increasing received streaming rate: (a) streaming rate, (b) data uploading rate, and (c) proxy RTT distribution. Resource dedication and
RTT bias are important factors that affect the streaming performance.

Fig. 6. Achieving 1-Mbps streaming by constructing a SIM tree among a mix-
ture of campus and residential users. Campus and residential users show distinct
distributions of upload and download data rates.

As we increase the streaming rate to 1 Mbps, the performance
of campus users is less impaired, because campus users are
able to absorb the workload gracefully among themselves.
The performance degradation is expected since there are only
three proxy servers which are desktops. This problem would
be alleviated as more servers are deployed, though we have
already seen encouraging cost-savings by having 3 standard
desktop servers support over 50 peers.

C. Offloading Workload With Proxy Helpers

The FastMesh protocol allows a proxy to play two roles:
proxy server and proxy helper. A proxy server has to receive the
complete set of video substreams so it appears as a local server to
peers that run the SIM protocol. However, the diverse locations
at a global scale and the temporary bandwidth shortage often
make it difficult to support a demanding workload by them-
selves, as demonstrated in Fig. 5. A proxy helper, which only
requires a partial set of all substreams, provides path diversity to
serve the proxy servers by forwarding video substreams, while
only consuming a limited amount of resources. This improves
the streaming rate through bandwidth aggregation. Peers only
receive video streams from their local proxy servers, but do not
talk to proxy helpers directly.
We compare the use of proxy servers and proxy helpers,

and results are shown in Fig. 7. We deploy proxies with a
location distribution as shown in Fig. 4. We conduct two sets

Fig. 7. Using proxies significantly increases the streaming capacity: (a) re-
ceived stream rate and (b) playback delay. With proxy helpers, the streaming
rate is more stable and large playback delays are greatly mitigated.

of experiments: the first one involves proxy servers only, and
the second one involves a 50–50 mixture of proxy servers and
proxy helpers. We also compare with the approach without
using any proxies, e.g., via the direct SIM tree. All experiments
last 30 min. Apparently, the achievable streaming rate without
using proxies is up to 300 kbps only, while using proxies greatly
improve the streaming rate to 1 Mbps. However, employing a
higher streaming rate may suffer from larger playback delays
because the throughput becomes more sensitive to various
network conditions, as we will show in details later. On the
other hand, proxy helpers outperform proxy servers, as the
achieved streaming rate is more stable and the playback delay
is of several orders of magnitude lower. While we demonstrate
that employing both proxy servers and proxy helpers presents
a promising solution, calculating an optimal mixture between
the two in practice remains an open research problem [5].

D. Improving Scalability With IP Multicast

The measurement data demonstrates that IP-multicast can be
seamlessly integrated into overlay streaming trees, even under
peer churns. We deploy churning peers in a campus network
where IP-multicast support is enabled by network administra-
tors. We intentionally configure some peers to be IP-multicast
capable, while turning off others. Because IP-multicast relies
on UDP which does not offer retransmission mechanism, we

1462 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 14, NO. 5, OCTOBER 2012

Fig. 8. Embedding IP-multicast into overlay trees: integrating two data planes when one or another starves.

Fig. 9. IP-multicast improves system reliability, scalability, and efficiency.

need to recover the lost IP-multicast data from other sources.
The SIM protocol allows a peer to recover data from its overlay
parent once the IP-multicasted data is lost. As such, a peer’s
performance does not rely on one single data plane, and is more
robust against highly varying network conditions. In Fig. 8, we
show segment-wise delays, and the data source in an experiment
with 70 peers from campus nodes. Clearly, the overlay data can
immediately bridge the gap due to IP-multicast packet loss. The
impact of IP-multicast loss is mitigated so the segment delay is
rarely affected. In fact, we are able to keep the system overhead
very low, as the amount of overlay data is insignificant com-
pared to the IP-multicast data.
We next examine the benefit of IP-multicast in terms of

streaming rate, segment playback lag, buffer continuity index,
and uplink usage. We conduct two experiments, one with
IP-multicast capable peers, and the other without. We deploy
the same set of nodes and allow peer churns with the same
parameters. We compare their performances in Fig. 9.
While both approaches achieve an average streaming rate

around 1 Mbps, IP-multicast helps to reduce the rate fluctua-
tion, confirming the intuition that IP-multicast is less sensitive to
peer churns. Delay reduction by IP-multicast is very significant.
Compared to the overlay multicast, delays of IP-multicast are
greatly reduced in two ways: lower protocol overhead (e.g., tree
reformation, system overhead on segment store-and-forward)
and lower bandwidth requirements from the more efficient mul-
ticast tree topology. The second factor is especially important,
when a higher streaming rate is required.
IP-multicast also improves the buffer continuity index, except

for a very small number of cases in which the buffer continuity
is low, e.g., below 0.5, due to the unreliable UDP transmission.
The saving of peer uplink bandwidth by IP-multicast is also sig-
nificant. With IP-multicast, 90% of the time, a majority of peers
do not need to upload any data, while in the other case, more
than 30% of the time, i.e., without IP-multicast support, some
peers contribute more than 1 Mbps of their uplink bandwidth.

