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Application layer multicast (ALM) has been proposed to overcome current limitations in IP multicast for large-group multime-
dia communication. We address offering data confidentiality tailored for ALM. To achieve confidentiality, a node may need to
continuously re-encrypt packets before forwarding them downstream. Furthermore, keys have to be changed whenever there is
a membership change, leading to rekey processing overhead at the nodes. For a large and dynamic group, these reencryption
and rekeying operations incur high processing overhead at the nodes. We propose and analyze a scalable scheme called Secure
Overlay Multicast (SOM) which clusters ALM peers so as to localize rekeying within a cluster and to limit re-encryption at
cluster boundaries, thereby minimizing the total nodal processing overhead. We describe the operations of SOM and compare
its nodal processing overhead with two other basic approaches, namely, host-to-host encryption and whole group encryption. We
also present a simplified analytic model for SOM and show that there exists an optimal cluster size to minimize the total nodal
processing overhead. By comparing with a recently proposed ALM scheme (DT protocol), SOM achieves a substantial reduction
in nodal processing overhead with similar network performance in terms of network stress and delay.
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1. INTRODUCTION

With the fast penetration of broadband Internet access, networked multimedia applications such as
real-time stock quote systems, Internet radio, Internet TV, multi-party video conferencing, etc. are
gaining popularity. A scalable way to provide these multimedia services is IP multicast. Unfortunately,
global IP multicast still faces many technical and deployment challenges nowadays. To tackle this
problem, application layer multicast (ALM) (or overlay multicast) has been proposed. The basic idea of
ALM is to form overlay multicast tree among end-hosts. Multicasting is then achieved by transmitting
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data from one peer to another along the tree edges using unicast connections. Therefore, ALM does
not require multicast-capable routers and speeds up the deployment of large-scale multicast-based
services. There have been many ALM protocols proposed in recent years, such as Narada, NICE, DT,
etc. [Chu et al. 2002; Liebeherr et al. 2002; Banerjee et al. 2002]. In many multicast applications (such
as stock quotes, news, TV, etc.), the sender would like to encrypt its data so that only authorized and
paid subscribers are able to decrypt it. Therefore, supporting a secure communication channel among
peers is essential to those applications.

Despite many ALM protocols having been proposed previously, their main concerns being connectiv-
ity, failure recovery, scalability, transmission efficiency, etc., not many of them address the multicast
security issues in ALM. A secure multicast system generally offers data confidentiality, authentication,
integrity, etc [Chan and Chan 2003]. In this paper, we only focus on providing data confidentiality in
ALM, other security issues are out of the scope of this article. In our system, group members are au-
thenticated and authorized before joining the system. Also, the system trusts all authenticated users
that they do not leak any multicast data. For simplicity, we do not distinguish between joining and
admission, and leaving and ejection, in our system.

Data confidentiality is one of the most challenging problems in secure multicast. To achieve this, a
secure multicast scheme must address key management issues, which include efficient organization
and distribution of keys with low communication overheads, key storage cost, and scheme complexity.
The general approach to provide data confidentiality in group communication is to encrypt data with a
secret cryptographic key K (i.e., the so-called group key). In such a secure multicast system, only the
sender and multicast group members (i.e., the receivers) know K , and hence only the group members
are able to correctly decrypt the ciphertext. Without knowing K , one would not be able to decrypt the
multicast data. Since the group members are authenticated and authorized before joining the system,
data confidentiality is addressed if K can be distributed securely and efficiently to all authenticated
group members. The process of updating the cryptographic keys and distributing them to the group
members is called rekeying operation. A secure system should offer the following two properties:

Backward secrecy. A new member should not be able to decrypt any multicast data sent before its
joining; otherwise, he may be able to store the past data and decrypt it after its joining. In this case, K
needs to be changed for every join event.

Forward secrecy. A former member should not be able to decrypt any multicast data sent after its
leaving the group. In this case, K needs to be changed for every leave event.1

Therefore, the data encryption key has to be changed (i.e., keyed) for each membership change, and
the corresponding decryption key has to be made known to all the current members. As a multicast
group may be very large and highly dynamic, the rekeying mechanism should be scalable in terms of
computation requirement, storage requirement and bandwidth consumption.

To offer data confidentiality, one may think of two straightforward basic approaches:

Host-to-host encryption. Each overlay connection on the data delivery tree shares a unique data
encryption key (i.e., setting up secure point-to-point connections between neighboring nodes). In for-
warding packets from one host to another, each host has to first decrypt the packets received from its
parent, and then reencrypt the packets for each of its children using the corresponding encryption key
of the connection. Clearly, a node needs to continuously decrypt and reencrypt packets. This leads to
continuous decryption/reencryption processing overhead which depends on packet arrival rate.

1One may argue that data security in ALM can be achieved if an upstream node stops sending data to a leaving node. However,
this approach cannot totally prevent access to the data by the leaving node since the node can still perform network sniffing in
a public network.
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Whole group encryption. All group members share a universal group key, and hence decryption/
reencryption processing is not needed between peers. In this case, whenever there is a membership
change, a new group key is generated which has to be made known to all the members. Such rekey
messages have to be processed by all the peers in the network so as to agree on a common new group
key. This leads to rekey processing overhead depending on how often group membership changes.

We see from above that host-to-host encryption leads to high decryption/reencryption overhead for
high data (packet) rate while whole group encryption leads to high rekey messaging overhead for
dynamic group. Therefore, given a certain data (packet) rate and group dynamics, either one of the
approaches would not perform satisfactorily in terms of processing overhead. As we will show later in
this paper via analysis and simulation, a more efficient way is to use a hybrid scheme where the group
members are divided into clusters. Whole group encryption is used within each cluster while host-to-
host encryption is used between clusters. This effectively strikes a balance between the two processing
overheads, thereby achieving low overhead at each node. We term this system Secure Overlay Multicast
(SOM). SOM provides a simple and yet efficient way to offer data confidentiality.

We highlight the contributions of this paper as follows:

—We propose a framework called Secure Overlay Multicast (SOM) to provide data confidentiality for ap-
plication layer multicast. Our scheme guarantees both forward and backward secrecy during member
join and leave. We also provide solution for managing member clusters dynamically so as to provide
good performance in the system.

—We introduce two basic approaches, namely, host-to-host encryption and whole group encryption. We
also compare their performance with SOM.

—We analyze the storage requirements, message and computation overhead of the system, and compare
with other related schemes.

—We present an analytic model for SOM in order to analyze its performance using queueing theory. Our
model provides insights on the system performance and shows that there exists an optimal cluster
size to minimize nodal processing overhead. With our formula on optimal cluster size, our system
could be configured to achieve the minimal processing overhead.

—We perform simulation of the system and show that our simulation results fit well with our analytic
model. Our results also show that SOM substantially cuts the processing overhead of the system
(by many factors) without compromising network performance (in terms of physical link stress and
relative delay penalty).

