
1580 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 8, DECEMBER 2007

On Maximizing Tree Bandwidth for
Topology-Aware Peer-to-Peer Streaming

Xing Jin, Student Member, IEEE, W.-P. Ken Yiu, Student Member, IEEE, S.-H. Gary Chan, Senior Member, IEEE,
and Yajun Wang

Abstract—In recent years, there has been an increasing interest
in peer-to-peer (P2P) multimedia streaming. In this paper, we con-
sider constructing a high-bandwidth overlay tree for streaming ser-
vices. We observe that underlay information such as link connec-
tivity and link bandwidth is important in tree construction, because
two seemingly disjoint overlay paths may share common links on
the underlay. We hence study how to construct a high-bandwidth
overlay tree given the underlay topology.

We formulate the problem as building a Maximum Bandwidth
Multicast Tree (MBMT) or a Minimum Stress Multicast Tree
(MSMT), depending on whether link bandwidth is available or
not. We prove that both problems are NP-hard and are not ap-
proximable within a factor of (2 3 +), for any 0, unless
= NP. We then present approximation algorithms to address

them and analyze the algorithm performance. Furthermore, we
discuss some practical issues (e.g., group dynamics, resilience and
scalability) in system implementation. We evaluate our algorithms
on Internet-like topologies. The results show that our algorithms
can achieve high tree bandwidth and low link stress with low
penalty in end-to-end delay. Measurement study based on Plan-
etLab further confirms this. Our study shows that the knowledge
of underlay is important for constructing efficient overlay trees.

Index Terms—Overlay tree, peer-to-peer streaming, topology-
aware, tree bandwidth.

I. INTRODUCTION

WITH the popularity of broadband Internet access, there
has been an increasing interest in media streaming

services. Recently, P2P streaming has been proposed and
developed to overcome limitations in traditional server-based
streaming. In a P2P streaming system, cooperative peers
self-organize themselves into an overlay network via unicast
connections. They cache and relay data for each other, thereby
eliminating the need for powerful servers from the system.

In this paper, we consider building a high-bandwidth overlay
tree for steaming. A streaming video usually has a certain bi-
trate. To ensure good streaming quality at a host, the incoming
bandwidth of the host should be higher than or equal to the
streaming bitrate. We hence need to build a tree with enough
tree bandwidth to support the streaming. Here tree bandwidth

Manuscript received October 31, 2006; revised July 29, 2007. This work was
supported in part by the Research Grant Council of the Hong Kong Special
Administrative Region (HKUST611107) and Hong Kong Innovation and
Technology Commission (GHP/045/05). The associate editor coordinating the
review of this manuscript and approving it for publication was Prof. Klara
Nahrstedt.

The authors are with the Department of Computer Science and Engineering,
Hong Kong University of Science and Technology, Kowloon, Hong Kong,
China (e-mail: csvenus@cse.ust.hk; kenyiu@cse.ust.hk; gchan@cse.ust.hk;
yalding@cse.ust.hk).

Digital Object Identifier 10.1109/TMM.2007.907459

Fig. 1. The impact of underlay information to overlay tree construction.
(a) Naive construction of an overlay tree (the label along a host is its degree
bound). (b) Tree bandwidth = 0:5 (the label along a link is the residual
bandwidth of the link). (c) A tree with higher tree bandwidth of 1.0.

is defined as the minimum path-bandwidth of an overlay tree
[1]. Note that average incoming bandwidth of hosts may also be
used to evaluate a tree. However, when the incoming bandwidth
of a host is lower than the streaming bitrate, the host will en-
counter packet loss and the received streaming quality will be
reduced. Average incoming bandwidth cannot indicate the por-
tion of hosts with good (or bad) streaming qualities. We hence
focus on tree bandwidth instead of average incoming bandwidth
in this paper.

Some previous work imposes degree bounds on hosts. That is,
the degree of a host in an overlay tree cannot exceed a certain
bound [2], [3]. This approach can effectively reduce congestion
near hosts. However, it cannot improve tree bandwidth if the
bandwidth bottlenecks occur at intermediate links in paths in-
stead of edge links near hosts. Furthermore, two seemingly dis-
joint overlay paths may share common underlay links; therefore
the selection of overlay paths without the knowledge of underlay
may lead to serious link congestion. Note that in this paper, a link
refers to a physical underlay connection between two routers or
between a router and a host; while a path refers to an end-to-end
connection between two hosts, which may contain multiple un-
derlay links. Furthermore, the bandwidth of links or paths refers
to the residual bandwidth along links or paths. We show a tree
construction example in Fig. 1. , and are four hosts,
whose degree bounds are 2,2,2 and 1, respectively. Rectangles
with labels 1 to 5 are routers. Without any knowledge of the un-
derlay, a tree may be constructed as Fig. 1(a) shows. Suppose
that the link connectivity and link bandwidth on the underlay is
as shown in Fig. 1(b). We can see that this tree is of bandwidth
0.5 (the bottleneck link is between routers 3 and 4). Given the
underlay information, we can in fact build a tree with higher tree
bandwidth of 1 as shown in Fig. 1(c). Therefore, underlay infor-
mation is important for building a high-bandwidth overlay tree.

1520-9210/$25.00 © 2007 IEEE

JIN et al.: ON MAXIMIZING TREE BANDWIDTH 1581

In this paper, we study how to construct a high-bandwidth
overlay tree given the underlay information. Given a group of
hosts, we assume that the router-level underlay topology among
them is available. By topology, we mean the link connectivity
and delay information (the inference of a topology will be dis-
cussed in Section II-A). Residual bandwidth along links is much
more difficult to obtain due to dynamic background flows and
high measurement cost. We hence investigate novel algorithms
in the following two cases:

• In the absence of link bandwidth: Define link stress as
the number of copies of a packet transmitted over a cer-
tain physical link [2]. We consider minimizing the max-
imal link stress in a tree. We formulate the problem as
building a Minimum Stress Multicast Tree (MSMT) on a
given topology. Our study shows that it is NP-hard and is
not approximable within a factor of for any ,
unless . We then propose an approximation algo-
rithm to address it, and analyze the correctness and perfor-
mance of the algorithm.

• In the presence of link bandwidth: When link bandwidth is
available, we build a Maximum Bandwidth Multicast Tree
(MBMT) on the topology. This problem is also NP-hard
since it is equivalent to MSMT if all the links have the same
bandwidth. We explore how to extend the approximation
algorithm for MSMT to address the MBMT problem.

Besides the algorithms, we further discuss practical issues in
constructing the tree, including host joining/leaving, system re-
silience and scalability. We have conducted simulations on In-
ternet-like topologies as well as Internet measurements on Plan-
etLab to evaluate our approximation algorithms. The results
show that they can achieve higher tree-bandwidth and lower
link stress than traditional tree-based protocols such as Narada,
Overcast, and TAG. Our results show that underlay information
can help build a highly efficient overlay tree.

In the paper, we assume that the network is symmetric in
terms of bandwidth. Our algorithms are hence applicable to
symmetric networks like Symmetric Digital Subscriber Line
(SDSL) or local area networks. We further assume that the
router-level path from a host to another host is the reverse
of the path from to .

The rest of the paper is organized as follows. In Section II
we briefly review related work. In Section III, we formulate
the MSMT problem and prove that it is NP-hard. We then pro-
pose an approximation algorithm to address it. In Section IV
we formulate the MBMT problem and extend the approxima-
tion algorithm for MSMT to address it. In Section V we study
the system dynamics, resilience and scalability issues. In Sec-
tion VI, we present illustrative numerical results based on In-
ternet-like topologies and PlanetLab measurements. We finally
conclude in Section VII.

