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Video Management and Resource Allocation for a Large-Scale
VoD Cloud

ZHANGYU CHANG and S.-H. GARY CHAN, The Hong Kong University of Science and Technology

We consider providing large-scale Netflix-like video-on-demand (VoD) service on a cloud platform, where
cloud proxy servers are placed close to user pools. Videos may have heterogeneous popularity at different
geo-locations. A repository provides video backup for the network, and the proxy servers collaboratively store
and stream videos. To deploy the VoD cloud, the content provider rents resources consisting of link capacities
among servers, server storage, and server processing capacity to handle remote requests.

We study how to minimize the deployment cost by jointly optimizing video management (in terms of video
placement and retrieval at servers) and resource allocation (in terms of link, storage, and processing capac-
ities), subject to a certain user delay requirement on video access. We first formulate the joint optimization
problem and show that it is NP-hard. To address it, we propose Resource allocation And Video management
Optimization (RAVO), a novel and efficient algorithm based on linear programming with proven optimality
gap. For a large video pool, we propose a video clustering algorithm to substantially reduce the run-time com-
putational complexity without compromising performance. Using extensive simulation and trace-driven real
data, we show that RAVO achieves close-to-optimal performance, outperforming other advanced schemes
significantly (often by multiple times).
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1. INTRODUCTION

Cloud computing provides an attractive option to convert private infrastructure in-
vestment to daily operating expense. It substantially reduces the cost on purchasing
geographically distributed servers and the risk of over-provisioning. Such paradigm
has been used to deploy cost-effective distributed Internet services [Wu et al. 2011;
Li et al. 2011; Adhikari et al. 2012; Aggarwal et al. 2011]. One of such services is
Video-on-Demand (VoD), which has dominated the Internet traffic nowadays [Index
2013].

In a VoD cloud, the content provider can rent servers and bandwidth from one or
multiple cloud service providers. Through this, resources can be rescaled in a timely and
adaptive manner to satisfy fluctuating user demands while meeting user requirements
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Fig. 1. A distributed and cooperative cloud architecture for VoD service.

(e.g., in video startup delay). We consider a Netflix-like VoD service with many titles.
In such a network, user delay, defined as the time from his or her request to the instant
of video playback, is an important quality of service (QoS) measure. As the scale of the
service increases, how to minimize its deployment cost while meeting the user delay
requirement becomes a critical issue.

We show in Figure 1 a typical cloud architecture for VoD. The cloud consists of
a central server S0 (repository) storing all the videos.1 The content provider rents
geographically distributed proxy (cloud) servers, labeled as S1, S2, S3, and S4, which
have re-scalable resources (in terms of storage and processing/streaming capacities)
and are close to user pools. We consider that videos are either entirely stored or not
at all. While all the videos are stored in the central server, for cost-effectiveness the
proxy servers may store only a fraction of them. Each user has a home (or local) proxy
server to serve his or her video request. Due to geo-dispersed user groups, a video may
have a different level of popularity at different home servers. If the content requested
is stored locally (i.e., a hit), then the home server directly streams to its users from its
storage. Otherwise (i.e., a miss), the home server requests the content from a remote
server (which is either a proxy server or the repository), and the missed content is
streamed via the home server to the users. To ensure service quality, dedicated end-to-
end link capacity is rented to serve the misses between servers (labeled as Kmn in the
figure). Furthermore, processing capacity (e.g., central processing unit (CPU), memory,
streaming resources, etc.) of a server is needed to be rented in order to respond to all
its remote requests. We will use “servers” to refer collectively both central and proxy
servers. (Note that in this work though we mainly discuss in the context of video files
of different streaming rates, our study can be similarly extended to multimedia files
with different bandwidth requirements.)

The above collaborative cloud architecture achieves high resource scalability and
cost-effectiveness. Because video popularity is skewed, we can achieve low storage cost
by storing only a subset of the videos in each server. Moreover, the miss requests at a
server may be served by other nearby proxy servers, hence saving link bandwidth from
the repository. By allocating properly the amount of server storage, server processing

1In this article, we use “movie” and “video” interchangeably.
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capacity, and link capacity, such an architecture can achieve tradeoff to minimize
deployment cost while meeting a certain service requirement (on user delay). As an
example, if storage cost is relatively low, then increasing server storage would lead to
low overall deployment cost. On the other hand, if link cost is relatively low, server
collaboration (and hence purchasing more link capacity) would lead to lower overall
cost.