Fig. 10. Experimenting Mbps streaming with multiple TCP connections:
finding the optimal number of parallel connections.

Fig. 11. Tracing segment-level delays and root cause analysis of delay jitters.

The amount of bandwidth saving is attained when there are peer
churns. Other experiments show that such benefit is even more
significant when peers are stable.

E. Aggregating Throughput by Parallel TCP Connections

To achieve 1-Mbps stream by one single TCP connection
over a long haul connection is challenging. This is due to
TCP’s throughput that is inversely proportional to RTT, making

JIANG et al.: GLOBAL 1-MBPS PEER-ASSISTED STREAMING 1463

Fig. 12. Decomposing end-to-end playback delay components: transmission delay , propagation delay , and scheduling delay .

trans-continent connections capped by a rate limit which is usu-
ally lower than the 1-Mbps requirement. One way to increase
end-to-end throughput is to employ multiple simultaneous TCP
connections. In the next experiment, we allow proxies to use
parallel TCP connections to communicate with each other.
Fig. 10 shows the received streaming rate as we increase the
number of parallel connections. We select three locations to
demonstrate the benefit. Increasing the number of connections
from one to two almost doubles the streaming rate, but the
marginal benefit diminishes as more connections are used.
An interesting observation is that the maximum achievable
streaming rate is around 1.6 Mbps for all locations. Because
such a phenomenon is universal all locations, the bottleneck is
likely to be the local ISP (HKUST) gateway where a rate limit
is applied. This study suggests that parallel TCP connections is
often an effective way to achieve high throughput between two
proxies, but this approach may be limited due to ISPs’ policies.

F. Scalability of FastMesh-SIM

In our experiment, we successfully provide 1-Mbps
streaming to around 100 peers running SIM, with around
20 proxies running FastMesh. It is important to note that
the 100 peers, from two campuses and residential users, are
supported by 5 proxy nodes. Other proxies, deployed purely
for the purpose of studying FastMesh, do not serve these peers
directly. A simple back-of-the-envelope calculation projects
the system scale to a few hundred peers. In addition, the
participating proxies, are normal desktops with stable Internet
access such as broadband or campus LAN users (e.g., “super”
nodes in the peer-to-peer VoIP), and can be selected based on
measurements and history. As such, the two-tier architecture
allows the system size to grow proportionally with the number
of proxies in FastMesh, which is a promising step towards the
goal of scalable 1-Mbps peer-assisted streaming.

V. OPTIMIZING USER PLAYBACK DELAY

A. Identifying the Root Cause of Delay Jitters

We first analyze the end-to-end delay jitters. We establish the
benchmark performance without enabling the IP-multicast fea-
ture and without peer churns. The segment-wise delay log is
presented in Fig. 11. We show the result of two peers that are
representative of two types of delay jitters, one from East Asia
(Korea) that is closer to the server, and the other from US East
(Princeton). The East Asia node shows lower mean playback
delay and jitters. While occasional hiccups are observed, both
nodes are able to achieve an average playback delay of around

500 ms. Since playback delay measures the lifespan of a seg-
ment from its birth to its consumption, 500 ms is indeed a chal-
lenging delay bound in live streaming. Fig. 11 shows that the
US East node suffers more from delay jitters, which is due to
the longer trans-continent connection that packets traverse. The
next question would be how to identify delay bottlenecks.

B. Differentiating Fine-Grained Delay Components

To minimize delay, a question that naturally arises is which
components of the end-to-end delay are the dominant ones. This
allows us to identify bottlenecks in the first place. The peer’s
playback delay is decomposed hop by hop, where each
hop consists of segment transmission delay , propagation
delay , and scheduling delay . To analyze these delay
components, we focus on two proxy servers, one located in East
Asia (Korea) and the other in US East (Princeton).
Fig. 12 explains the share of different delay components. In

this experiment, an end-to-end path that a segment traverses
consists of several hops: the hop from the source to proxy
servers on the same network, and trans-continental hops be-
tween proxy servers. We do not introduce peer churns yet,
therefore the additional protocol incurred latency is negligible.
In Fig. 12, we show the CDFs of different delay components.
The end-to-end delay, propagation delay, and transmission
delay are measured, while the scheduling delay is derived by
subtracting the other two components from the total end-to-end
delay.
For both locations, propagation delay is not constant because