This article is organized as follows. In Section 2, we briefly review the related work in secure multicast.
Next, we describe in detail in Section 3 the two basic approaches and how they are related to our work.
Then, we present the framework of SOM in Section 4. In Section 5, we analyze the performance of SOM.
In Section 6, we work out the optimal cluster size using queueing theory. We present our simulation
results in Section 7, followed by a conclusion in Section 8.

2. RELATED WORK

Traditional multicast protocols such as Distance Vector Multicast Routing Protocol (DVMRP), Core
Based Tree (CBT) and Protocol Independent Multicast–Dense Mode (PIM-DM) require the use of
multicast-capable routers, making global multicast a challenge [Waitzman et al. 1988; Ballardie et al.
1993; Deering et al. 1994]. To address this problem, application layer multicast (ALM) (or overlay multi-
cast) has been proposed, which moves the multicast functionalities to the application layer of end hosts.
Many ALM protocols have been proposed in recent years, [Chu et al. 2002; Liebeherr et al. 2002; Mathy
et al. 2004; Zhu et al. 2004; Ganjam and Zhang 2004; Sripanidkulchai et al. 2004; Yiu et al. 2006].
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Fig. 1. Key management approaches used in IP-multicast networks.

However, their main concerns are connectivity, failure recovery, scalability, efficiency, etc. For secu-
rity issues, for example, Badishi et al. [2006] address the problem of denial of service (DoS) attacks in
gossip-based multicast. In this article, we consider another important security issues—data
confidentiality.

Secure group communication in IP multicast has been extensively studied [Wong et al. 2000; Mittra
1997; Chan and Chan 2003; 2002; Chang et al. 1999; Shields and Garcia-Luna-Aceves 1999; Canetti
et al. 1999; Huang and Mishra 2003; Kim et al. 2004; Lee et al. 2006]. Though those schemes can be
directly applied in ALM environment, the multicast-based rekeying operations generate much traffic
in the network, which may be inefficient in ALM. There are two main approaches to manage the group
key, namely, logical key hierarchy (LKH) and subgrouping, elaborated as follows.

In LKH, keys are logically organized into a tree structure [Wong et al. 2000]. Figure 1(a) shows a key
tree with degree 3. The users are divided into three subgroups, {u1, u2, u3}, {u4, u5, u6}, and {u7, u8, u9}.
Each user ui, i ∈ [1..9] is given three keys, namely, its individual key, a key for its subgroup, and a key for
the entire group. In the figure, individual keys are represented by ki, i ∈ [1..9], subgroup keys by k[1−3],
k[4−6], k[7−9], and whole group key by k[1−9]. Suppose u9 leaves the group, the remaining eight members
form a new secure group and require a new group key for backward secrecy. Also, u7 and u8 forms a
new subgroup and require a new subgroup key. To update the new subgroup key, the key server sends
the new subgroup key to u7 (u8) encrypted by k7 (k8). After that, the key server can securely update the
new group key by sending each subgroup the new group key encrypted by the corresponding subgroup
keys. This rekeying operation for member departure costs in total five encrypted rekey messages (three
of them are multicast messages). As a general case, with a balanced key tree of degree d , the total
number of rekey messages is approximately d logd N where N is the group size. Joining is less costly
in LKH. Suppose u9 joins the group again later. After the key server compromising the individual key
k′

9 with u9, the key server sends u9 the new subgroup key k′
[7−9] and the new group key k′

[1−9] encrypted
by k′

9. The key server also securely delivers the new subgroup key to u7 and u8 by encrypting it using
the old subgroup key. Finally, the key server securely distributes the new group key by encrypting the
new group key using the old group key. This rekeying operation costs only four rekey messages (two
of them are multicast messages). In general, since only one key is required to update at each level
of the key tree and each update costs two rekey messages,2 the total number of rekey messages is
2 logd N .

LKH achieves sublinear group rekeying overhead for a membership change in the group. However,
LKH cannot be directly applied in ALM, mainly due to the absence of multicast-capable network and

2In order to provide forward secrecy, all the keys in the path from the new user to the root of the key tree are required to be
updated. There are two re-key messages for updating each key node: one update is for the original subgroup members of the key
node, another one is for the new member.
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the fundamental difference in overhead accounting. LKH assumes a multicast-capable network, and
hence sending one rekey message to all members accounts for only one messaging overhead. Therefore,
the rekey message overhead for member joining and leaving is O(logd N ) and O(d logd N ), respectively.
However, in ALM, the total overhead of simply multicasting one rekey message to all members is made
up of O(N ) unicast messaging. Moreover, LKH does not take the network locations of end hosts into
consideration when building the key tree. Thus, using ALM for rekey message distribution could be
very inefficient. Therefore, blindly applying the key tree structure of LKH in ALM is not efficient in
terms of network bandwidth usage.

Another approach to offer confidentiality in IP multicast is subgrouping. In Iolus, as shown in Figure
1(b), the scalability of rekeying is achieved by dividing secure multicast group into multiple subgroups
Gi [Mittra 1997]. Each subgroup is managed by a trusted group security agent (GSA), which is statically
preconfigured and located in different parts of the Internet. The GSAs form an overlay tree for a
secure multicast group. In addition, GSAs have to decrypt and reencrypt the messages coming from
the upstream subgroup. They also multicast the reencrypted messages within the subgroup using
IP-multicast and forward them to the downstream GSAs using unicast. Each subgroup has its own
subgroup key, and hence rekeying is performed only in the subgroup where a member joins or leaves
the subgroup. As a result, the rekey messaging overhead depends only on the size of the subgroup.
Suppose a new member u joins a subgroup G, the GSA of G has to update its subgroup key kG to
ensure forward secrecy. This can be done by multicasting the new subgroup key k′

G encrypted by kG ,
and unicast k′

G to u using asymmetric encryption. In this case, only two rekey messages are required no
matter how large G is. However, in the departure case, each remaining subgroup member should use
unicast to communicate the new subgroup key with the GSA. Hence, the rekey operation for departure
costs O(M ) rekey messages, where M is the subgroup size. When M is very large, a member departure
could cost a lot of rekey messages in the network. When M becomes small, decrypting and reencrypting
data packets among subgroups costs large processing overhead in the GSAs. Furthermore, how the
GSAs are placed in the Internet is also a critical factor affecting the performance of key management.
Therefore, it is difficult for Iolus to dynamically and efficiently adapt the change of membership.

SOM dynamically clusters members and manages each cluster in a distributed manner. While sub-
grouping adopted in Iolus does not consider the impact of subgroup size and nodal processing overhead,
we consider and analyze the optimal performance and the effects brought by these parameters in this
article. We also propose in our scheme a dynamic subgroup management to control the size of each
subgroup and does not need any statically configured agents.