II. BACKGROUND AND RELATED WORK

A. Topology Inference

There are many ways to infer a network topology. Network
tomography techniques periodically probe the network and ex-
ploit the performance in correlation to infer network topolo-
gies [4], [5]. However, because the network properties measured

(e.g., loss rate or delay) are often unstable and inaccurate, it
is difficult to infer an accurate topology. Border Gateway Pro-
tocol (BGP) routing tables can provide AS-level information,
but they usually are not available to normal hosts in the Internet
[6], [7]. Therefore, traceroute-like tools (e.g., [8], [9]) that can
obtain explicit router-level information by end hosts have been
widely used in Internet measurements [10]–[13]. For example,
in Max-Delta inference, hosts first use some tools to estimate
their coordinates [13]. A server then collects host coordinates
and chooses the best set of host-pairs to traceroute. It has been
shown that Max-Delta can infer a highly accurate topology with
a low number of traceroutes. A problem in traceroute measure-
ment is that traceroute results often contain anonymous routers,
which significantly distort and inflate the inferred topology. Yao
et al. study how to infer a topology given the traceroute results,
where the inferred topology should be consistent with the tracer-
oute results and contain the minimum number of anonymous
routers [14]. They show that producing either an exact or an ap-
proximate solution for this problem is NP-hard. Two practical
algorithms without the consistency constraint are then proposed
to quickly construct an approximate topology [13].

Traceroute can only infer link connectivity and delay but not
link bandwidth. We may use Pathchar to measure the band-
width of each link in an overlay path [9]. But it takes long mea-
surement time and consumes much network bandwidth. In fact,
it needs in the order of minutes to estimate the bandwidth of
a link. If the cost of measuring link bandwidth cannot be af-
forded, users can turn to measuring the bandwidth of an overlay
path, which can be more easily obtained [15]–[17]. For example,
Pathload is a lightweight tool for such purpose which does not
incur significant increase in network utilization, delay or loss
during measurements and can support concurrent bandwidth
measurements toward the same host [15]. We hence propose a
simple and fast approach to infer link bandwidth based on path
bandwidth measurement in Section VI-B.

B. Constructing Data Delivery Trees

1) IP Multicast Trees: Multimedia streaming needs to send
information from one or multiple source hosts to a set of desti-
nation hosts. A traditional delivery technique for streaming is IP
multicast [18]. In an IP multicast tree, the interior nodes are all
routers and the leaves are all hosts. Routers are responsible for
replicating and forwarding packets along the tree. There have
been many routing algorithms for IP multicast in the literature.
Examples include Protocol Independent Multicast (PIM) [19],
Distance Vector Multicast Routing Protocol (DVMRP) [20],
Multicast Open Shortest Path First (MOSPF) [21], and Core
Based Trees (CBT) [22]. Please refer to [23] for a comparison
of these technologies.

IP multicast requires significant change to the current Internet
infrastructure. It requires multicast-capable routers, which need
to maintain per group state for packet replication and are not
scalable. Furthermore, IP multicast lacks large-scale commer-
cial management functions such as multicast address allocation
and reliable transmission. Therefore, although IP multicast has
been proposed for over ten years, it has not been widely de-
ployed yet. As a comparison, in a P2P overlay network, hosts
are responsible for packets replication and forwarding. A P2P

1582 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 8, DECEMBER 2007

network only uses unicast and does not need multicast-capable
routers. It is hence more deployable and flexible.

In addition, in IP multicast, there is no need to consider the
link sharing issue. Any link in IP multicast has stress 1, regard-
less of the number of hosts in the multicast session. However,
in a P2P network, a link may be shared by multiple paths, and
a major issue is how to reduce link stress. Therefore, the con-
struction of an IP multicast tree is significantly different from a
P2P overlay tree. The methods and algorithms for IP multicast
cannot be straightforwardly applied to a P2P network.

2) Peer-to-Peer Overlay Trees: As discussed, P2P networks
do not rely on multicast-capable routers and can be directly de-
ployed on the current Internet. Typical examples include appli-
cation-layer multicast (ALM) [2], [3], [24]–[26], P2P video-on-
demand systems [27], [28], and mesh-based streaming systems
[29], [30].

Trees with no Topology Information: Narada is one of the
pioneering ALM protocols and aims at building a low-delay
overlay tree [2]. In Narada, a joining host first obtains a full list
of already joined hosts from a public rendezvous point (RP) and
randomly selects a few to set up connections. A host then peri-
odically pings some randomly selected hosts. It adds a new con-
nection into the mesh if the new connection is short enough. It
also drops long connections from the mesh. After constructing
the mesh, a shortest path tree is built on top of the mesh for
data delivery. In Narada, the number of neighbors of a host in
the mesh is restricted within a certain range to prevent the host
from having too many connections. As discussed above, this ap-
proach cannot improve tree bandwidth if the bandwidth bottle-
necks occur at intermediate links in the network. Our tree con-
struction method does not depend on the locations of bottleneck
links. We infer the bandwidth of links and build a tree circum-
venting bottleneck links to achieve high tree bandwidth.

Overcast is one of the few ALM protocols that consider tree
bandwidth as the primary objective [24]. When a new host ar-
rives, it first estimates its bandwidth to the root and to each of
the root’s children. If the bandwidth to any of these children
is close to the bandwidth to the root, the new host moves one
level down to this child and repeats the process. This procedure
continues until the current host has no children with satisfactory
bandwidth to the new host. Then the current host becomes the
new one’s parent. Overcast does not perform well for a large
group of hosts (as shown in our simulations in Section VI).
Later joining hosts often cannot find parents with enough for-
warding bandwidth. Furthermore, a new host is inserted into the
tree as far from the source as the bandwidth constraint allows.
End-to-end delay in Overcast is hence high. As our simulation
results show, our algorithms can achieve higher tree bandwidth
and lower delay than Overcast.

Topology-Aware Overlay Trees: Topology-Aware
Grouping (TAG) is a topology-aware ALM protocol which
aims at constructing a low-delay overlay tree [31]. In TAG, a
new host needs to measure the router-level path from the source
to itself before joining the tree, which is called the spath of the
host. Each host then selects as its parent the host whose spath
has the maximal overlap with its own spath. In this way, TAG
can reduce the numbers of underlay hops and hence the delay
over the unicast paths. Their study indicates that knowing un-

derlay topology is important to construct efficient overlay trees,
and lots of work continues in this area [32]–[34]. However, all
these studies focus on reducing end-to-end delay and consider
tree bandwidth as secondary or not at all. Different from them,
we take tree bandwidth as the primary metric and endeavor to
maximize tree bandwidth.

Fast Application-layer Tree (FAT) builds an overlay tree
based on topology inference to achieve a certain target tree
bandwidth [1]. The target tree bandwidth is a pre-defined
system parameter and is used in tree construction. If the re-
sultant tree achieves the target tree bandwidth, FAT will not
continue improving the tree. As a comparison, our algorithms
in this paper aim to achieve the maximum tree bandwidth. We
have analyzed the hardness of the MSMT and MBMT problems
and shown that they are NP-hard.

Cui et al. study optimal resource allocation in a topology-
aware overlay tree [35]. In their settings, hosts form an overlay
tree and each host receives data from its parent at a certain rate.
Given the underlay topology among hosts (with residual link
bandwidth), they study how to maximize the aggregate utility
of all hosts under the bandwidth constraint. They allow hosts
to have different data receiving rates, which is applicable to
file sharing applications. Our study in this paper focuses on
streaming applications, where the data receiving rate at a host
is a constant (i.e., the video bitrate). To cast our problem into
their settings, we need to set and

(see (4)–(7) in [35]). That is, each flow in the
tree has a constant transmission rate and the utility function is
the transmission rate. However, this utility function is not
strictly concave and its curvatures are not bounded away from
zero. This violates constraints and in [35]. Hence, the
results and algorithms in [35] cannot be applied to our problem.

Cohen et al. also study how to maximize tree bandwidth
given the underlay topology [36]. Their MPSP(MaxBottle-
neck) problem is similar to the MBMT problem formulated
in our paper. However, our work is different from theirs in
several ways. 1) We use a different routing model from theirs.
In Cohen’s model, the routing path between two hosts can
be an arbitrary router-level path between them. But in our
model, we enforce the routing path between two hosts to be the
shortest path between them on the underlay topology. In the
real Internet, the routing path between two hosts is determined
by the routing protocols, e.g., OSPF for intra-AS routing and
BGP for inter-AS routing. The path cannot be determined by
end hosts. Our model is hence more realistic than Cohen’s.
In other words, our model gives one additional constraint to
the problem, and we will show later that this constraint is not
trivial. 2) Given the network model, we provide a novel proof
of the problem NP-hardness. Following our proof, we can show
that the MSMT and MBMT problems are not approximable
within a factor of , for any , unless .
3) We provide new heuristics to address the problems. Our
heuristic for MSMT has been proven to achieve a constant
approximation ratio.