different segments may travel along different paths constructed
by the FastMesh protocol. For the East Asia node, propaga-
tion, transmission, and scheduling delay have approximately
an equal share, i.e., 1/3 of the total delay. The US East node
shows a larger delay variance than the East Asia node, because
the throughput of a longer connection is less stable. In live
streaming, we do not skip segments unless a significant lag be-
hind the live playback point is detected. The playback delay is
accumulated when a segment arrives late due to the temporary
starvation for bandwidth. Therefore, to optimize the user delay,
the two bottlenecks should be targeted at: 1) a low-delay mesh
constructed using the propagation delay and 2) a bandwidth-suf-
ficient mesh that supports the streaming rate.
The relative magnitude of different delay components also

depends on population size, as the total transmission and sched-
uling delay depends on the scale of our experiments, while the
propagation delay does not.We normalize the delay components
with respect to our population size, e.g., the tree size in our ex-
periments, and show the projected delay in Table II. As the pop-

1464 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 14, NO. 5, OCTOBER 2012

TABLE II
NORMALIZED DELAY COMPONENTS OF AN 8-HOP PEER

Fig. 13. Push versus pull stream delivery: pull delay grows linearly with tree
depth.

ulation size grows, the transmission and scheduling delays tend
to increase, which suggests that eliminating protocol overhead
should be given a high priority.

C. Stream Delivery: Push versus Pull

As push-based stream delivery is one of our major design de-
cisions, we next quantify how much we can reduce delay com-
pared to a pull-based stream delivery, which is adopted by most
commercial applications. We implement a protocol similar to
BitTorrent in which peers exchange segment bitmap informa-
tion and request segments sequentially (compared to video-on-
demand which applies a broader set of segment selection poli-
cies). We compare a simple pull-based stream delivery, and set
a conservative bound on the handshake interval to be 1 s.
Fig. 13 shows the average end-to-end delay of peers that run

the SIM protocol from a local campus LAN (Hong Kong). Con-
ventional wisdom is that more tree hops results in higher delay,
which is verified by the pull curve, since the protocol (hand-
shake) delay grows proportionally to the tree depth. The data
quantifies the intuition that push can significantly reduce delay,
where the curve corresponding to “push” is flatter due to the fact
that the protocol overhead is no longer the major delay bottle-
neck as the peer population grows. However, it should be noted
that pull-based systems have other potential advantages: better
reliability and resource utilization.

D. Exploring the Segment Size Tradeoff

There are various system parameters that one can optimize
in any P2P streaming protocol. Here we show the example of
optimizing one commonly used parameter, e.g., segment (or
so-called chunk) size. Segment size is the minimum exchange
unit in peer-to-peer streaming, an important parameter that is
employed in both push-based and pull-based systems. A smaller
segment size usually reduces per segment transmission time, but
at the expense of higher system scheduling overhead. To quan-
tify the best tradeoff, we run experiments that vary the segment
size, while keeping other settings fixed. Again we compare two
metrics, streaming rate and segment delay, and present the re-
sults in Fig. 14.

Fig. 14. Experimenting with segment sizes: transmission time versus control
overhead tradeoff.

Fig. 15. Introducing heavy node churns to examine system reliability: CDF of
system population and peer arrival/departure rates.

While all trials achieve a mean streaming rate around 1Mbps,
the variance increases monotonically as the segment size de-
creases. A smaller segment size introduces more control traffic
and scheduling overhead, reducing the bandwidth efficiency.
The system is potentially more unstable, as shown by those
small rates under the setting of small segments. On the flip side,
the segment delay is higher for larger segment size as intuition
suggests. Themedian of the delay grows almost linearly with the
segment size (although not readily seen from the CDF), which
is due to the fact that transmission delay becomes the dominant
component as the segment size grows. However, as the segment
size decreases, other delay components, e.g., scheduling delay,
become more significant. Surprisingly, having a large segment
size such as 140 KB reduces worst delays, e.g., greater than 10 s,
suggesting that a large segment size is more insensitive to band-
width variations, though large segment size also increases the
average delay. This is also an evidence that scheduling segment
retransmission may involve a large system overhead.

VI. IMPROVING STREAMING RELIABILITY

Maintaining a reliable P2P streaming service is challenging,
especially under a high bandwidth demand. There are many fac-
tors that can impair the system reliability, among which peer
churns and bandwidth fluctuation are the foremost reasons.

A. Disruption of Playback Delay Due to Peer Churns

To understand how churns can affect the system stability and
the streaming performance, we let nodes to dynamically leave
and rejoin the system. We do not intend to model the churning

JIANG et al.: GLOBAL 1-MBPS PEER-ASSISTED STREAMING 1465

Fig. 16. Performance degradation under peer churns, and demonstration of system recovery from node failovers.