In our scheme, a simple clustering mechanism is proposed to group users into clusters for efficient key
management. There have been also other clustering methods proposed in the literature. For example,
NICE and ZIGZAG uses hierarchical clustering to organize and manage their clusters into multiple
levels [Banerjee et al. 2002; Tran et al. 2003]. The use of multiple levels in these schemes is mainly
for efficient data delivery. SOM can also apply their clustering techniques; however, those methods
complicate the protocol. Some clustering techniques have also been proposed in the area of wireless ad
hoc networks [Lin and Gerla 1997; Basagni 1999; Lin and Chu 2000]. Since those schemes are designed
for communication-constricted networks (each node can only directly communicate with its one-hop
neighbors), they usually assume that each node only has the knowledge of neighboring nodes one hop
away. Therefore, unlike our proposed scheme, those clustering techniques target to form clusters with a
limited diameter (which is usually one), rather than control the size of the clusters formed. Our scheme
does not put any constraints on the number of hops away from any node, and hence keeps the algorithm
simple and easy to implement. As those schemes are designed for mobile networks, they also focus on
how to cope with the node mobility which our scheme does not need to consider. Our focus is on how to
control the cluster size and allow splitting and merging.
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Fig. 2. Host-to-host encryption.

The idea of SOM was previously proposed in Yiu and Chan [2004]. In this paper, we further model
and analyze the performance of our system so as to work out the optimal cluster sizes for various
applications. With the optimal cluster size for a given application, the system can achieve the minimum
processing overhead for providing data confidentiality. We also present results on cluster characteristics
and processing load distribution among peers in our system.

3. TWO BASIC APPROACHES

In this section, we describe in detail the two basic schemes, host-to-host encryption and whole group
encryption because they are also the building blocks in SOM.

We model the topology of an overlay tree of N nodes (hosts) as T = (V , E), where the source is located
at the root v0. Each node vi ∈ V represents a user in the group and each ei ∈ E represents a unicast
connection between two end-point users.

3.1 Host-to-Host Encryption

In host-to-host encryption, each overlay connection is symmetrically encrypted. The encryption mech-
anism is shown in Figure 2(a). Two connected members vi and vj agree upon a symmetric key called
neighbor key kij using key-encryption-key mechanism (i.e., vi generates kij and makes the key known
to vj by encrypting it using vj ’s public key) or Diffe-Hellman protocol. Clearly, a neighbor key has only
local significance, i.e., it is associated between a pair of peers only. In this system, a peer vi sends an
encrypted data packet Ekij {data} to its downstream peer vj . Upon receiving the packet, vj decrypts
it using the shared neighbor key kij . Then, vj reencrypts the whole packet for its downstream peer,
say vm. vj encrypts the data again using another neighbor key k j m which is shared by vj and vm, and
forwards the encrypted packet Ek j m{data} to vm.

As the processing overhead incurred in symmetric encryption is proportional to the size of the data,
we can improve the previous scheme by the following (Figure 2(b)):

—Encryption:
(1) Data is encrypted as Ed {data} by a symmetric key d randomly generated by the source.
(2) Ed {data} is then concatenated with Ek{d }, where k is the neighbor key between two peers on

the data path, i.e., Ed {data}||Ek{d }.
—Decryption:

(1) A peer gets the random key d using its neighbor key k.
(2) It decrypts the “data” using d .

Therefore, reencryption is done by decrypting and reencrypting d rather than the whole packet.
Since a symmetric key is usually much smaller in size as compared to a packet (128 or 256 bits versus
kilobytes), this scheme reduces the reencryption overhead by orders of magnitude.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 5, No. 2, Article 13, Publication date: November 2008.
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Whenever a member joins or leaves the system, its neighbors (i.e., its parent and children) reconfigure
to maintain the connectivity of the overlay tree. These peers may form new overlay links and establish
new neighbor keys with other peers. This is the rekeying operation in the scheme.

Although we improve the scheme by encrypting a key rather than the whole data packet, this approach
still requires per-packet processing on every node for reencryption. Therefore, the nodal processing
overhead would be high for high-bandwidth applications such as video delivery. Hence, host-to-host
encryption is suitable for low-bandwidth applications.

3.2 Whole Group Encryption

In whole group encryption, the source encrypts data using a universal shared group key g (as shown
in Figure 3(a)). In contrast to host-to-host encryption, a member receiving a packet Eg {data} simply
relays it to its children without any reencryption (it certainly needs to decrypt the packet using g for
its own consumption).

Clearly, this scheme incurs no reencryption processing overhead at nodes. However, to ensure back-
ward secrecy, whenever a member joins the group, the group key has to be changed in order to prevent it
from decrypting past group data. 3 Similarly, the group key has to be changed when a member leaves the
group to ensure forward secrecy. The new group key is encrypted and delivered to all the current group
members. This rekeying process incurs a total of O(N ) rekey processing overhead to all the existing N
members.

For a join event, all existing members are required to decrypt rekey messages Eg {g ′} for the new
group key g ′ using the old group key g . The rekeying process for a member departure is high. Since
the leaving member knows the old group key, we need to apply a host-to-host encryption approach to
update the group key as follows:

(1) The new group key is encrypted using neighbor keys established among the peers. As shown in
Figure 3(b), each peer first needs to decrypt the new group key g ′ using the neighbor key shared
with its upstream peer.

(2) For each of its downstream peers, the node reencrypts g ′ with their shared neighbor key.

Clearly, the nodal processing overhead for rekeying is expected to be high for large and dynamic
groups. This scheme is, therefore, suitable for small groups or groups with rather static membership.

3One may sniff and store the group data before its joining. After joining, the member could use the group key to decrypt the
stored data if the group key is not changed after its joining. Similarly, one may keep the group key after leaving the group and
use that group key to decrypt new group data if the group key is not changed after its departure.
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4. SECURE OVERLAY MULTICAST

In this section, we first give an overview of SOM framework (Section 4.1). We then describe in detail
how the protocol handles member join and departure (Section 4.2 and Section 4.3). Next, we present
how the protocol splits and merges clusters to adapt group dynamics (Section 4.4). Finally, we describe
the ingress/egress node selection and the data path formation (Section 4.5).

4.1 SOM Framework

As clear from Section 3, given a certain data rate and group dynamics, neither host-to-host encryption
nor whole group encryption would lead to minimum processing overhead. A more efficient way is to
group members into nonoverlapping clusters of size m as shown in Figure 4. Instead of sharing a group
key among all members, members in a cluster share a “cluster key.” Whenever a member joins or leaves
the group, it also joins or leaves a cluster. Hence, rekeying is done only within a cluster. Consequently,
only O(m) rekey messages are processed for each member arrival or departure. SOM loosely maintains
the cluster sizes by splitting and merging them. In order not to incur too much splitting and merging
overhead while keeping a rather uniform cluster size, SOM bounds the size of each cluster between
c/2 and 2c, where c is a system parameter for controlling the cluster size. Packets are reencrypted
only when they are transferred across the cluster boundaries, and reencryption only takes place at the
ingress and egress nodes of a cluster (i.e., node v4 and v5 in the figure). In other words, SOM applies
“whole cluster encryption” within clusters and “cluster-to-cluster encryption” between clusters.