In detail, Cohen et al. have proposed two heuristics to address
the MPSP (MaxBottleneck) problem, i.e., Widest Path Heuristic
(WPH) that achieves approximation ratio (where
is the number of hosts) and Double Tree Heuristic (DTH) that

JIN et al.: ON MAXIMIZING TREE BANDWIDTH 1583

achieves constant approximation ratio 2 in undirected graph. We
find that there are some limitations in their heuristics. Firstly,
the ratio of is easy and can be achieved in many other
ways. For example, we can start from an empty set and keep
adding paths with the maximum bandwidth until all hosts are
connected. Denote the final graph as . We can prove that
any spanning tree of can achieve approxima-
tion ratio1. Secondly, DTH uses a similar method as the folklore
2-approximation Steiner tree algorithm. Its approximation ratio
of 2 comes from the fact that we can use any arbitrary paths
between hosts for routing so that we can schedule the paths in
the tree and guarantee that one link is shared by at most two
unicast paths. Clearly, this is not true in our model. As a com-
parison, our heuristics do not assume arbitrary routing between
hosts. Our heuristic can achieve a constant approximation ratio
for MSMT (see Corollary 1 for more details). Our result has sig-
nificantly improved previous study on the MSMT problem.

III. MINIMUM STRESS MULTICAST TREE (MSMT)

In this section, we discuss how to build a Minimum Stress
Multicast Tree on an underlay topology. We formulate the
problem and show that it is NP-hard. We then propose an
approximation algorithm to address it.

A. Problem Formulation and Hardness Analysis

We consider that hosts are in position before tree construc-
tion. For example, there are a group of Internet participants
waiting for a video conference, or a content distribution network
(CDN) needs to distribute data to some pre-deployed proxies.

In our network model, the underlay topology consists of a
set of routers, which are inter-connected by physical links. A
host is attached to a router, and an overlay path between a pair
of hosts is the shortest path between them (in terms of delay)
on the underlay. To cast the problem in a more general and re-
alistic setting, we consider that there is a set of overlay paths
to choose from, termed the “path set.” This path set indicates
which host is allowed to connect to which in the overlay tree
and the corresponding underlay links. This constraint may be
due to some administrative policies, network constraints, costs,
firewalls, etc. If there is no constraint on the overlay paths, the
set is complete. Note that any two hosts should be able to reach
each other through the paths in the set. We further define some
notations as follows:

Definition 1:
• An underlay network is a connected graph ,

where is a set of vertices (i.e., routers and hosts), is a
set of undirected edges (i.e., physical links among routers/

1Proof skeleton: Assume that the last overlay path added intoG is P , with
residual bandwidth w . We can show that the optimal tree bandwidth cannot
be higher than w . If we can build a tree with tree bandwidth higher than w ,
each path should have residual bandwidth of higher than w . According to the
mechanism of adding paths to G , these paths will be added to G before P .
Clearly, after adding these paths, all the hosts have been connected. We will stop
adding other paths and P cannot be the last path we add. This contradicts the
assumption that P is the last path added into G .

Given an arbitrary tree T on G , there are at most (jV j � 1) paths in T
sharing the same link. On the other hand, any link in G has w or higher
residual bandwidth. The tree bandwidth of T is hence at least w =(jV j � 1).
As the optimal tree bandwidth cannot be higher than w , the tree bandwidth of
T is at least 1=O(jV j) of the optimal tree bandwidth.

hosts) and is a cost function defined on the
edges (e.g., link delay).

• An overlay path set is a connected graph ,
with the set of hosts and each edge

being the shortest path between and in the underlay
network .

• A multicast tree is a spanning tree of the overlay path set
which spans all the hosts in and whose edges belong

to .
We take Fig. 1(b) as an example. The underlay network is the

whole graph in Fig. 1(b), i.e.,
and

. If there is no constraint on the overlay paths, the overlay
path set contains the all-pairs paths between hosts. That is, the
set of hosts and the set of overlay paths

. However,
if path cannot be used in the tree because, say, they
are behind different Network Address Translations (NATs) and
cannot directly communicate with each other, this path should
be removed from . The paths form
a multicast tree , since all these paths are from and they
span all the hosts in .

Note that an edge in (which is an underlay link) may be
shared by multiple edges in (which are overlay paths). We
define tree stress as follows.

Definition 2: Denote the set of underlay links
that are used in tree . The stress of a link , is defined
as the number of edges in (which are overlay paths) that cross
. The stress of is the maximum stress over all the links in

.
In Fig. 1(b), suppose .

contains all the links in , i.e.,
. Among them, the

links and are traversed
only once by the paths, thereby of stress 1. The link is
traversed by paths and , and hence has stress 2.
Similarly, the links and 3–4 have stress 2. As a result, the
stress of is 2.

We now present the formulation of MSMT and our results on
the hardness of the MSMT problem.

Definition 3: Given an underlay network and an overlay
path set , the Minimum Stress Multicast Tree (MSMT) is a
spanning tree of with the minimum tree stress.

Theorem 1: Given an underlay network and an overlay
path set , it is NP-hard to compute the Minimum Stress Mul-
ticast Tree of . Furthermore, MSMT is not approximable
within a factor of for any , unless .

The theorem can be obtained by a reduction from the known
NP-hard problem, Minimum Degree Spanning Tree (MDST).
See Appendix I for the proof.

B. An Approximation Algorithm to MSMT

We now present an approximation algorithm to address the
MSMT problem. Let denote the stress of a MSMT
on an underlay network and its corresponding overlay path
set . By “removing a link from ,” we mean that the link is
removed from and all the overlay paths crossing that link are
removed from .

1584 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 8, DECEMBER 2007

Fig. 2. Example of the MSMT approximation algorithm. (a) An arbitrary spanning tree T with stress k. (b) Removing S from T and generating a forest F .
(c) An improvement to T by adding (u ; v) and removing (x ; y). (d) An improvement to T by adding (u ; v) and removing (x ; y).

Theorem 2: Let be an underlay network and be the
corresponding overlay path set. Let be a tree of with stress

. Let be the set of links of stress in , and let be an
arbitrary subset of links of stress in . Remove
from , and hence break the tree into a forest . Suppose that
the remaining does not contain any overlay paths between
different trees in , and that an overlay path in contains at
most different links of stress larger than or equal to

. Then
.

The proof is shown in Appendix II. Based on this theorem,
we provide a polynomial-time algorithm that approximates the
MSMT problem. The algorithm starts with an arbitrary spanning
tree of , and seeks to reduce its stress. Let the stress of be
always . Denote the set of underlay links in whose
stresses are at least . The following operation forms the building
block of the algorithm:

Definition 4: Let be an edge (overlay path) of which
is not in . Let be the cycle generated when is added to

. Suppose there exists an overlay path consisting of links of
stress in , and the stresses of links in path are at most

. An improvement to is the modification of by adding
the path to and deleting the path in that consists of
the most links of stress .

We illustrate the above definitions in Fig. 2(a). The nodes in
the figure are hosts and the solid lines between them are overlay

paths. The solid lines form a tree . Suppose the stress of
is . Further suppose that the maximum stress occurs in path

, and the maximal stresses in paths and
are both . The maximal stress of links in all the other paths
of is less than . If is a path in but not in

, and the stresses of links in path are at most ,
we can add into and delete from . This
replacement is an improvement to because 1) adding
into the tree only introduces links of stress no larger than
and 2) deleting reduces the size of .