Fig. 17. Comparison of performance under churning peers and proxies: better reliability achieved under peer churns. This motivates an architectural separation
of peers and proxies to strike a balance between simplicity and optimality.

behavior of real users; instead, we inject a heavy churn so that
it presents a substantial challenge to sustain a smooth streaming
experience. For simplicity, we let each node go online and of-
fline repeatedly, and the mean sojourn time for both active and
inactive periods is 3min. For example, Fig. 15 shows the CDF of
arrival rates and departure rates that we employ in a light-churn
experiment, and the CDF of system population in a trial of one
hour long. On average, there are 3 new arrivals and 3 depar-
tures in 1 min. In a system with 50 peers, this emulates a strong
churning behavior, where both the frequency and percentage of
churns are much higher than a normal scenario. Each peer depar-
ture incurs tree reconstruction if the peer is an internal node, and
each peer arrival may involve several rounds of parent searching
until the performance stabilizes.
Fig. 16 shows the segment-wise playback delay of a peer in

the system under heavy churns and light churns, respectively.
In both Fig. 16(a) and (b), the left curve shows the indicator
function of the event that one of the peer’s upstream parents has
changed, and the right one shows the playback delay of every
segment in the same trial. Apparently, the two events, i.e., the
parent change and large delay, are highly correlated. Although
churns do not penalize the average streaming rate severely, they
can greatly impair the stream smoothness by significantly de-
laying a few segments. In the worst case, a segment may arrive
tens of seconds after its live playback point, e.g., when the seg-
ment is generated at the source. The playback delay quickly goes
back to normal as the tree stabilizes and the required throughput
is sustained. In Fig. 16, there are delay spikes when no topology
change occurs, which suggests that the bandwidth fluctuation
caused by other factors (e.g., cross traffic, packet loss) accounts
for the performance degradation.

B. Server Churns versus Peer Churns

We employ the same set of nodes and run two experiments,
one with churning servers and the other with churning peers.
Results are shown in Fig. 17. In both cases, the streaming rate
exhibits a large variance compared to no-churning experiments.
Expectedly peers get stuck when their upstream servers or peers
fail, but the protocol can quickly adapt and resume transmission.

The suboptimal but adaptive tree protocol is quite robust, de-
spite frequent parent changes. On the other hand, server churns
have a more significant impact on the playback delay. This is
due to the fact that proxy servers are much fewer than peers,
and peers suffer from data starvation when all of their local
proxies die. In addition, the FastMesh protocol is not optimized
for churns, and the performance penalty under churns is a price
we pay for more sophisticated bandwidth aggregation and delay
optimization.

C. What Kind of Trees Are More Robust

Conventional wisdom suggests that large tree fanout (shallow
tree) may be, on average, less robust than small tree fanout (deep
tree). Large fanout implies higher error correlation among chil-
dren. The insight we gain from our experiments is indeed a
deeper tree is more robust. With proxies and proper error con-
trol, a peer’s failure does not necessarily trigger the error re-
covery of all its descendants. The peer’s child detects error more
quickly than its grandchildren, since the loss of the TCP connec-
tion is detected faster than application-layer timeouts.

VII. COMPARING THEORY AND PRACTICE

There has been a number of papers developing sophisticated
algorithms to compute the highest achievable P2P streaming
rate, under ideal assumptions such as “no peer churn” and “up-
link bandwidth is the only bottleneck” (e.g., [3], [5], [17]). We
show that these upper bounds in theory is not much higher than
1 Mbps for the system we measured. This provides another con-
firmation that achieving 1 Mbps is indeed challenging but still
feasible, considering that this measurement study was carried
out in a highly stressed environment.

A. Two-Level Architecture

Many theoretical works [5], [8] proposed a hierarchical ar-
chitecture in peer-assisted streaming that promotes a separation
of the design space into groups of peers clustered by geographic
proximity, as illustrated in Fig. 18. Across clusters, super peers,
e.g., proxies or peers with high uplink capacities, form a dense
core and communicate with one another. Inside each cluster,
peers are organized into shallow streaming trees rooted at super

1466 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 14, NO. 5, OCTOBER 2012

TABLE III
COMPARISON OF THEORETICAL PROPOSAL AND FASTMESH-SIM

Fig. 18. Two-level hierarchical architecture proposed in [5] that constructs full
mesh among proxies in the top level and shallow trees in the bottom level.

peers. The two-level architecture is scalable and of low com-
plexity, and ensures high bit-rate streaming is sustainable over
a wide geographic coverage.
Table III compares and contrasts theoretical suggestions and

the practical design in FastMesh-SIM. While FastMesh-SIM
and P2P streaming capacity work were independently carried
out, it turns out that FastMesh-SIM captures these architec-
tural insights from the theory work and confirms them with
a global-scale deployment and measurement. Later in this
section, we show the similarity of streaming tree constructions,
as well as proximity of theoretical performance bounds and
what is achieved in practice.