In SOM, members are logically organized into two layers as shown in Figure 5: 1) Leader layer
and 2) Member layer. The two layers are implemented by two independent ALM protocols. While a
normal member only joins the ALM protocol running for the member layer, a cluster leader joins both
ALM protocols for the member and leader layers. Every cluster has a cluster leader, which forms an
overlay network with other cluster leaders for control messaging and for coordinating operations such
as joining, merging and splitting. Therefore, the cluster leaders constitute the leader layer. Together
with other members, they form the member layer. In our simulation, we apply Delaunay Triangulation
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 5, No. 2, Article 13, Publication date: November 2008.
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(DT) protocol in both layers [Liebeherr et al. 2002]. Interested readers are referred to Liebeherr et al.
[2002] for the details of tree formation and data delivery.

We elaborate the main roles in SOM as follows:

Cluster Leader. It keeps information related to each cluster member (such as the member’s ID or
address). It also works as an entry point for a new member to join its cluster. The JoinRequest from a
new member is passed down to the Member layer if the leader finds that its cluster is the closest one
to the member. The leader is also responsible for splitting the cluster into two if it is too large. When a
cluster is too small, the leader will send MergeRequest messages to its neighboring cluster leaders in
the Leader layer to find a suitable cluster for merging.

A cluster leader periodically multicasts HeartBeat messages within its own cluster to indicate its
presence. If any member finds that its cluster leader has left the group, it first randomly backs off and
then multicasts a NewLeader message within the cluster. It is possible that more than one member
declares itself as the new leader. In this case, tie is broken by their network addresses.

Egress Member. An egress member is responsible for sending data from its cluster to another cluster.
Data sent across clusters, say from A to B, must be reencrypted with another key kAB. It has to establish
an intercluster encryption key with each of the downstream ingress nodes.

Ingress Member. As opposed to an egress member, an ingress member receives data from another
cluster. It also needs to reencrypt the packets received using its cluster key before forwarding them to
other members in its cluster.

Normal Member. A normal member does not need to do any reencryption; he only needs to forward
the multicast data within the cluster and decrypts it using the cluster key for its own use. Each member
periodically sends Heartbeat messages to its connected peers so as to indicate its aliveness. Absence of
several Heartbeats from a member implies the departure of that member.

Note that the protocol suggested here is a framework; hence, the intercluster network formed by
leaders and the intracluster network formed by members can be implemented by any existing ALM
protocols. In SOM simulation, we use DT-GNP as the underlying protocol due to its distributed nature.
This is described in more detail in the following.

Accurate estimation of network distances can improve network efficiency in terms of latency, band-
width, and other operations such as joining, leaving, splitting, merging, etc. However, measuring the
network distance using ping for all pairs of peers is time-consuming and not scalable. Internet coor-
dinate system such as Global Network Positioning (GNP) [Ng and Zhang 2002], Vivaldi [Dabek et al.
2004], Internet Coordinate System (ICS) [Lim et al. 2005] etc. are fast and scalable approaches to deter-
mine network distances between peers. The key idea of these systems is to map the Internet locations
of peers into some appropriate coordinate system (e.g., an N -dimensional Euclidean space) with only a
few network measurements. The computed distances from the coordinates are highly correlated with
their network distances.

We have used GNP in our simulation. Using GNP, a cluster leader can summarize its cluster location
by calculating the centroid of all member coordinates within its cluster. With the centroid, a new
member, given its coordinates, can find its the closest cluster to join easily and quickly. Furthermore,
the coordinates of members can make the splitting of a cluster more efficient.

4.2 Member Arrival

In SOM, a new member u joins the group in two steps:

(1) It finds the closest cluster to join.

(2) It joins the cluster and attaches itself to the ALM tree within the cluster.
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To find the closest cluster, u first contacts one of the cluster leaders in the multicast group. This can be
bootstrapped by a server or Rendezvous Point (RP) which keeps the locations of some cluster leaders.
When the RP receives a JoinRequest message containing u’s coordinates, the RP searches for the closest
leader from its leader list. Then, it forwards the JoinRequest to that closest leader. Upon receiving a
JoinRequest, the cluster leader compares u’s coordinates with the centroid of the cluster and determines
whether any other neighboring cluster is closer to u according to its centroid. (The centroid of a cluster
may be computed from the coordinates of a few members in the cluster.) If so, it forwards the request
to the leader of the closer cluster. The process continues until the closest cluster which u belongs to is
found. After that, the JoinRequest is passed down to the Member layer where u forms an intracluster
tree with the cluster members. The details of forming the intracluster tree is the same as the joining
procedure of the underlying ALM protocol.

Once the new member u attaches itself on the intracluster tree, rekeying is performed within the
cluster. u forms a secure channel with each of its neighbors using asymmetric encryption. It sends its
public key pu in the JoinRequest to its neighbor v. v then generates a symmetric key kuv (the so-called
neighbor key) and sends back a JoinReply with the encrypted neighbor key using u’s public key (i.e.,
Epu{kuv}). Then, u and v can use the same secret key kuv to update the cluster key in the future. The
cluster leader then updates the cluster key to guarantee backward secrecy. It first generates a new
cluster key k′

c and then multicasts the rekey message Ekc{k′
c} in the cluster, where kc is the old cluster

key. When a peer finds that its downstream peer is a new member, it reencrypts k′
c using the secret key

shared with the downstream peer so that the new member can get the new key k′
c without knowing the

old key kc.

4.3 Member Departure

The departure of a member can be known by either 1) a Goodbye message from the member to its
neighbors (i.e., a graceful leave); or 2) an absence of several HeartBeat messages to its neighbors (i.e.,
an ungraceful leave). Whenever a peer detects the leaving of its neighbor, it informs its cluster leader to
trigger the rekeying mechanism. Meanwhile, the intracluster tree may need to be changed. The peers
at the two ends of a new link establish a neighbor key using asymmetric cryptography as in the joining
process. After the cluster leader generates the new cluster key k′

c, it multicasts k′
c within the cluster

along the overlay tree using host-to-host encryption, that is, members reencrypt k′
c using neighbor keys

before forwarding it.

4.4 Cluster Split and Merge

A cluster leader periodically exchanges with its neighboring leaders in the Leader layer ClusterInfo,
which contains cluster size and member information. SOM keeps the size of each cluster within the
range from c/2 to 2c. When a cluster T becomes too large (i.e., greater than 2c), the leader x triggers
the splitting operation. As x stores all member coordinates of its cluster, it can perform any centralized
clustering algorithm [Jain and Dubes 1988] based on these coordinates to split the original cluster
into two parts, T1 and T2, each of which contains fewer than 2c members. Suppose x is in T1 after
splitting. It then randomly picks a member y from T2 as the leader of that cluster and sends to y a
LeaderTransfer message containing information of its members for management purpose. After cluster
split, both leaders (x and y) need to generate their new cluster keys by multicasting rekey messages
as in the joining process.