We present the approximation algorithm as follows. The algo-
rithm starts with an arbitrary tree with stress . At the begin-
ning of each phase of the algorithm, all underlay links in
(i.e., links of stress or in) are removed from as
well as from and , and marked as bad. All other links are
marked good. We call an overlay path of consisting of at least
one bad link a bad path, and an overlay path of consisting of
only good links a good path. Suppose is broken into several
components by removing , each of which is called a good
component. If there are no paths of between good compo-
nents, the algorithm stops. In this case, Theorem 2 shows that
is within a certain range of the optimal result . Oth-
erwise, let be a path between two good components. Con-
sider the cycle generated in by adding . If there is a path
consisting of link(s) of stress in this cycle, a set of improve-
ments which propagate to this path can be identified. Making

JIN et al.: ON MAXIMIZING TREE BANDWIDTH 1585

these changes reduces the size of by at least one. Otherwise,
there is at least one bad path consisting of link(s) of stress in
the cycle. Form the union of all components in this cycle along
with the bad paths in the cycle and mark all bad paths in this
cycle as good. We then go back to look for other paths between
good components. In all cases, the algorithm finds either a way
to reduce the stress of some link in or a blocking set with
which Theorem 2 applies. Algorithm 1 implements the above
idea and outputs a spanning tree whose stress is bounded by
Theorem 2.

Algorithm 1: Approximation Algorithm for MSMT

INPUT: An underlay network and an overlay path set

OUTPUT: A spanning tree of which approximates
a MSMT
Step 1: Find a spanning tree of . Let be its stress.
Step 2: Mark links of stress and as bad. Remove

these links from and generate a forest. Also
remove these links from and . Mark
all other links as good. Let be the set of
connected components in the forest.

Step 3: While there is a path in connecting two
different components of , and all links of stress

are marked as bad, do
1) Find the bad links/paths in the cycle

generated by together with , and
mark them as good.

2) Update by combining the components
along the cycle and these newly marked
paths into a single component. Note that
more than two components of may be
combined into one in this step.

Step 4: If there is a link of stress marked as good, find
a sequence of improvements which propagate to

and update (and if necessary) and go back
to Step 2.

Step 5: Output the final tree and its stress .

We show an example in Fig. 2. As discussed, we suppose
that the links of stress only appear in , and that the
links of stress only appear in and . We
mark these links in as bad and remove them from as
well as from and . As a result, is broken into a forest

consisting of four components, as shown in Fig. 2(b). Now
we have a path in the current (after removing)
connecting two components of . Clearly, the maximum stress
of links in is at most (if there exists a link in

which has appeared in the original tree and whose
stress is higher than , this link should be in and
will be removed from . Then will be removed from

.) Let’s add into , which connects component 1 and
component 2 to form a new component. We further mark the bad
links in as good, and remove from , as shown
in Fig. 2(c). Clearly, the stress of now becomes . We then
re-mark all the links and repeat the above procedure. Suppose
that we add path into and remove from in

this phase, as shown in Fig. 2(d). Still, we need to re-mark the
links and repeat the above procedure. However, this time after
removing the links of stress and , we cannot find paths
in connecting two components of the forest. Therefore, the
algorithm stops and the current tree whose stress is is the
approximation result of MSMT.

C. Performance Analysis

Lemma 1: When Algorithm 1 stops,
, where is

and is the set of bad links of stress when the algorithm
stops.

Proof: Since the algorithm only stops when there are no paths
between the good components, the tree along with these sets

and satisfies the conditions of Theorem 1, and we get the
desired result.

We can assume that the maximum number of links in an
overlay path is no larger than a constant. This is a reasonable
assumption in the Internet. Albert et al. have shown that the
World-Wide Web forms a small-world network [37]. They es-
timate the WWW diameter in year 1999 to be around 19 hops,
and expect that 1000% increase in the size of the web in the fu-
ture will change the diameter from 19 to only 21. Based on this
assumption, in Theorem 2 and Lemma 1 is also no larger than
a certain constant. We hence have the following result.

Corollary 1: When Algorithm 1 stops, ,
where is a constant.

The corollary can be deduced from Lemma 1. Based on
Lemma 1, we have

.
It shows that Algorithm 1 can achieve a constant approxima-

tion ratio for MSMT. We now analyze the computational com-
plexity of the algorithm.

Lemma 2: Algorithm 1 runs in polynomial time.
Proof: Given a group of hosts in the network (i.e.,
), there are exactly overlay paths in a spanning tree.

Since the number of underlay links in any path is no larger than
a certain constant, the sum of stresses of all the links in the tree
is . Hence, the number of links with stress in the tree is
at most . Since the size of decreases at least by one
in each phase (except the last one), there are at most
phases when the maximal stress is . Summing up the harmonic
series corresponding to different values of , we conclude that
there are phases.

In each phase, we try to find improvements which propagate
to links of . Lemma 1 shows that when the algorithm stops,
the stress of the resulting tree is within a certain range of the
optimal result. Each phase of the algorithm can be implemented
in nearly linear time using Tarjan’s fast disjoint set union-find
algorithm for maintaining connected components [38]. There-
fore, the entire algorithm runs in time,
where is the number of paths in and is the inverse
of Ackermann’s function that is associated with the union-find
problem [39].

IV. MAXIMUM BANDWIDTH MULTICAST TREE (MBMT)

If link bandwidth information is available, a high-band-
width overlay tree instead of a minimum-stress tree can be

1586 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 8, DECEMBER 2007

constructed. In this section, we formulate the Maximum Band-
width Multicast Tree problem and address it by extending the
above approximation for MSMT.

Definition 5:
• An underlay network is a connected graph

, with as defined in Definition
1, and is the residual bandwidth on the
edges.

• An overlay path set and a multicast tree are defined as in
Definition 1.

• The stress of a link is defined as in Definition 2.
The tree bandwidth of a multicast tree is given by

.
Definition 6: Given an underlay network and an overlay

path set , the Maximum Bandwidth Multicast Tree (MBMT)
is a multicast tree of with the maximum tree bandwidth.

Theorem 3: Given an underlay network and an overlay
path set , it is NP-hard to compute the Maximum Bandwidth
Multicast Tree of . Furthermore, MBMT is not approximable
within a factor of for any , unless .

The proof is trivial given that the MSMT problem is a special
case of the MBMT problem.

We now discuss how to extend Algorithm 1 to approximate
the MBMT problem. Given a spanning tree , we repeatedly
replace its bottleneck paths (i.e., those with the minimum trans-
mission rate among all paths) with some other paths in to
improve the tree bandwidth. We sort all the links in ac-
cording to their transmission rates in an ascending order as

where is the tree bandwidth. Suppose that we
delete a path crossing link from and add another path
to form a new tree. To ensure the new tree achieves a higher tree
bandwidth, we need to have

Therefore, we propose Algorithm 2 to approximate the MBMT
problem.

V. GROUP MANAGEMENT ISSUES

In our system, there is a server serving the whole group and
computing an overlay tree as described above. The server then
distributes the tree information to all the hosts. As there may
exist new incoming hosts after an overlay tree has been con-
structed, we discuss in this section how to deal with host joining
and leaving. We further study tree resilience and system scala-
bility issues.

A. Host Joining/Leaving

We use an add-on joining mechanism to deal with host
joining. First of all, if the new host does not have enough
underlay information, it should select some paths to measure
(conducting traceroute or bandwidth measurement) using, for

example, Max-Delta inference [13]. Based on the inferred
topology, the server selects a parent for the new host as follows.

Algorithm 2: Approximation Algorithm for MBMT

INPUT: An underlay network and an overlay path set

OUTPUT: A spanning tree of which approximates
a MBMT
Step 1: Find a spanning tree of .
Step 2: From the links in with the minimum

transmission rate, mark the one(s) with the
smallest stress as bad. Remove these links from

and generate a forest. Also remove these links
from and . Mark all other links as good.
Let be the set of connected components in
the forest.

Step 3: For any link in , if
, with being

the tree bandwidth, remove from and .
Step 4: If there is a path in connecting two

different components of , do
1) Find the bad links/paths in the cycle

generated by together with , and
mark them as good.