B. Similarity of Streaming Tree Construction Methods in
Theory and Practice

We later show that FastMesh-SIM achieves a very large frac-
tion of the streaming rate upper-bound. To first provide an intu-
ition why it works well in practice, we compare the resulting
streaming trees constructed in FastMesh protocol and one of
our recent studies in P2P streaming capacity under node degree
bounds [5]. Following step-by-step the algorithm in FastMesh
and Bubble algorithm, i.e., the multi-tree construction algorithm
in [5], we calculate individual substream rate, i.e., the bit-rate
supported on each streaming tree, under the same peer capaci-
ties measured from the dataset shown in the full paper [20, Ap-
pendix]. Results are illustrated in Fig. 19.
Bubble algorithm is executed under a degree bound of 4 (that

approximates for scalability). Bubble algorithm produces
a total of 12 streaming trees, with corresponding substream rates
ranging from 5 kbps to 430 kbps. In contrast, FastMesh pro-
tocol explicitly tries to construct 5 streaming trees and each sub-
stream delivers 200 kbps bit-rate (which is a tunable parameter
in our protocol given the total target streaming rate is 1 Mbps).
The similarity between the multi-tree constructed by theory and
FastMesh-SIM is obvious: they both capture the set of major
streaming trees that can support high bit-rates. Although the
FastMesh protocol uses low-complexity heuristics, it is able to

Fig. 19. Comparison of streaming multi-tree construction in FastMesh and
Bubble algorithm [5] that achieves optimal streaming capacity under node de-
gree bounds.

TABLE IV
THEORY-PRACTICE GAP IN P2P STREAMING CAPACITY: A SURPRISINGLY
LARGE FRACTION OF THEORY UPPER-BOUND IS ATTAINABLE BY

FASTMESH-SIM, CONFIRMING THE ACCURACY OF THEORETICAL MODELS

find “good” trees out of an exponential number of possibilities.
FashMesh does lose substream rates in the long tail that con-
tribute to streaming rate optimality, but comes with lower im-
plementation complexity and better system reliability.

C. FastMesh-SIM Achieves Close-to-Optimal Streaming Rate

We use simplified versions of the state-of-the-art algorithms
to derive an upper bound on streaming rate through back-of-
the-envelope calculation, presented in [20, Appendix]. Such a
simplification further loosens the ideal bounds, and the resulting
upper bounds are even more optimistic. The input parameters to
the upper bound calculation is the set of peer uplink capacities
measured in the trace, and the upper bound is computed using
the 95-percentile of those across all the peers. Results are given
in Table IV. The resulting upper bound on streaming capacity
is 1.201 Mbps while in practice we achieved 1.021 Mbps on
average. This is a surprisingly large fraction, over 85%, of the
upper bound generated by following many idealistic assump-
tions in theory.

VIII. RELATED WORK

The widespread deployment of P2P streaming systems has
motivated many types of work on the understanding of chal-
lenges of streaming video content over the public Internet.

JIANG et al.: GLOBAL 1-MBPS PEER-ASSISTED STREAMING 1467

1) Architecture of Peer-Assisted Live Streaming: Similar to
our work, some systems [21], [22] implement a hybrid approach
by leveraging the best of server infrastructures (e.g., CDNs)
and peers. The benefits of utilizing peer resources to distribute
contents are studied in [23]. Another deployment [2] of hybrid
P2P-CDN system also confirms such a design choice. Other
work [24] also studied the feasibility of building a peer-assisted
high-quality VoD system. Most of these works are either trace-
based simulations leveraging data collected fromCDNs and Bit-
Torrent, or deployed in a smaller region under the conventional
low-quality streaming, and thus, lack the validation as a global
1-Mbps streaming by an operational system.
2) Measurements of Commercial P2P Streaming Systems:

A number of measurement works studied commercial P2P
streaming applications [7], [8], [11], [25], [26], characterizing
the performance in a large user population, and revealing the
challenges faced by today’s operational systems. These works
passively sniff, or actively crawl the online users to collect
and infer various system performance metrics. With similar
goals, [12], [27], [28], [29], leverage data contributed from
service providers, inspect current system design, reveal the
viewing behaviors of real users, and characterize large-scale
topological dynamics. This approach, complementary to this
paper’s, is highly valuable in providing a better understanding
of how popular applications, and real users, behave in large
commercial deployments.
A smaller scale and less mature version of our implementa-

tion involving only Hong Kong and Princeton peers was tested
and reported in a short paper [30]. We experiment with lower
streaming rates of only 300 kbps, as is typical in most of today’s
commercial systems. These earlier experiments lacked most
of the key features examined, metrics measured, and lessons
learned in the experiments that achieved the substantially
higher streaming rate in the current paper.