On the other hand, when a cluster T1 shrinks and becomes too small (i.e., less than c/2), it has to merge
with some suitable neighboring clusters. A cluster is considered to be suitable if, after merging, 1) the
resultant cluster size is within the size range; or 2) the resultant cluster can then be split into smaller
clusters whose sizes are within the range. Once the target cluster T2 and its leader y are identified,
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the leader x of T1 sends a MergeRequest to y . The MergeRequest contains some network addresses of
the members in T1. y then selects a pair of members (s, t): s is contained in the MergeRequest and t
is in T2. It informs t to connect to s for merging according to the partition recovery mechanism in the
underlying ALM protocol. After that, x becomes the leader of the combined cluster. Upon cluster merge
is completed, x needs to rekey the new cluster key using the same mechanism in the departure process.

4.5 Data Delivery Path and Ingress/Egress Selection

In SOM, cluster leaders first determine among themselves in the leader layer which cluster is connected
to which by means of some ALM protocols (such as DT as presented in Liebeherr et al. [2002] which
uses compass routing [Kranakis et al. 1999]). Given the connectivity, cluster leaders then identify their
ingress and egress nodes to form overlay connections across clusters. Within a cluster, an intracluster
tree (rooted at its ingress node) is also built according to some ALM protocols (which may be different
from the intercluster ALM protocol). As shown in Figure 5, an intercluster tree in SOM is formed by
connections between egress nodes and ingress nodes rooted at the cluster to which the source connects.
In each cluster, an intracluster tree rooted at its ingress node is formed by connecting peers within the
same cluster. With all the inter- and intracluster links, an overlay tree is constructed for data delivery.

In order to minimize delay, the closest pair of nodes should be chosen as the egress-ingress pair
between two clusters. However, suppose the cluster size is C, finding such pair may require O(C2) (or
O(C log C) for a more advanced technique [Sahni 1998]) computations, which may not be desirable in
reality. To reduce it to O(C), a suboptimal solution is used as follows. A downstream leader x first
chooses a number of nodes which are the closest to the centroid of the upstream cluster with leader y .
This is the IngressList that x sends to y . y then chooses the closest pair of nodes, one from its cluster
(the egress node) and the other from the IngressList (the ingress node). The egress node then makes a
secure connection with the ingress node for packet reencryption.

5. SYSTEM ANALYSIS

In this section, we analyze the storage requirement, number of rekey messages and processing overhead
of our protocol, and compare them with logical key hierarchy (LKH) and Iolus [Wong et al. 2000; Mittra
1997].

5.1 Storage Requirement

In a secure multicast system, receivers and the central key server (which may be the source) are required
to store a number of keys for data encryption and rekeying purposes.

In LKH, each member in the group needs to store logd N = O(log N ) keys (i.e., the number of keys
along a branch of the logical key tree, see Figure 1(a)), where N is the size of the secure group and d
is the degree of the key tree4. The central key server needs to manage all the keys in the key tree, i.e.,
(dh+1 − 1)/(d − 1) = O(N ) where h is the height of the key tree.

On the other hand, in Iolus, each member in a subgroup needs to store only two keys, namely, the
subgroup key and the secret key shared with its GSA. Each GSA, however, needs to store all the
secret keys shared with all the members within its subgroup, and the subgroup keys of the associated
subgroups. Therefore, the number of keys stored at each GSA depends on the subgroup size, which may
be as large as the group size.

In SOM, each member keeps one cluster key and several neighbor keys. Depending on the ALM
protocol for implementation, the number of neighbor keys stored varies. For example, in Delaunay
Triangulation protocol [Liebeherr et al. 2002], the average number of neighbors is six. For egress or

4In this analysis, we assume the key tree in LKH scheme is well balanced.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 5, No. 2, Article 13, Publication date: November 2008.



13:12 • W.-P. K. Yiu and S.-H. G. Chan

ingress peer, one more key is needed for reencryption across clusters. Clearly, as opposed to LKH and
Iolus, SOM does not have special entities or members which require disproportionately higher storage
than other members. In other words, SOM evenly distributes the key storage load over all its peers.

5.2 Number of Rekey Messages

The bandwidth overhead consumed for rekeying depends on the number and the size of rekey messages.
Different from IP-multicast-based schemes, we need to consider the number of unicast transmissions
needed for sending the rekey messages in ALM. In the following analysis, we normalize the bandwidth
overhead by the size of a key.

In LKH scheme, each join/leave requires a change of all the keys on the path from the member u to
the root in the key tree, where the path consists of logd N = O(log N ) keys. In the case of member join,
for each key on the path, the key server needs to send one unicast rekey message (encrypted using u’s
individual key) to u and one multicast rekey message to other members in the same subgroup as u.
Since each multicast message in ALM is accomplished by O(N ) unicast messages. The total number
of rekey messages for a member join is O(N log N ). Similarly, in the case of member leave, for each
key on the path, the key server needs to send d multicast rekey messages (except the bottommost one,
which can be updated with individual user using unicast message.) Hence, the total number of rekey
messages for a member leave is O(d N log N ).

In Iolus, when a member u joins the group, the designated group security agent (GSA) needs to
multicast one rekey message to all the old members in u’s subgroup and unicast one rekey message
to u for updating the subgroup key. In ALM, the multicast rekey message consists of O(M ) unicast
messages, where M is the subgroup size. When a member leaves the group, the GSA has to unicast a
rekey message to each of the subgroup members. For each subgroup member, the GSA sends a rekey
message containing the new subgroup key encrypted using the member’s individual key.5 Hence, the
total number of rekey messages for a member leave is O(M ). In this approach, all the M rekey messages
are sent from the GSA, making the network link at the GSA a bottleneck.

In SOM, a member arrival triggers the generation of a new cluster key by the cluster leader. The
cluster leader then encrypts the new cluster key using the old cluster key and multicast it within the
cluster using ALM. The new cluster key is also encrypted using the new member’s secret key and sent
to the new member. This operation incurs an equivalence of O(C) unicast rekey messages, where C is
the cluster size. When a member leaves the system, the cluster leader multicasts the new cluster key
within the cluster. The distribution of the new cluster key uses host-to-host encryption. This operation
also incurs O(C) unicast rekey messages. In this approach, the cluster leader only sends the rekey
messages to its directly connected peers in the ALM tree. Furthermore, unlike Iolus, the cluster size in
SOM is bounded and so is the number of rekey messages generated. To summarize, SOM incurs fewer
rekey messages during membership changes.

5.3 Processing Overhead

In each rekeying for key updates, some peers need to update their keys, leading to some computation
or processing overhead. In general, updating a key is equivalent to decrypting an encrypted key. In the
following, we analyze the number of keys required to be updated.

In LKH, for each joining or leaving member, its key path to the root is required to be updated. As some
of the subgroup keys and the group key are shared with other group members, the rekeying process
also incurs computation/processing on other members as well. We take a binary key tree as an example.
Due to the key tree structure, for a balanced tree, on average 50% of the group members need to update

5Every member has a secret key called individual key shared with its corresponding trusted GSA.
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Table I. Cluster
Characteristics

c Average size m

16 20.88
32 38.45
64 80.27

128 161.28
256 318.72

one key, 25% two keys, 12.5% three keys, and so on. This sums up to O(N ) key updates in the group.
Furthermore, the joining member needs to update around log N keys. On the other hand, a leaving
member does not need to do any update.