In contrast to volatile contents such as short video clips and user-generated content
(UGC), the video popularity and traffic in a Netflix-like VoD system is relatively stable
and predictable [Gong et al. 2010; Niu et al. 2012]. While videos cannot be replicated
on-the-fly in the servers, they can be centrally planned on a longer time scale (say,
days). This is similar to resource allocation, where capacities are rented to meet user
delay requirements. That is to say, the content provider has to plan at intervals (at
scheduled times or driven by system changes) the following two critical challenges:

—Video management: This involves content replication (CR) and server selection (SS).
CR is to decide which video should be replicated in which proxy server(s). SS is to
decide which remote server to serve the miss at a local server. Note that SS and CR
are joint problems. Furthermore, as video popularity may differ at different servers,
CR and SS decisions may not be the same for all the servers.

—Resource allocation: To meet the service quality, the content provider has to pay for
the system resources in terms of link capacities allocated among servers, server pro-
cessing capacity (to process and stream remote video requests), and server storage.
In the VoD cloud, the deployment cost consists of two major components: (1) server
cost due to the total storage and processing capacity at a server and (2) link cost due
to the bandwidth capacity reserved and data transmitted between pairs of servers
to serve the misses.

In the cloud paradigm, the content provider may dynamically adjust video manage-
ment and the rented resources according to his predicted video demand over the time
scale of interest (e.g., in days). As video management and resource allocation are inter-
dependent decisions with the same time scale (i.e., video management can be optimized
given resource allocation and vice versa), they need to be jointly optimized to minimize
overall deployment cost, subject to a certain QoS requirement on user delay. This work
is to address the joint optimization problem through the following:

—Problem formulation and complexity analysis: We study a novel problem for a VoD
cloud, which is to jointly optimize video management and resource allocation to
minimize the deployment cost given a certain user delay constraint. Our model is
realistic, general, and comprehensive, capturing important system parameters on
server cost, link cost, geographical heterogeneity of video access, and user delay as
QoS constraint (previous work seldom considers all these parameters together). We
show that such problem is NP-hard.

—Resource allocation And Video management Optimization (RAVO): A novel algorithm
to jointly optimize resource allocation and video management: We propose a novel
heuristic based on linear programming (LP) termed RAVO. RAVO runs efficiently in
polynomial time. It has proven optimality gap on deployment cost and is shown to
achieve close-to-optimal decisions on video management and resource allocation.

—Efficient clustering for large video pool: To further reduce the computational com-
plexity for large video pool, we propose a fast algorithm based on spectral clustering
on the videos. The algorithm achieves significantly reduced runtime complexity (by a
factor of O(|V |), where |V | is the number of videos), with little compromise on system
cost.
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We conduct an extensive simulation and comparison study on RAVO with other
state-of-the-art schemes. Our results show that RAVO with spectral clustering achieves
substantially the lowest system cost, outperforming the other schemes by a wide margin
(often by multiple times). Trace-driven simulation with video data from a large-scale
deployed system further confirms our results.

This article is organized as follows. We first review related work in Section 2. We
then formulate the joint optimization problem and show that it is NP-hard in Section 3.
In Section 4, we present RAVO. We discuss the case of large video pool with our video
clustering algorithm in Section 5. We show illustrative simulation results and a trace-
driven simulation in Section 6. We conclude and discuss future work in Section 7.

2. RELATED WORK

There has been much work on resource provisioning and rescaling in the cloud for
virtual machines and web applications based on online algorithms. Such work often
focuses on volatile contents (e.g., short video clips and user generated contents) and
assumes that the data centers replicate the full content or the most popular ones
without collaboration (we consider a VoD cloud where video cannot be fully and cost-
effectively replicated locally). This includes how to predict CPU utilization [Bobroff
et al. 2007; Gong et al. 2010; Tang et al. 2007], power consumption [Kusic et al. 2009;
Lin et al. 2011; Shuja et al. 2014], service availability [De Melo et al. 2014], network
bandwidth utilization [Wang et al. 2011], or efficient storage utilization within a data
center [Li et al. 2015; Wang et al. 2015]. There has also been work optimizing server
selection and resource provisioning for multimedia cloud [Alasaad et al. 2012; Chu
et al. 2014; Niu et al. 2012; Fallah et al. 2015]. All these works differ from ours, and
have not considered geo-distributed content replication and retrieval. The cost models
they use also fundamentally differ from ours, where we comprehensively consider the
cost of server storage, processing, and link bandwidth. We also study the novel joint
problem of resource allocation and video management.

Many heuristic approaches have been proposed to optimize VoD resource provision-
ing in content distribution network (CDN) (in terms of server location, bandwidth
requirement, storage, etc.) [Thouin and Coates 2007; Thouin et al. 2006; Laoutaris
et al. 2005; Li and Wu 2010]. Another body of VoD work is on optimizing content
replication and retrieval in a CDN with fixed server parameters [Borst et al. 2010;
Applegate et al. 2010, 2013; Chan and Xu 2013; Hu et al. 2015]. Although various
models and optimization goals have been considered, these works have not considered
a cloud service where server storage and processing capacities can be rescaled to meet
user demand cost-effectively. As CDN is generally regarded as a long-term investment,
these works have not considered jointly optimizing video management (in terms of
server selection and partial content replication) and resource allocation for coopera-
tive servers. By studying such a problem, we can achieve the tradeoff between link
bandwidth and server storage/processing, thereof achieving much lower deployment
cost with assured service quality. Furthermore, in contrast with previous work, we
consider uniquely that video popularity may differ for servers at different geographical
locations, and hence servers need to replicate videos according to their local demand
while collaborating to achieve global cost optimality.