IX. CONCLUSION

In the tradeoff space between high visibility/control, and a
high degree of realism, this paper presents a complementary
angle to existing approaches. We design controlled experiments
with target research questions in mind, and analyze fine-grain
measurement data collected from the highly configurable
FastMesh-SIM platform. With a global footprint over 8 coun-
ties, our experiments demonstrate that 1-Mbps streaming over
the global Internet is indeed an attainable goal, and, as indicated
by the back-of-the-envelope calculation of theoretical upper
bound benchmarks, it is not an easy one to achieve. The collec-
tive use of design choices, ranging from architectural decisions,
to parameter selection, provides quantitative understanding on
how high bit-rate streaming can be achieved, and useful lessons
to building a global 1-Mbps streaming service.

ACKNOWLEDGMENT

The authors would like to thank colleagues around the world
who helped host and maintain the nodes of our experiments in
their countries, including L. Andrew in Australia, K. Leung in
the U.K., S. Low in the USA, F. Paganini in Uruguay, and Y. Yi
in Korea.

REFERENCES

[1] PPLive. [Online]. Available: http://www.pplive.com/.
[2] H. Yin, X. Liu, T. Zhan, V. Sekar, F. Qiu, C. Lin, H. Zhang, and B. Li,

“Design and deployment of a hybrid CDN-P2P system for live video
streaming: Experiences with livesky,” in Proc. ACMMultimedia, 2009.

[3] S. Liu, R. Zhang-Shen, W. Jiang, J. Rexford, and M. Chiang, “Perfor-
mance bounds for peer-assisted live streaming,” in Proc. ACM SIG-
METRICS, 2008.

[4] X. Jin, K.-L. Cheng, and S.-H. Chan, “Scalable island multicast for
peer-to-peer streaming,” J. Adv. Multimedia, Special Issue on Multi-
media Networking, 2007.

[5] S. Liu, M. Chen, S. Sengupta, M. Chiang, J. Li, and P. A. Chou, “P2P
streaming capacity under node degree bound,” in Proc. Int. Conf. Dis-
tributed Computing Systems, 2010.

[6] S. Sengupta, S. Liu, M. Chen, M. Chiang, J. Li, and P. A. Chou,
“Peer-to-Peer streaming capacity,” IEEE Trans. Inf. Theory, vol. 57,
no. 8, pp. 5072–5087, Aug. 2011.

[7] S. Ali, A.Mathur, andH. Zhang, “Measurement of commercial peer-to-
peer live video streaming,” in Proc. Workshop Recent Advances in
Peer-to-Peer Streaming (WRAIPS), 2006.

[8] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross, “A measurement
study of a large-scale P2P IPTV system,” IEEE Trans. Multimedia, vol.
9, no. 8, pp. 1672–1687, Dec. 2007.

[9] X. Hei, Y. Liu, and K. W. Ross, “Inferring network-wide quality in
P2P live streaming systems,” IEEE J. Select. Areas Commun., vol. 25,
no. 9, pp. 1640–1654, 2007.

[10] C. Wu, B. Li, and S. Zhao, “Characterizing peer-to-peer streaming
flows,” IEEE J. Select. Areas Commun., vol. 25, no. 9, pp. 1612–1626,
Dec. 2007.

[11] E. Alessandria, M. Gallo, E. Leonardi, M. Mellia, and M. Meo,
“P2P-TV systems under adverse network conditions: A measurement
study,” in Proc. IEEE INFOCOM, 2009.

[12] C. Wu, B. Li, and S. Zhao, “Exploring large-scale peer-to-peer live
streaming topologies,” ACM Trans. Multimedia Comput. Commun.
Appl., vol. 4, no. 3, pp. 1–23, 2008.

[13] X. Jin, H.-S. Tang, S.-H. Chan, and K.-L. Cheng, “Deployment issues
in scalable island multicast for peer-to-peer streaming,” IEEE Multi-
media Mag., vol. 16, no. 1, pp. 72–80, Jan.–Mar. 2009.

[14] D.-N. Ren, Y.-T. H. Li, and S.-H. Chan, “FastMesh: On reducing mesh
delay for peer-to-peer live streaming,” inProc. IEEE INFOCOM, 2008.

[15] S. Zhang, Z. Shao, and M. Chen, “Optimal distributed P2P streaming
under nodedegreebounds,” inProc. Int.Conf.NetworkProtocols, 2010.

[16] W.-P. Yiu, K.-F. Wong, S.-H. Chan, W.-C. Wong, Q. Zhang, W.-W.
Zhu, and Y.-Q. Zhang, “Lateral error recovery for media streaming
in application-level multicast,” IEEE Trans. Multimedia, Special Issue
on Distributed Media Technologies and Applications, vol. 8, no. 2, pp.
219–232, Apr. 2006.