In Iolus and SOM, only the members in the affected cluster (or subgroup in Iolus) need to update the
cluster key. However, since the subgroup size in Iolus is not bounded, a large number of members may
need to update their keys. In summary, the dynamic cluster management in SOM localizes the effect
of membership changes within the affected cluster, leading to much reduced processing overhead.

6. OPTIMAL CLUSTER SIZE

In this section, we analyze the average nodal processing overhead given by the sum of the rekeying and
reencryption overhead and show that an optimal cluster parameter exists to minimize the overhead in
the system.

In SOM, the size of each cluster is bounded between c/2 and 2c. Let m be the average cluster size.
Assuming that the cluster size is uniformly distributed, we have

m = 1.25c.

Table I summarizes the characteristics of the clusters in our simulation. The average cluster size m is
roughly equal to 1.25c which agrees with what is calculated in our analysis. For the sake of simplicity
and analytic tractability, we will approximate in the following that all the clusters are of (constant) size
m and all integral values as continuous. For example, given a group size of N , the number of clusters
is N/m.

In this analysis, we assume members arrive according to a Poisson process with rate λ req./s and stay
in the system with exponential holding time of mean T seconds. The data stream is of constant bit rate
at R bits/s. Each packet is of constant size S bits where S may be thousands of bits.

We normalize each symmetric encryption or decryption (of one key-sized data) as one unit of com-
putation overhead. (Encryption and decryption are the same operation in symmetric cryptography.)
As symmetric cryptographic operations are often three to five orders of magnitude faster than their
asymmetric counterparts, we define α and β as the relative CPU time spent on asymmetric encryption
and decryption, respectively, for accounting their corresponding processing overhead. They are given
by:

α = Time for one asymmetric encryption
Time for one symmetric encryption

;

and

β = Time for one asymmetric decryption
Time for one symmetric decryption

.

In other words, an asymmetric encryption costs α units of computation, while an asymmetric decryption
costs β units of computation. Table II lists the major nomenclatures defined in the analysis.
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Table II. Nomenclature Used in the Analysis
Symbol Definition

λ Average arrival rate of the users (req./s).
T Average holding time (s).
µ Average service rate = 1/T .
ρ Average number of concurrent users 	λT (req.).
c Size of a cluster is bounded between c/2 and 2c.
m Average number of users in a cluster.
m∗ Optimal cluster size.
R Data rate for an application (bits/s).
S Size of a data packet (bits).
α, β Speed factors between symmetric and asymmetric encryption and decryption, respectively.

Table III. Procedures for Member Join and Their Cost Accounting

Steps
New

Member
u

New Member’s
Neighbors nbri

{nbri : i ∈ [1..AJ ]}

Cluster
Leader

vL

Cluster Members vi
{vi : i ∈ [1..m]}\{vL}

1. u’s neighbors encrypt their neighbor keys
using u’s public key PKu. Then, u decrypts
the neighbor keys using its private key.

AJ β AJ α - -

2. Cluster leader vL multicasts the new clus-
ter key encrypted using the old cluster key,
i.e., Ekc {k′

c}. Cluster members vi decrypts
the new cluster key.

- - 1 m − 1

3. u’s parent encrypts k′
c using their neighbor

key. u can then decrypts it.
1 1 - -

We are now ready to derive the total overhead in the system, which is the sum of rekeying and
reencryption overhead. These are given as follows:

6.1 Total Rekeying Overhead

In the steady state, there are m members in each cluster. Recall that a joining member establishes some
keys with its neighbors using asymmetric encryption. Let AJ be the average number of neighbor keys
established using PKI for this. Following that, the cluster leader generates a new cluster key, which
is encrypted with the old cluster key before multicasting in the cluster. Every cluster member except
the new one then decrypts the new cluster key. When the parent of the new member receives the new
cluster key, it reencrypts the key using the symmetric key just established with the new member before
sending it to the member. Recall that even if the member join triggers a cluster split process, the rekey
procedure is the same as that in joining process without cluster split. This is because when the cluster
splits into two smaller clusters, the two cluster leaders rekey their own clusters after split and the total
number of symmetric encryption/decryption is still equal to m + 2 (= m/2 + m/2 + 2). Therefore, we
will not double count the processing overhead for cluster split in the following analysis.

Let HJoin be the processing overhead for a join event. Table III summarizes the total overhead in such
joining event. Summing the items up, we hence have

HJoin(m) = AJ (α + β) + m + 2. (1)

For leaving, recall that when a member leaves the multicast group, the cluster leader generates a new
key k′

c. Note that it cannot use the old cluster key kc to encrypt k′
c (because the leaving member holds

the key). Instead, the leader and the peers encrypt k′
c using the neighbor keys and forward downstream.

Therefore, every cluster member needs to decrypt for k′
c and all internal nodes of the cluster tree need to
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Table IV. Procedures for Member Leave and Their Cost Accounting

Steps
Leaving
Member

u

Leaving Member’s
Neighbors nbri

{nbri : i ∈ [1..AL]}
Cluster Members vi
{vi : i ∈ [1..m]}\{u}

1. u’s neighbors form new links in the cluster tree.
They reestablish the neighbor keys with their
new neighbors.

- AL(α + β) -

2. Cluster leader generates a new cluster key k′
c.

It is then encrypted by neighbor keys and for-
warded downstream within the cluster. Apart
from the cluster leader, there are (m− 2) mem-
bers need the encryption of k′

c.

- - m − 2

3. Upon receiving the encryption of k′
c from their

parents, the (m − 2) members decrypt for k′
c.

- - m − 2

0 1 2 i---1 i i+1+………… …………
2 i (i+1)(i+

Fig. 6. State transition diagram for a M/M/∞ queue.

encrypt k′
c. Since there are (m−1) remaining members, there are (m−2) pairs of symmetric encryption

and decryption (the leader does not need to decrypt k′
c). In addition, some new connections may be

formed due to the leaving member. Let AL be the average number of neighbor keys established using
PKI for this. Similarly, the rekey processing overhead due to cluster merge during member departure
shares the same processing overhead accounting. Therefore, we will not double count the overhead
for cluster merge in the following analysis. Let HLeave be the total processing overhead for a member
leaving the group. Table IV summarizes the total overhead in such leaving event. Summing up, we have

HLeave(m) = AL(α + β) + 2(m − 2). (2)

The system can be modeled as a M/M/∞ queue. Figure 6 shows the state transition diagram of the
system. Let i = {0, 1, 2, . . .} be the system state indicating the number of concurrent members in the
group. For the system in state i, since there are two exponential random processes with the total rate
of λ + iµ (member join with mean arrival rate λ and member leave with mean departure rate iµ) for
the system to leave the state, the expected time E[Ti] for the system to stay in state i is E[Ti] = 1

λ+iµ ,
and the expected rekeying overhead E[HReke yi (m)] at state i is

E
[
HReke yi

(m)
] = λ

λ + iµ
HJoin(m) + iµ

λ + iµ
HLeave(m). (3)