VoD research on peer-to-peer (P2P) assisted streaming usually aims at reducing the
load of the repository by effectively using the resource from peers [Yiu et al. 2007; Wu
and Lui 2012; Cong et al. 2014; Kurniawan et al. 2014; Lin and Shen 2015; Magharei
et al. 2014; Fernando and Keppetiyagama 2013]. They have not considered sufficiently
the interaction between system cost and user delay issues. Our work, in contrast, has
a different optimization objective of minimizing the deployment cost while ensuring a
given user delay requirement.
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Table I. Major Symbols Used in Formulation

Notation Definition
S The set of servers (central and proxy servers)
V The set of videos

L(v) Length of video v (seconds)
p(v)

m Access probability of video v at server m
I(v)
m Boolean variable indicating whether server m stores video v

Hm Storage capacity of server m (bits)
R(v)

mn The probability of streaming video v from server m to server n
μm Request rate at server m (requests/second)

ε(v)
m L(v) Average viewing time of video v at server m (seconds)
γ (v) Streaming rate of video v (bits/s)
�mn Average transmission rate from server m to n (bits/s)
Kmn Link capacity from server m to n (bits/s)
Um Total upload rate of server m (bits/s)
�m Processing capacity of server m to handle streaming requests from remote servers (bits/s)
CN

mn Link cost due to directed traffic from server m to n
CS

m Cost of server m
C Total deployment cost

DN
mn Delay due to directed traffic from server m to n

DS
m Delay due to upload streaming of server m

D̄ Delay constraint of the system (QoS)

3. PROBLEM FORMULATION AND ITS NP-HARDNESS

In this section, we present the joint optimization problem for video management and
resource allocation to minimize deployment cost. We first discuss the modeling of video
management (Section 3.1), followed by the user delay constraint (Section 3.2) and
resource allocation (Section 3.3), and, finally, the cost optimization problem and its
NP-hardness (Section 3.4). We show some of the important symbols in Table I.

The overlay network is modeled as a directed graph T (S, E), where S is the set of
central and proxy servers and E ⊆ S × S is the set of overlay links connecting nodes
in S (may not be complete). Let V be the set of videos and L(v) be the video length (in
seconds) of v.

3.1. Modeling of Video Management

We model video storage and retrieval in this section. A user is associated with its local
server. For cost-effectiveness, each server has a storage capacity to store some videos.
The server delivers the locally stored video to the user directly and requests the rest of
the video from the remote server.

Let p(v)
m be the popularity of video v at server m, which is the probability that a user

requests video v at server m, where
∑

v∈V p(v)
m = 1,∀m ∈ S.

Let I(v)
m be the Boolean variable indicating whether server mstores video v. Obviously,

we require

I(v)
m ∈ {0, 1}, ∀m ∈ S, v ∈ V . (1)

Note that for the repository (i.e., central server), we require I(v)
m = 1, ∀v ∈ V .

Server m has a certain storage capacity Hm (bits) to store the video replication. To
meet the storage requirement, we require∑

v∈V

I(v)
m L(v)γ (v) ≤ Hm, ∀m ∈ S. (2)
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If a server does not store the requested video, then it has to retrieve it from other
servers. The servers cooperate using the “cache and stream” model, that is, a remote
server streams to a user through his or her home server. In other words, a home server
acts as an intermediate node between the remote server and local users. Let R(v)

mn be
the probability of supplying video v from server m to server n. We hence must have∑

m∈S

R(v)
mn = 1, ∀n ∈ S, v ∈ V . (3)

As the server cannot offer video it does not store, we get

0 ≤ R(v)
mn ≤ I(v)

m , ∀m, n ∈ S, v ∈ V, (4)

and, by definition, R(v)
mm = I(v)

m .
Let μm be the video request rate at server m(requests per second); the request rate for

video v at the server m is hence p(v)
m μm. Let ε(v)

m L(v) be the average holding (or viewing)
time for video v at server m, where ε(v)

m ≥ 0. A user streams the video from the server
proportional to his holding time. Therefore, the amount of streamed data from server
m to n for video v upon one request is given by ε(v)

n R(v)
mnL(v)γ (v). Let �mn (bits/s) be the

total link bandwidth used for video transmission from server m to n, which can be
obtained as