[17] Y. Liu, “On the minimum delay peer-to-peer video streaming: How
realtime can it be?,” in Proc. ACM Multimedia, 2007.

[18] Y. Liu, “Delay bounds of chunk-based peer-to-peer video streaming,”
IEEE/ACM Trans. Networking, vol. 18, no. 4, pp. 1195–1206, Aug.
2009.

[19] J. Li, P. A. Chou, and C. Zhang, “Mutualcast: An efficient mechanism
for one-to-many content distribution,” in Proc. ACM SIGCOMM ASIA
Workshop, 2005.

[20] J.W. Jiang,S.-H.G.Chan,M.Chiang, J.Rexford,D.T.Ren, andB.Wei,
Global 1Mbps Peer-Assisted Streaming: Fine-GrainMeasurement of a
Configurable Platform. Princeton, NJ: PrincetonUniv. Tech. Rep.

[21] C. Huang, A. Wang, J. Li, and K. W. Ross, “Understanding hybrid
CDN-P2P: Why limelight needs its own red swoosh,” in Proc.
NOSSDAV, 2008.

[22] D. Xu, S. S. Kulkarni, C. Rosenberg, and H. K. Chai, “A CDN-P2P
hybrid architecture for cost-effective streaming media distribution,”
Comput. Netw., vol. 44, pp. 353–382, 2004.

[23] T. Karagiannis, P. Rodriguez, and K. Papagiannaki, “Should Internet
service providers fear peer-assisted content distribution?,” in Proc. In-
ternet Measurement Conf., 2005.

[24] S. Annapureddy, S. Guha, C. Gkantsidis, D. Gunawardena, and P. R.
Rodriguez, “Is high-quality VOD feasible using P2P swarming?,” in
Proc. World Wide Web, 2007, pp. 903–912.

[25] T. Silverston and O. Fourmaux, “P2P IPTV measurement: A compar-
ison study,” CoRR, 2006.

[26] F. Wang, J. Liu, and Y. Xiong, “Stable peers: Existence, importance,
and application in peer-to-peer live video streaming,” in Proc. IEEE
INFOCOM, 2008.

[27] M. Cha, P. Rodriguez, J. Crowcroft, S. Moon, and X. Amatriain,
“Watching television over an IP network,” in Proc. Internet Measure-
ment Conf., 2008.

1468 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 14, NO. 5, OCTOBER 2012

[28] Y. Huang, T. Z. Fu, D.-M. Chiu, J. C. Lui, and C. Huang, “Challenges,
design and analysis of a large-scale P2P-VOD system,” in Proc. ACM
SIGCOMM, 2008.

[29] S. Xie, B. Li, G. Keung, andX. Zhang, “Coolstreaming: Design, theory,
and practice,” IEEE Trans. Multimedia, vol. 9, no. 8, pp. 1661–1671,
Dec. 2007.

[30] J. W. Jiang, S.-H. Chan, M. Chiang, J. Rexford, K.-F. S. Wong, and
C.-H. P. Yuen, “Proxy-P2P streaming under the microscope: Fine-grain
measurement of a configurable platform,” in Proc. Int. Conf. Computer
Communication Networks (ICCCN), 2010.

Joe Wenjie Jiang received B.Sc. degree from the
University of Science and Technology of China in
2003, theM.Phil. degree from the Chinese University
of Hong Kong in 2005, and the Ph.D. degree in com-
puter science from Princeton University, Princeton,
NJ, in 2012.
He was coadvised by Prof. J. Rexford and Prof.

M. Chiang. His thesis title was “Wide-area traffic
management for cloud services.” His research inter-
ests include content distribution and cloud services,
data center traffic management, Internet routing, and

video streaming.
Dr. Jiang served on the Program Committee for ACM S3 2011 (collocated

with MOBICOM 2011), and was Co-Chair of CCNC 2010 Student Workshop.
His research received 2005 Performance Best Student Paper Award, and 2005
Best Research Output by Research Postgraduate Students from the Chinese Uni-
versity of Hong Kong.