2) Update by combining the components
along the cycle and these newly marked
paths into a single component. Note that
more than two components of may be
combined into one in this step.

3) Find a sequence of improvements which
propagate to the newly marked links and
update .

4) Go back to Step 2.
Step 5: Output the final tree .

• When MSMT is used: The server checks the paths adjacent
to the new host in the overlay path set. Each time, it adds
one path to the current tree, and evaluates the stress of the
new tree. This is easy given the underlay connectivity of
the new tree. The server then repeats this procedure for a
certain number of times and each time checks one path. The
path that leads to the minimum tree stress if being added
into the current tree is finally selected to connect the new
host to the current tree.

• When MBMT is used: Similarly, each time the server ran-
domly adds an adjacent path into the current tree and evalu-
ates the tree bandwidth of the new tree. After repeating this
procedure for a certain number of times, the server finally
adds the path that leads to the maximum tree bandwidth of
the new tree.

Upon failure or leaving of a host, all its children need to
re-join the tree. The re-joining process is similar to joining. It
is also possible to re-compute the whole tree using Algorithm
1 or 2 if there are a significant number of joining or re-joining
hosts.

JIN et al.: ON MAXIMIZING TREE BANDWIDTH 1587

B. Discussion on Tree Resilience

Using a single tree may not offer satisfactory service,
because, firstly, hosts in the system are heterogeneous with
different incoming and outgoing bandwidth. A host’s in-
coming path may not be able to provide enough bandwidth
for streaming. Secondly, quality degradation at a host affects
all its descendants. In a dynamic P2P system, it is difficult for
hosts to achieve high streaming quality with a single tree. To
address these problems, we can use multiple description coding
(MDC) to encode streaming data into multiple descriptions and
distribute the descriptions along multiple trees [25], [26].

In MDC, data are encoded into several descriptions. When
all the descriptions are received, the original data can be recon-
structed. If only a subset of the descriptions are received, the
quality of the reconstruction degrades gracefully. The more de-
scriptions a host receives, the lower distortion the reconstructed
data would be. Therefore, the source can encode its media con-
tent into descriptions using MDC (where is a tunable pa-
rameter), and transmit the descriptions along different trees.
Note that a host has different descendants in different trees. The
trees can be designed so that a descendant of a host in one tree
is usually not the host’s descendant in other trees. Therefore,
packet loss or failure of a host only causes the loss of a single
description (out of descriptions) at each of its descendants.
The system resilience is hence improved.

Another important issue in streaming is loss recovery. Al-
though MDC and multiple-tree transmission can improve re-
silience, packets may still be lost due to background traffic or
path/host failure. We can use lateral error recovery (LER) [40]
(or many other solutions such as [41], [42]) for efficient loss re-
covery. LER randomly divides hosts into multiple planes and
independently builds an overlay tree in each plane. Each host
needs to identify some hosts from other planes as its recovery
neighbors. Whenever an error occurs, the host performs retrans-
mission from its recovery neighbors.

Note that mesh-based streaming has been proposed in the re-
cent years [29], [30]. This approach builds a mesh among hosts
using gossip algorithms, with hosts exchanging data with their
neighbors in the mesh. It can achieve high resilience to network
and group dynamics, as each host has multiple incoming paths
for data delivery. However, mesh-based streaming has high con-
trol overhead due to data scheduling and mesh maintenance. It
also has high end-to-end delay because in the gossip mesh a
host may not always find close peers as their neighbors. On the
contrary, trees introduce lower end-to-end delay and are easier
to maintain. Therefore, to achieve both high delivery rate and
low end-to-end delay, we can use a high-bandwidth overlay tree
as the delivery backbone and enhance it with additional loss re-
covery mechanisms.

C. Discussion on a Distributed Approach

We have used a central server to compute and maintain
the tree. When the number of hosts is large, the server may
be overloaded and become the system bottleneck. A possible
approach to improve system scalability is to use a cluster-based
hierarchical structure for tree construction. An example of
cluster-based structure is mOverlay [33]. In the scheme, hosts

form a set of location-based clusters. Each cluster has a unique
leader for cluster maintenance. Leaders periodically exchange
information with their close counterparts to know about their
neighbor clusters. Each cluster also selects some supernodes
from the cluster members as the leader candidates. If the current
leader leaves or fails, one of the candidates will become the
new leader.

We can extend our tree construction method based on this hi-
erarchical structure. After forming a set of clusters, each cluster
can rely on its leader to construct an overlay tree spanning
the cluster members as described above. We can then set up
inter-cluster paths to connect these cluster-based trees. There
are many ways to set up inter-cluster paths. A simple way is
to require all the leaders to form an overlay tree. In another
case, each leader can identify some ingress and egress hosts in
its own cluster and ask these hosts to set up inter-cluster paths
(e.g., [43]).

VI. ILLUSTRATIVE NUMERICAL RESULTS

In this section we present simulation results on both Internet-
like topologies and a PlanetLab topology.

A. On Transit-Stub Topologies

We generate a number of (ten) Transit Stub topologies with
GT-ITM [44]. The topology is a two-layer hierarchy of transit
networks and stub networks. Each topology contains 5000
routers and about 30 000 links. Hosts are randomly put into the
network. A host is connected to a stub router with 1 ms delay,
while the delay of core links is given by the topology generator.
Link bandwidth is set as follows: A backbone link (at least one
end point is a transit router) can support 8 concurrent media
streams, and a non-backbone link can support 2–4 concurrent
media streams.

For our protocols, we use Max-Delta to infer the underlay
topology and allow each host to traceroute at most
other hosts (is the group size) [13]. We use the set of the
traceroute paths as the overlay path set. We also implement three
tree-based ALM protocols for comparison, i.e., Narada, Over-
cast, and TAG. The settings of these protocols follow those in
[2], [24], [31], respectively.

We use link stress, RDP and tree bandwidth to evaluate a tree.
Link stress and tree bandwidth are defined as in Section I. RDP
is defined as the ratio of the overlay delay from the source to a
given host to the delay along the shortest unicast path between
them [2].

Fig. 3 compares the performance of the different protocols
in terms of maximum and average link stresses. As shown in
Fig. 3(a), Narada and TAG do not perform well, because they
are optimized for delay and only consider tree bandwidth or link
stress as the secondary metric. TAG is better than Narada due
to its topology-awareness. Overcast is optimized for bandwidth
and hence achieves lower maximum link stress. Our MSMT ap-
proximation algorithm performs the best. It reduces the max-
imum stress averagely by 66.3%, 61.9%, and 53.9% as com-
pared to Narada, TAG and Overcast, respectively. Furthermore,
in Fig. 3(b), the MSMT approximation algorithm reduces the
average link stress by 35.1%, 26.5% and 21.1% as compared

1588 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 8, DECEMBER 2007

Fig. 3. Performance of the MSMT approximation algorithm (on Transit-Stub
topologies). (a) Maximum link stress. (b) Average link stress.

to Narada, TAG and Overcast, respectively. The average link
stress achieved by the MSMT approximation algorithm is close
to the perfect result of 1 and is stable regardless of the group
size. These results show that the MSMT approximation algo-
rithm can efficiently reduce link stress.

As known, link stress is an important metric for streaming
applications. For example, if we use Narada for streaming and
serve a group of 512 hosts, in our simulation environment each
underlay link averagely needs to deliver 2.35 streams and the
most heavily loaded link has to deliver 34 streams. As a single
stream usually requires several hundred Kbps transmission rate,
such delivery load is significantly heavy for the current Internet.
This is also the reason why mesh-based streaming has been pro-
posed. Our MSMT approximation algorithm can significantly
reduce link stress, both the maximum value and the average
value. Hence, it can reduce bandwidth consumption and im-
prove delivery efficiency.