Let πi be the steady-state probability that the system is in state i. Clearly, from queueing theory for
a M/M/∞ queue [Kleinrock 1975], we have the probabilities following a Poisson distribution; that is,
πi = (λ/µ)i

i! e−λ/µ. Thus, the expected total rekeying overhead per second, E[HReke y (m)], is given by

E
[
HReke y (m)

] =
∞∑

i=0

πi
E

[
HReke yi

(m)
]

E[Ti]

=
∞∑

i=0

πi
[
λHJoin(m) + iµHLeave(m)

]
= λ[A(α + β) + 3m − 2], (4)
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where A = AJ + AL. From Equation (4), we can see that the rekeying overhead increases with the
member arrival rate λ. This is obvious that for a higher joining rate, the rekeying procedure is performed
more frequently, and hence the expected rekeying overhead is also higher. Moreover, the overhead also
increases with the cluster size m, because the rekeying procedure involves all the members in the
cluster of interest. Interestingly, the overhead is independent of the service rate µ. This is because
the total service rate µi (= iµ) is proportional to the number of concurrent users in the system, while
the probability that the system in state i, πi, is smaller for larger i. These two factors cancel each other,
leading to the independence of µ in the result.

6.2 Total Reencryption Overhead

Packets are forwarded across clusters via egress-ingress pairs. Recall that each egress node reencrypts
the key appended in the data packets using the symmetric key established with its downstream peer, an
ingress node. Each ingress peer in turn reencrypts them using its cluster key. Clearly, this reencryption
requires two extra symmetric encryptions for each data packet transmitted between an egress-ingress
pair. Given i members in the group, there are i/m − 1 egress-ingress pairs. Let the data rate be R bps
and packet size be S bits. Then, the packet arrival rate is R/S packets per second. Let E[HReEncrypti

(m)]
be the expected reencryption processing overhead per second in the group given that the system is in
state i. Then,

E[HReEncrypti
(m)] = 2

(
i
m

− 1
)

R
S

. (5)

Thus, the expected total reencryption overhead per second, E[HReEncr ypt(m)], is

E[HReEncrypt(m)] =
∞∑

i=0

πi

[
2

(
i
m

− 1
)

R
S

]

= 2
( ρ

m
− 1

) R
S

. (6)

From Equation (6), we observe that the reencryption overhead increases with the packet rate R/S.
This is clear that for a higher packet rate, ingress/egress nodes need to perform reencryption more
frequently. Furthermore, since the reencryption process is performed across clusters, the overhead is
also proportional to the number of clusters in the system ρ/m. Therefore, a larger cluster size leads to
a higher overhead, which contrasts to the result obtained in Equation (4).

6.3 The Sum of Processing Overheads

Adding Equations (4) and (6), the total nodal processing overhead per second, E[H(m)], is hence given
by

E[H(m)] = 1
ρ

{
E[HRekey(m)] + E[HReEncrypt(m)]

}
= 1

ρ

{
λ[A(α + β) + 3m − 2] + 2ρR

mS
− 2R

S

}

= A(α + β)
T

+ 1
T

(3m − 2) + 2R
mS

− 2R
ρS

. (7)

As a special case, for host-to-host encryption, we have

E[Hhost−to−host] = A(α + β)
T

+ 2R
S

(
1 − 1

ρ

)
.
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For whole group encryption, we have

E[Hwhole group] = 1
T

[
A(α + β) + (3ρ − 2)

]
.

From Equation (7), we note that the first and the last terms are constants independent on m. In
particular, the values that we choose for α and β do not affect our results on optimal cluster size m∗. To
minimize E[H(m)], it is equivalent to minimize f (m) given by the two terms in the middle, that is,

f (m) = 1
T

(3m − 2) + 2R
mS

. (8)

To get the optimal cluster size m∗, we set

∂ f (m)/∂m = 0

and obtain

f ′(m) = 3
T

− 2R
m∗2S

= 0,

that is,

m∗ =
√

2RT
3S

, (9)

or

c∗ = 1
1.25

√
2RT
3S

. (10)

From Equation (9) or (10), we clearly see that for applications with high bandwidth and/or long
holding time, the cluster size should be larger in order to minimize the processing overhead. For a high
packet rate application, we should reduce our reencryption overhead by having fewer clusters (i.e.,
having larger clusters). For a long holding time application, rekeying is not so frequently performed, so
we can afford having more members in each cluster.

Figure 7 shows that, our simulation results (with exponential holding time) fit the analytic model
well, and both of them agree on the same optimal cluster parameter c∗.

A final remark is in place here. A (= AJ +AL) in Equation (7) depends on the underlying ALM protocol.
For DT protocol, a point in a DT mesh has six neighbors on average due to its geometric properties,
meaning that a joining member needs to establish six neighbor keys. Therefore, we set AJ = 6. The
six neighbors form three new triangles after a member leaves and hence, AL = 3. Therefore, we have
A = 9 for DT.

As shown above, due to DT’s geometric properties, we can easily determine the values of AJ , AL,
and thus A. For this reason, though any ALM protocol can be used in SOM, in order to easily compare
experimental results with our analytical results, we choose DT as the base protocol for constructing
overlay meshes among peers in our simulation.

7. ILLUSTRATIVE NUMERICAL RESULTS

We compare through simulation the performance of SOM with the two basic schemes and a recently
proposed ALM protocol, namely Delaunay Triangulation (DT) [Liebeherr et al. 2002; Wong and Chan
2003]. We use DT protocol in both Leader layer and Member layer in SOM.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 5, No. 2, Article 13, Publication date: November 2008.



13:18 • W.-P. K. Yiu and S.-H. G. Chan

10
0

10
1

10
2

10
3

10
4

55

60

65

70

75

80

85

90

c

A
ve

ra
ge

 N
od

al
 P

ro
ce

ss
in

g 
O

ve
rh

ea
d

simulation
analysis

Fig. 7. Nodal processing overhead versus cluster parameter c.

7.1 Simulation Model

In our experiments, we first generate a network topology using GT-ITM (Georgia Tech Internetwork
Topology Models generator) [Zegura et al. 1996]. We use the Transit-Stub model with 2,000 routers.
Members arrive according to a Poisson process with rate λ req./s and stay in the system with exponential
holding time of mean T seconds. Each arrival is randomly attached to one of the routers. As GNP is
used, 15 landmarks are introduced, randomly connected to different routers in the network. The source
is randomly chosen among the peers and generates a data stream of constant bit rate at R bits/s. Each
packet is of constant size S bits where S may be thousands of bits.

As our baseline system, we use the parameters R = 256 kbps, S = 8,000 bits, T = 30 min.,
ρ = λT = 10, 000 and c = 128 (i.e., a typical Internet TV application). For α and β, we use the
values given by experimental results tested on OpenSSL utility program (http://www.openssl.org/). In
our experiment, we measure the speed of commonly used cryptographic operations on a 800MHz Pen-
tium III Linux workstation using the optimized implementations of the OpenSSL utility program, and
find the following values to be reasonable: α = 1,000 and β = 10,000. Note that these values of α

and β are for demonstration purpose and do not affect our final result on how to choose an optimal
system parameter c. This means that the optimal cluster size is the same for different values of α and
β. The reason is clear from Equation (7). These values only offset the overhead, but do not change the
minimal point of the equation as derived in Section 6. In our simulation, we vary most of the param-
eters beyond their base values while keeping the remainder the same in order to study the system
performance.