S.-H. Gary Chan (S’89–M’98–SM’03) received
the B.S.E. degree (highest honor) in electrical engi-
neering from Princeton University, Princeton, NJ, in
1993, with certificates in applied and computational
mathematics, engineering physics, and engineering
and management systems. He received the M.S.E.
and Ph.D. degrees in electrical engineering from
Stanford University, Stanford, CA, in 1994 and 1999,
respectively, with a minor in business administration.
He is currently an Associate Professor of the

Department of Computer Science and Engineering,
Director of Sino Software Research Institute, and Co-Director of Risk Man-
agement and Business Intelligence program, The Hong Kong University
of Science and Technology (HKUST), Hong Kong. His research interest
includes multimedia networking, peer-to-peer streaming and technologies, and
wireless communication networks. He has been a Visiting Professor/Adjunct
Researcher in Microsoft Research Asia (2000–2011), Research Collaborator at
Princeton University (2009), Visiting Associate Professor at Stanford Univer-
sity (2008–2009), Director of Computer Engineering Program at the HKUST
(2006–2008), Visiting Assistant Professor in Networking at the University of
California at Davis (1998–1999), and Research Intern at the NEC Research
Institute, Princeton, NJ (1992–1993).
Dr. Chan has been an Associate Editor of the IEEE TRANSACTIONS ON

MULTIMEDIA (2006–2011), and is a Vice-Chair of the Peer-to-Peer Networking
and Communications Technical Sub-Committee of the IEEE Comsoc Emerging
Technologies Committee. He has been Guest Editors of IEEE TRANSACTIONS
ON MULTIMEDIA (2011), IEEE SIGNAL PROCESSING MAGAZINE (2011), IEEE
COMMUNICATION MAGAZINE (2007), and Springer Multimedia Tools and
Applications (2007). He was the TPC chair of the IEEE Consumer Communi-
cations and Networking Conference (CCNC) 2010, Multimedia symposium in
IEEE Globecom (2007 and 2006) and IEEE ICC (2007 and 2005), and Work-
shop on Advances in Peer-to-Peer Multimedia Streaming in ACM Multimedia
Conference (2005). He is the recipient of the Google Mobile 2014 award in
2010 and 2011, and is a member of honor societies Tau Beta Pi, Sigma Xi and
Phi Beta Kappa. He was a William and Leila Fellow at Stanford University
(1993–1994). At Princeton, he was the 1993 recipient of the Charles Ira Young
Memorial Tablet and Medal and the POEM Newport Award of Excellence.

Mung Chiang (S’00–M’03–SM’08–F’12) received
the B.S. (Hons.), M.S., and Ph.D. degrees from
Stanford University, Stanford, CA, in 1999, 2000,
and 2003, respectively
He is a Professor of electrical engineering at

Princeton University, Princeton, NJ, and an affiliated
faculty in applied and computational mathematics,
and in computer science. He was an Assistant
Professor 2003–2008 and an Associate Professor
2008–2011 at Princeton University.
Dr. Chiang’s research on networking received the

2012 IEEE Kiyo Tomiyasu Award, a 2008 U.S. Presidential Early Career Award
for Scientists and Engineers, several young investigator awards, and a few paper
awards, including the 2012 IEEE INFOCOM Best Paper Award. His inventions
resulted in a few technology transfers to commercial adoption, and he received
a 2007 Technology Review TR35 Award and founded the Princeton EDGE Lab
in 2009. He served as an IEEE Communications Society Distinguished Lecturer
in 2012–2013, and wrote an undergraduate textbook: Networked Life: 20 Ques-
tions and Answers (Cambridge, U.K.: Cambridge Univ. Press, 2012).

Jennifer Rexford received the B.S.E. degree in
electrical engineering from Princeton University,
Princeton, NJ, in 1991, and the M.S.E. and Ph.D. de-
grees in computer science and electrical engineering
from the University of Michigan, Ann Arbor, in
1993 and 1996, respectively.
She is a Professor in the Computer Science Depart-

ment at Princeton University. From 1996–2004, she
was a member of the Network Management and Per-
formance Department at AT&T Labs-Research. She
is co-author of the book Web Protocols and Practice

(Reading, MA: Addison-Wesley, 2001).
Dr. Rexford served as the chair of ACM SIGCOMM from 2003 to 2007. She

was the 2004 winner of ACM’s Grace Murray Hopper Award for outstanding
young computer professionals.

D. Tony Ren received the B.Eng. degree in com-
puter science (information engineering) from the
Hong Kong University of Science and Technology
(HKUST) in 2007, and the M.Phil. degree in com-
puter science from HKUST in 2009. He is currently
pursuing the Ph.D. degree at the Department of
Computer Science and Engineering in HKUST,
supervised by Prof. S. H. G. Chan.
His research interest includes live streaming

technologies, multimedia networking, overlay, and
peer-to-peer networks.

Bin Wei received the Ph.D. degree in computer sci-
ence from Princeton University, Princeton, NJ.
He is a research staff member at AT&T Labs

Research, Florham Park, NJ. His contributions to
multimedia communications focus on the middle-
ware which provides multimedia services for various
user devices ranging from display walls to handheld
devices by building prototype systems. He also
works on improving communication performance
and user experience with mobile devices. He has
many publications in major international technical

conferences and journals.