We now evaluate the performance of the MBMT approxima-
tion algorithm. In our simulations, we assume that half of the
hosts are in position before streaming starts and the other half

Fig. 4. Performance of the MBMT approximation algorithm (on Transit-Stub
topologies). (a) Average tree bandwidth. (b) Average link stress. (c) Average
RDP.

join during streaming. Fig. 4 compares the performance of the
protocols. Fig. 4(a) shows tree bandwidth versus group size for

JIN et al.: ON MAXIMIZING TREE BANDWIDTH 1589

different protocols. As the group size increases, tree bandwidth
decreases, for there are more contentions on underlay links.
The MBMT approximation algorithm achieves much higher tree
bandwidth than the other protocols. When the group size is rel-
atively large , the MBMT approximation algorithm still
achieves high tree bandwidth while Overcast does not perform
so well. This is because Overcast adopts a greedy tree construc-
tion method and later joining hosts often cannot find good par-
ents with enough forwarding bandwidth. TAG and Narada have
the lowest tree bandwidth because they do not optimize band-
width in tree construction. As shown, it is beneficial to infer
underlay topologies when constructing high-bandwidth overlay
trees.

Fig. 4(b) shows links stress versus group size. Clearly, the
MBMT approximation algorithm achieves much lower stress
than the other protocols, and its stress does not vary sensitively
with the group size. It shows that the MBMT approximation
algorithm has distributed delivery loads to different underlay
links, thereby leading to high tree bandwidth [as shown in
Fig. 4(a)]. Fig. 4(c) shows RDP of the protocols. Overcast
has the highest RDP because it is not optimized for delay.
Furthermore, it always inserts a new host as far from the source
as the bandwidth constraint allows. The RDP of other proto-
cols is lower. As compared to Narada and TAG, the MBMT
approximation algorithm achieves high tree bandwidth while
incurring small penalty in delay.

B. On Planetlab Topology

We have conducted traceroutes on PlanetLab to obtain a Plan-
etLab topology [45]. We randomly select a number of hosts from
PlanetLab and conduct all-pairs traceroutes between them. Due
to network and host dynamics (some hosts may unexpectedly
fail during our measurements), a small portion of the traceroutes
cannot be completed. From the traceroutes obtained, we con-
struct a topology consisting of 72 hosts and 2540 overlay paths
(we assume that paths are symmetric and only measure one path
between a pair of hosts).

We use an alternative approach to estimate path bandwidth in-
stead of Pathload. In the measurement, a sender sends a data clip
to a receiver which measures the downloading time. The path
bandwidth is computed as the data size divided by the down-
loading time. The packet size is set to 1 000 bytes and a data clip
contains 1 000 packets. Each host measures its bandwidth to all
the other hosts. Among the 72 hosts, we obtain the bandwidth
results on 2189 paths (some transfer cannot be completed due
to network and host dynamics). The maximum and minimum
bandwidth is about 14.4 Mbps and 35 Kbps, respectively, and
over 94% paths have bandwidth higher than 1 Mbps. We com-
bine the traceroute results and bandwidth measurement results
to build a testbed topology, with 72 hosts, 2176 overlay paths
(the path set to be used in our protocol), 1145 underlay links,
and 627 routers.

Based on the measured path bandwidth, we infer link band-
width as follows. We first assign the bandwidth of all the links
in a topology as 0. In the subsequent adjustment process, a link
bandwidth can only be increased but not reduced. After con-
ducting path bandwidth measurement between two hosts, say

Fig. 5. Example of link bandwidth inference based on end-to-end path band-
width measurement. (a) Actual underlay topology and link bandwidth. (b) In-
ferred link bandwidth.

Kbps, we check the bandwidth of all the underlay links in
the path. If it is less than , we increase it to . Otherwise, its
bandwidth remains unchanged. We show an example in Fig. 5.
Fig. 5(a) is the actual underlay topology with link bandwidth
as indicated. are hosts, and 1, 2, 3, 4 are routers. We
first measure the bandwidth of path as 3 (suppose that
the path bandwidth measurement is accurate). We hence assign
bandwidth 3 to links , 1–2, 2–4, and . After path band-
width measurement from to , we update the bandwidth of
links and 4–2 to 5, and assign 5 to links 2–3 and .
Finally, after measuring the bandwidth of path , we assign
bandwidth 2 to link 3–1, and leave the bandwidth of links
and unchanged. Therefore, the inferred link bandwidth is
as Fig. 5(b) shows. Clearly, this approach provides a reasonably
accurate estimation on link bandwidth.

We simulate the MBMT approximation algorithm, Overcast,
Narada and TAG on this topology. In each simulation, we ran-
domly select some hosts as group members (ranging from 5 to
65). Fig. 6 shows the results on this topology. In Fig. 6(a), the
MBMT approximation algorithm always achieves higher tree
bandwidth than the other protocols. This confirms the results on
the Transit-Stub topologies. On average, the MBMT approxi-
mation algorithm can achieve 40% higher tree bandwidth than
Overcast, 131% higher tree bandwidth than TAG and 267%
higher tree bandwidth than Narada. It shows that Narada per-
forms poorly in terms of tree bandwidth and is not applicable
for streaming applications. On the contrary, Overcast performs
much better and the MBMT approximation algorithm can fur-
ther improve tree bandwidth. In fact, we expect larger perfor-
mance gap between the MBMT approximation algorithm and
Overcast when the group size increases, because the simulation
results on the Transit-Stub topologies have shown that the tree
bandwidth achieved by Overcast declines quickly with the in-
crease of the group size.

Fig. 6(b) shows the stresses of the three protocols. As
expected, the MBMT approximation algorithm achieves the
lowest stress, while Narada achieves the highest. On average,
the stress of MBMT is only 92% of that of Overcast, 86% of
that of TAG and 81% of that of Narada. Fig. 6(c) shows the
RDP values. Overcast has the highest RDP. The reason has
been explained above. The other protocols have much lower
RDP. The RDP of MBMT is slightly higher than that of Narada
and TAG. On average, the RDP of MBMT is 73% of that of
Overcast, 108% of that of Narada and 110% of that of TAG.

1590 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 8, DECEMBER 2007

Fig. 6. Performance of the MBMT approximation algorithm (on the PlanetLab
topology). (a) Average tree bandwidth. (b) Average link stress. (c) Average RDP.

In summary, the MBMT approximation algorithm achieves
high tree bandwidth and low link stress, by introducing small
penalty in RDP.

VII. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we study how to build a high-bandwidth overlay
tree based on underlay information. We formulate two types of
tree construction problems on a router-level topology, namely,
Minimum Stress Multicast Tree if link bandwidth is not known
and Maximum Bandwidth Multicast Tree if link bandwidth is
known. We prove that both of them are NP-hard and are not ap-
proximable within a certain factor, unless . We hence
study approximation algorithms to address them and analyze the
algorithm performance. We further investigate practical issues
in system implementation, including group dynamics, tree re-
silience and system scalability.

We have conducted simulations on Internet-like topologies
and a PlanetLab topology. The results on Internet-like topolo-
gies show that the average link stress achieved by our MSMT
approximation algorithm is close to the perfect result of 1 and is
stable regardless of the group size. The algorithm has reduced
the average link stress by 35.1%, 26.5% and 21.1% as com-
pared to Narada, TAG and Overcast, respectively. Furthermore,
on the PlanetLab topology, the MBMT approximation algorithm
can achieve 40% higher tree bandwidth than Overcast, 131%
higher tree bandwidth than TAG and 267% higher tree band-
width than Narada. These results show that our approximation
algorithms can achieve high tree bandwidth, low link stress with
small penalty in RDP. Our study shows that it is beneficial to
infer the underlay topology before an overlay tree is constructed.

In this paper, we have assumed that link bandwidth is sym-
metric. Our algorithms are hence applicable to networks with
symmetric bandwidth, e.g., Symmetric Digital Subscriber Line
(SDSL), local area network, high-speed Ethernet or campus net-
work. However, there are also a lot of asymmetric networks in
the Internet, e.g., ADSL and cable networks. It will be our future
work to extend our algorithms to asymmetric networks. Note
that in the current Internet, the core networks are symmetric.
Hence, we only need to consider asymmetry on the last-hop net-
works. A possible approach is to put some fanout constraints on
hosts for the last-hop network. This problem is more practical
and easier to address than considering a fully asymmetric net-
work.