In our simulation, we study the following three performance metrics:

Average nodal processing overhead. We define the average nodal processing overhead H as:

H =
∑

i∈G Hi

ρ
,

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 5, No. 2, Article 13, Publication date: November 2008.



Offering Data Confidentiality for Multimedia Overlay Multicast: Design and Analysis • 13:19

4 16 64 256 1024 4196
40

45

50

55

60

65

70

75

Cluster parameter c

A
ve

ra
ge

 N
od

al
 P

ro
ce

ss
in

g 
O

ve
rh

ea
d

exponential
uniform
constant

Fig. 8. Nodal processing overhead versus cluster parameter c (λ = 4 req./s, T = 1800s).

where Hi is the processing overhead per second of peer i in the group G. Recall that the nodal processing
overhead is incremented by one when a node performs a symmetric encryption/decryption, by α for each
asymmetric encryption and β for each asymmetric decryption.

Physical link stress (PLS). PLS is defined as the number of identical packets transmitted over a
physical link.

Relative delay penalty (RDP). RDP is defined as the ratio of the delay in the overlay path between a
host and the source to the delay in the unicast path.

7.2 Nodal Processing Overhead

In Figure 8, we plot H against c with different holding time distributions, namely, exponential, uniform
([0.5T , 1.5T ]) and constant (T ). H first decreases (due to a reduction in reencryption overhead) and
then increases again (due to an increase in rekeying messaging overhead). There is an optimal cluster
parameter c∗ to minimize H for the system. (For our baseline parameter, c∗ is around 100.) The curve
around the minimal point is quite flat, which means that keeping the cluster size to be the exact value of
c∗ is not required. Hence, our scheme roughly maintains the cluster size and does not need complicated
clustering protocol. On the other hand, the curve shows that blindly using either of the basic schemes
(host-to-host or whole group encryption at the left and right extreme points in the curve respectively)
leads to substantially high overhead as compared to our cluster-based approach. c∗ depends on the
application parameters. The figure also shows that randomness in holding time leads to higher nodal
processing overhead. However, it does not affect the optimal cluster parameter c∗ much. In Table 5, we
illustrate the optimal c∗ for various applications (based on Equation (10)). As we can see from the table,
c∗ ranges from as few as tens to as many as hundreds. The cross among lines on the left of the graph is
mainly due to statistical fluctuation of the collected data.

We compare SOM in terms of H with the two basic schemes (host-to-host and whole group encryption)
in Figure 9, given the value of c (c = 128). The overhead for host-to-host encryption is independent of λ
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Table V. Optimal Cluster Size of Various Multimedia Applications (S = 8,000 bits)
Typical multimedia

applications
Average holding time

(T )
Data rate (R)

Optimal cluster
parameter (c∗)

stock quote system 30 min. 5 kbps 20

Internet radio 2 hrs. 16 kbps 80

Internet TV 30 min. 256 kbps 160

high-quality video 2 hrs. 1 Mbps 620
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Fig. 9. Average nodal processing overhead H versus λ (c = 128, T = 1800 s).

and stays at a level depending on the data rate. This is because each peer needs to continuously reencrypt
data packets no matter how often the members join, and the reencryption is obviously proportional to
the packet arrival rate. On the other hand, the overhead for whole group encryption increases with
λ because i) a larger λ implies a larger ρ (since ρ = λT ), which increases the rekeying overhead in
the group. This is because the rekeying procedure in whole group encryption involves all the members
in the group. Each time when a new member joins or an existing member leaves the system, each
of the group members needs to decrypt the new group key. When there are more members in the
group, a higher rekeying overhead is incurred; ii) a larger λ also leads to more frequent join or leave
events. This means that more rekeying procedures are required, also incurring higher average rekeying
overhead. It is shown in the figure that, the curve for whole group encryption goes up, and its value
finally becomes larger than that of host-to-host encryption. The reason is that its rekeying overhead
exceeds the overhead saving from the reencryption overhead. Finally, it is clear from the figure that
SOM achieves the minimum overhead and remains at a substantially lower level when λ increases even
to a large value, as join or leave events trigger rekeying processes only within the affected clusters but
not in the whole group. The gain in nodal processing overhead is about 30%.

Figure 10 shows the distribution of processing load among all the peers. We find that a large fraction
(over 80%) of them have nodal processing overhead lower than the average processing load (around 55
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Fig. 10. Overhead distribution among peers (c = 128, T = 1800 s).
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Fig. 11. Network performance of SOM (c = 128).

as shown in Figure 9). The peers at the tail of the figure are the ingress and egress peers, which need
to do packet-by-packet reencryption, and hence have higher processing overhead than the average.

7.3 Network Performance

In Figures 11(a) and 11(b), we show the network performance of SOM in terms of PLS and RDP versus
the number of members in the group. Also shown is the corresponding DT performance. The figures
show that SOM does not sacrifice network performance to achieve low processing overhead. When the
group size is small, SOM performs like whole group encryption and hence its performance is the same
as DT. When the group size increases, it is obvious that both RDP and PLS increase. The figures show
that SOM achieves similar level of performance as compared to traditional ALM protocols. Note that
the crosses among lines are solely due to statistical fluctuation of the collected data.
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During a multicast session, if the network condition changes (e.g., some overlay links are broken), the
peers may deliver data using an alternate path according to the underlying ALM protocol. In this case,
network performances like PLS or RDP may change. However, unless new overlay links are formed, no
rekeying is needed. Hence, the nodal processing overhead will not be affected. For example, DT protocol
still works even if some of the mesh links are broken.

8. CONCLUSIONS

In order to provide confidentiality in large-group multimedia communications using application layer
multicast, packets are encrypted before delivery. As the encryption keys need to be changed upon
membership changes, this rekeying leads to processing overhead on each peer. There are two basic
approaches to perform data encryption. Host-to-host encryption leads to high reencryption overhead
when the data rate (or packet rate) of the application is high, while whole group encryption incurs large
rekeying overhead when the user pool is large and dynamic. We propose a solution, Secure Overlay
Multicast (SOM), to compromise on the overhead between the two schemes so as to achieve the minimum
nodal processing overhead.

SOM is a framework based on clustering multicast group members into subgroups according to their
network locations. A cluster key is only shared within the same cluster, hence localizing the rekeying
inside the cluster. We describe SOM framework and present a simple analysis of SOM which agrees
with our simulation well.

We show that, for a given application, there exists an optimal cluster size for minimizing the nodal
processing overhead. SOM is scalable to large and dynamic group. It saves processing overhead sub-
stantially (by as much as 30% in our simulation) as compared with the two basic approaches. On the
other hand, SOM achieves similar network performance (in terms of physical link stress and relative
delay penalty) as compared to an improved version of DT.
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