APPENDIX I
PROOF OF THEOREM 1

Definition 7: Given a graph , the Minimum
Degree Spanning Tree is a spanning tree of with the min-
imum maximal degree of the vertices.

Lemma 3: The Minimum Degree Spanning Tree problem is
NP-hard and is not approximable within a factor of ()
for any , unless [46].

Lemma 4: The MSMT problem is polynomially trans-
formable from the MDST problem.

Proof: Given a MDST instance ,
where , we introduce a new
vertex set and a new edge set

. The MSMT instance
can be constructed as follows. Construct an underlay network

, where and
for each edge . Construct an overlay path

JIN et al.: ON MAXIMIZING TREE BANDWIDTH 1591

Fig. 7. Transformation from a MDST instance to a MSMT instance. (a) The
original MDST instance G is indicated by the bold edges and their incident ver-
tices. Underlay networkG contains all the solid edges and the vertices. Overlay
path set G contains the dashed edges with their incident vertices. Each dashed
edge corresponds to a shortest path in G . For example, edge (u ; u) corre-
sponds the path u �v �v �u . AndG is isomorphic toG. (b) A spanning
tree T of G is represented by the dashed edges with their incident vertices.
E (T) contains all the bold edges. The degree of u in T is 3. Thus, edge
(u ; v) in G is shared by the 3 edges adjacent to u . The maximal stress of
T is hence 3.

set , where .
From Definition 1, each edge represents the
path in , since this path is the shortest
path between and in . Fig. 7 gives an example of this
transformation. It is easy to see that is isomorphic to the
original graph . Thus, we can consider both MSMT
and MDST in graph .

Given a spanning tree of , we transfer into the un-
derlay network by replacing each edge with the corre-
sponding shortest path. Note that only edges in can be shared
by edges from . For a vertex with degree , the edge

is shared by edges adjacent to in and hence has
a stress of . Therefore, if the maximal degree of is ,
the stress of is and vice versa. Thus, is the Minimum
Stress Multicast Tree iff is the Minimum Degree Spanning
Tree. Furthermore, this transformation can be done in polyno-
mial time.

We now present the Proof of Theorem 1.
Proof of Theorem 1: Since the MDST problem is NP-hard

and MSMT can be transformed from MDST in polynomial time,
the MSMT problem is also NP-hard.

For the approximation part, suppose there is a polynomial
algorithm which can always return a multicast tree with stress

for any , where is the optimal
stress. We apply it to the instance we constructed from MDST.
Let and , where is the maximal degree
of the multicast tree, and is the maximal degree of the op-
timal MDST. We can deduce that .
This contradicts Lemma 3, unless .

APPENDIX II
PROOF OF THEOREM II

Lemma 5: Suppose is a proper subset of the underlay edge
set of . Let , and suppose the removal of from
disconnects into components. Then

.
Proof: Consider components of the overlay network .

Any overlay path connecting these components needs to cross
at least one underlay link in . To build a spanning tree over ,

there are at least overlay paths between these components.
Therefore, the average stress of links in in any spanning tree
is at least , and there is at least one link in
whose stress is at least .

We now present the Proof of Theorem 2.
Proof of Theorem 2: There are no overlay paths in be-

tween components in , and hence, the connected
components of and are the same.
If we can count the number of components in , we
can use Lemma 5 to obtain a lower bound on .

The sum of stresses of links in is .
For each link , the overlay paths crossing it are dis-
tinct. Since an overlay path contains at most different
links of stress or , the number of distinct overlay
paths in that cross at least one link in is at
least . The forest

obtained from by removing these paths has at least
components.

Therefore, an application of Lemma 5 yields

As a result, we obtain that
.

REFERENCES

[1] X. Jin, Y. Wang, and S.-H. G. Chan, “Fast overlay tree based on ef-
ficient end-to-end measurements,” in Proc. IEEE ICC’05, May 2005,
pp. 1319–1323.

[2] Y. H. Chu, S. Rao, S. Seshan, and H. Zhang, “A case for end system
multicast,” IEEE J. Sel. Areas Commun., vol. 20, no. 8, pp. 1456–1471,
Oct. 2002.

[3] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable appli-
cation layer multicast,” in Proc. ACM SIGCOMM’02, Aug. 2002, pp.
205–217.

[4] M. Coates, R. Castro, R. Nowak, M. Gadhiok, R. King, and Y.
Tsang, “Maximum likelihood network topology identification from
edge-based unicast measurements,” in Proc. ACM SIGMETRICS’02,
2002, pp. 11–20.

[5] M. Coates, A. Hero, R. Nowak, and B. Yu, “Internet tomography,”
IEEE Signal. Process. Mag., vol. 19, no. 3, pp. 47–65, May. 2002.

[6] D. G. Andersen, N. Feamster, S. Bauer, and H. Balakrishnan,
“Topology inference from BGP routing dynamics,” in Proc. ACM
SIGCOMM IMW’02, Nov. 2002, pp. 243–248.

[7] F. Wang and L. Gao, “On inferring and characterizing Internet routing
policies,” in Proc. ACM SIGCOMM IMC’03, Oct. 2003, pp. 15–26.

[8] Traceroute [Online]. Available: http://www.traceroute.org/
[9] V. Jacobson, Pathchar [Online]. Available: http://www.caida.org/tools/

utilities/others/pathchar/
[10] R. Govindan and H. Tangmunarunkit, “Heuristics for Internet map dis-

covery,” in Proc. IEEE INFOCOM’00, Mar. 2000, pp. 1371–1380.
[11] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies

with Rocketfuel,” in Proc. ACM SIGCOMM’02, Aug. 2002, pp.
133–145.

[12] B. Donnet, P. Raoult, T. Friedman, and M. Crovella, “Efficient algo-
rithms for large-scale topology discovery,” in Proc. ACM SIGMET-
RICS’05, Jun. 2005, pp. 327–338.

[13] X. Jin, W.-P. K. Yiu, S.-H. G. Chan, and Y. Wang, “Network topology
inference based on end-to-end measurements,” IEEE J. Sel. Areas
Commun., vol. 24, no. 12, pp. 2182–2195, Dec. 2006.

1592 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 8, DECEMBER 2007

[14] B. Yao, R. Viswanathan, F. Chang, and D. G. Waddington, “Topology
inference in the presence of anonymous routers,” in Proc. IEEE IN-
FOCOM’03, Apr. 2003, pp. 353–363.

[15] M. Jain and C. Dovrolis, “End-to-end available bandwidth: Measure-
ment methodology, dynamics, and relation with TCP throughput,” in
Proc. ACM SIGCOMM’02, Aug. 2002, pp. 295–308.

[16] N. Hu and P. Steenkiste, “Evaluation and characterization of available
bandwidth probing techniques,” IEEE J. Sel. Areas Commun., vol. 21,
no. 6, pp. 879–894, Aug. 2003.

[17] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell,
“pathChirp: Efficient available bandwidth estimation for network
paths,” in Proc. PAM’03, Apr. 2003.

[18] S. E. Deering, “Multicast routing in internetworks and extended
LANs,” in Proc. ACM SIGCOMM CCR, Aug. 1988, vol. 18, no. 4, pp.
55–64.

[19] S. Deering, D. L. Estrin, D. Farinacci, V. Jacobson, C.-G. Liu, and
L. Wei, “The PIM architecture for wide-area multicast routing,”
IEEE/ACM Trans. Netw., vol. 4, no. 2, pp. 153–162, Apr. 1996.

[20] S. E. Deering and D. R. Cheriton, “Multicast routing in datagram inter-
networks and extended LANs,” ACM Trans. Comput. Syst., vol. 8, no.
2, pp. 85–110, May. 1, 1990.

[21] J. Moy, Multicast Extensions to OSPF, Mar. 1994, RFC 1584.
[22] T. Ballardie, P. Francis, and J. Crowcroft, “Core based trees

(CBT)—An architecture for scalable inter-domain multicast routing,”
in Proc. ACM SIGCOMM’93, Sep. 1993, pp. 85–95.

[23] C. A. S. Oliveira and P. M. Pardalos, “A survey of combinatorial opti-
mization problems in multicast routing,” Comput. Oper. Res., vol. 32,
no. 8, pp. 1953–1981, Aug. 2005.

[24] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. W.
O’Toole, “Overcast: Reliable multicasting with an overlay network,”
in Proc. OSDI’00, Oct. 2000, pp. 197–212.

[25] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and
A. Singh, “SplitStream: High-Bandwidth multicast in cooperative en-
vironments,” in Proc. ACM SOSP’03, Oct. 2003, pp. 298–313.

[26] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High
bandwidth data dissemination using an overlay mesh,” in Proc. ACM
SOSP’03, Oct. 2003, pp. 282–297.

[27] Y. Guo, K. Suh, J. Kurose, and D. Towsley, “P2Cast: Peer-To-peer
patching scheme for VoD service,” in Proc. WWW’03, May 2003, pp.
301–309.

[28] T. Do, K. A. Hua, and M. Tantaoui, “P2VoD: Providing fault tolerant
video-on-demand streaming in peer-to-peer environment,” in Proc.
IEEE ICC’04, Jun. 2004, pp. 1467–1472.

[29] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “CoolStreaming/DONet: A
data-driven overlay network for peer-to-peer live media streaming,” in
Proc. IEEE INFOCOM’05, Mar. 2005, pp. 2102–2111.

[30] Y. Tang, J.-G. Luo, Q. Zhang, M. Zhang, and S.-Q. Yang, “Deploying
P2P networks for large-scale live video-streaming service,” IEEE
Commun. Mag., vol. 45, no. 6, pp. 100–106, Jun. 2007.

[31] M. Kwon and S. Fahmy, “Topology-aware overlay networks for
group communication,” in Proc. ACM NOSSDAV’02, May 2002, pp.
127–136.

[32] M. Waldvogel and R. Rinaldi, “Efficient topology-aware overlay net-
work,” ACM SIGCOMM CCR, vol. 33, no. 1, pp. 101–106, Jan. 2003.

[33] X. Y. Zhang, Q. Zhang, Z. Zhang, G. Song, and W. Zhu, “A construc-
tion of locality-aware overlay network: mOverlay and its performance,”
IEEE J. Select. Areas Commun., vol. 22, no. 1, pp. 18–28, Jan. 2004.

[34] R. Winter, T. Zahn, and J. Schiller, “Topology-aware overlay construc-
tion in dynamic networks,” in Proc. IEEE ICN’04, Mar. 2004.

[35] Y. Cui, Y. Xue, and K. Nahrstedt, “Optimal resource allocation in
overlay multicast,” in Proc. IEEE ICNP’03, Nov. 2003, pp. 71–81.

[36] R. Cohen and G. Kaempfer, “A unicast-based approach for streaming
multicast,” in Proc. IEEE INFOCOM’01, Apr. 2001, pp. 440–448.

[37] R. Albert, H. Jeong, and A.-L. Barabasi, “Diameter of the world-wide
web,” Nature, vol. 401, pp. 130–131, Sep. 1999.

[38] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. Cambridge, MA: MIT Press, 2001.

[39] D. S. Hochbaum, Ed., Approximation Algorithms For NP-Hard Prob-
lems. New York: PWS, 1997.

[40] W.-P. Yiu, K.-F. Wong, S.-H. Chan, W.-C. Wong, Q. Zhang, W.-W.
Zhu, and Y.-Q. Zhang, “Lateral error recovery for media streaming in
application-level multicast,” IEEE Trans. Multimedia, vol. 8, no. 2, pp.
219–232, Apr. 2006.

[41] S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan, “Resilient
multicast using overlays,” IEEE/ACM Trans. Netw., vol. 14, no. 2, pp.
237–248, Apr. 2006.

[42] Z. Fei and M. Yang, “A proactive tree recovery mechanism for re-
silient overlay multicast,” IEEE/ACM Trans. Netw., vol. 15, no. 1, pp.
173–186, Feb. 2007.

[43] K.-W. Cheuk, S.-H. Chan, and J. Lee, “Island multicast: The combi-
nation of IP multicast with application-level multicast,” in Proc. IEEE
ICC’04, Jun. 2004, pp. 1441–1445.

[44] E. Zegura, K. Calvert, and S. Bhattacharjee, “How to model an inter-
network,” in Proc. IEEE INFOCOM’96, Mar. 1996, pp. 594–602.

[45] PlanetLab [Online]. Available: http://www.planet-lab.org
[46] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide

to the Theory of NP-Completeness. New York: Freeman, 1979.

Xing Jin (S’04) received the B.Eng. degree in computer science and technology
from Tsinghua University, Beijing, China, in 2002. He is currently pursuing the
Ph.D. degree in the Department of Computer Science and Engineering, Hong
Kong University of Science and Technology, Kowloon.

His research interests include overlay multicast with applications and QoS
issues, Internet topology inference, end-to-end measurements, and peer-to-peer
streaming. He has been a junior editor of the Journal of Multimedia since 2006.

Mr. Jin was awarded the Microsoft Research Fellowship in 2005.

W.-P. Ken Yiu (S’03) received the B.Eng. and M.Phil. degrees in computer
science from the Hong Kong University of Science and Technology (HKUST),
Kowloon, in 2002 and 2004, respectively. He is currently pursuing the Ph.D.
degree in the Department of Computer Science and Engineering, HKUST.

His research interests include computer networks, peer-to-peer systems, mul-
timedia networking, and network security.

Mr. Yiu was awarded the Academic Achievement Medal from HKUST in
2002, and the Sir Edward Youde Memorial Fellowship from Sir Edward Youde
Memorial Fund in 2005 and 2006.

S.-H. Gary Chan (S’89–M’98–SM’03) received the B.S.E. degree (Highest
Honor) in electrical engineering from Princeton University, Princeton, NJ, in
1993, with certificates in applied and computational mathematics, engineering
physics, and engineering and management systems, and the M.S.E. and Ph.D.
degrees in electrical engineering from Stanford University, Stanford, CA, in
1994 and 1999, respectively, with a minor in business administration.

He is currently an Associate Professor with the Department of Computer
Science and Engineering, Hong Kong University of Science and Technology,
Kowloon, and an Adjunct Researcher with Microsoft Research Asia, Beijing,
China. He was a Visiting Assistant Professor in Networking with the Depart-
ment of Computer Science, University of California, Davis, from 1998 to 1999.
During 1992-1993, he was a Research Intern at the NEC Research Institute,
Princeton, NJ. His research interests include multimedia networking, peer-to-
peer technologies, and streaming and wireless communication networks.

Dr. Chan is a member of Tau Beta Pi, Sigma Xi, and Phi Beta Kappa. He
was a William and Leila Fellow at Stanford University during 1993-1994. At
Princeton University, he was the recipient of the Charles Ira Young Memorial
Tablet and Medal, and the POEM Newport Award of Excellence in 1993. He
served as a Vice-Chair of IEEE COMSOC Multimedia Communications Tech-
nical Committee (MMTC) from 2003 to 2006. He is a Guest Editor for the
IEEE Communication Magazine (Special Issues on Peer-to-Peer Multimedia
Streaming), 2007, and Multimedia Tools and Applications (Special Issue on Ad-
vances in Consumer Communications and Networking), 2006. He is Co-Chair
of the Multimedia Symposium for IEEE ICC (2007). He was the Co-Chair
for the workshop on Advances in Peer-to-Peer Multimedia Streaming for the
ACM Multimedia Conference (2005), and the Multimedia Symposia for IEEE
GLOBECOM (2006) and IEEE ICC (2005).

Yajun Wang received the B.Eng. degree in computer science from the Uni-
versity of Science and Technology of China, Hefei, in 2002. He is currently
pursuing the Ph.D. degree in the Department of Computer Science and Engi-
neering, Hong Kong University of Science and Technology, Kowloon.

His research interests include computational geometry, combinatorics, algo-
rithms, and data structures.