�mn =
∑
v∈V

p(v)
n ε(v)

n μnR(v)
mnL(v)γ (v), ∀m, n ∈ S, (5)

for m �= n, and, by definition, �mm = 0. The total rate (bits/s) that server m serves other
servers is hence

Rm =
∑

n∈S,n�=m

�mn, ∀m ∈ S. (6)

Note that we have considered the geographical heterogeneity of user preference and
interactivity by allowing p(v)

m and ε(v)
m for the same video v to vary for each server m (a

video v preferred at server mmay have ε(v)
m > 1 or vice versa). As we are considering the

time-averaged deployment cost at steady state, we are interested in average holding
time (the distribution of the holding time may vary for different videos). While watching
a video, a user holds up a stream and may uniformly request any part of the video over
time.

Also note that we have considered the video transcoding issue by allowing the video
streaming rates to vary for each video v. A video with multiple streaming rates can be
modeled as multiple video versions, and each video version v has its own geo-related
popularity p(v)

m and streaming rate γ (v).

3.2. Modeling of Delay Constraint

We model the video access delay (user delay) in this section. For good user experience,
the waiting time for the video cannot be too long. The total delay of a remote video
access mainly consists of the delay on the remote server and the delay due to the
network traffic between servers.

For any server m ∈ S, the delay of serving the remote requests (including queue-
ing and processing the requests) depends on the processing capacity of the server
(�m) and the total bitrate that server m serves other servers (Um). Let DS

m be the
delay due to the upload streaming of server m to support video requests from remote
servers. As more requested bitrate and less processing capacity will cause more delay on
server, this delay is a monotonically non-decreasing function in Um and monotonically
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non-increasing function in �m, that is,

DS
m = D

S
m(Um,�m), ∀m ∈ S. (7)

For the network delay between servers, we mainly consider queueing and transmis-
sion delay as they play vital roles in ensuring the user experience. Let DN

mn be the
delay due to the directed traffic from server m to n. It depends on the link bandwidth
reserved Kmn and the actual data transferred �mn through the link. Similarly, as more
link traffic and less link bandwidth capacity will cause more delay on link, this delay
is a monotonically non-decreasing function in �mn and monotonically non-increasing
function in Kmn, that is,

DN
mn = D

N
mn(�mn, Kmn), ∀m, n ∈ S, (8)

with DN
mm = 0. Also, DN

mn does not have to be the same as DN
nm.

To ensure QoS, there is an upper bound D̄ of the total delay to retrieve video from
other server, which is the sum of the delay due to server and link, that is,

DN
mn + DS

n ≤ D̄, ∀m, n ∈ S. (9)

3.3. Modeling of Resource Allocation

We consider a comprehensive cost model for resource allocation in the VoD system. The
cost of the VoD system consists of the cost to rent servers in data centers and the cost
of link bandwidth capacity between servers.

For any remote server m ∈ S, the cost of a server depends on its total storage,
processing capacity (in order to serve the other servers in the network), and actual
data transferred. Let CS

m be the cost of server m. Server cost is a monotonically non-
decreasing function in Hm, �m, and Um, that is,

CS
m = C

S
m(Hm,�m,Um), ∀m ∈ S. (10)

Let CN
mn be the link cost due to the directed traffic from server m to n. We pay for

the link capacity reserved Kmn and the actual data transferred �mn through the link.
(Usually, we may only be charged by either Kmn or �mn. In such a case, the price of the
other item is 0.) Link cost is a monotonically non-decreasing function in �mn and Kmn,
that is,

CN
mn = C

N
mn(�uv, Kuv), ∀m, n ∈ S, (11)

with CN
mm = 0. Similarly, CN

mn does not have to be the same as CN
nm.

Therefore, the total system deployment cost C is

C =
∑
m∈S

CS
m +

∑
m,n∈S

CN
mn. (12)

Note that, for the generality of the problem formulation, we do not assume the
linearity of the delay functions D

S
m, D

N
mn and the cost functions C

S
m and C

N
mn at this

stage. To solve the problem, such functions can all be approximated by piecewise linear
functions with good optimality, which is discussed in Section 4.3.

3.4. Cost-optimization Problem and Its NP-hardness

Given the above sections, we state our cost-optimization problem as follows:
Optimal Resource Allocation and Video Management Problem to Minimize Total

Deployment Cost (ORVPM): Given topology T , delay upper bound D̄, user demand
{μm}, video popularity {p(v)

m }, cost functions {CS
m}, {CN

mn}, and delay function {DS
m}, {DN

mn},
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our objective function is to minimize the total deployment cost given by Equation (12),
that is,

min C =
∑
m∈S

CS
m +

∑
m,n∈S

CN
mn, (13)

subject to Equations (1) to (11). The output is the optimal solution of the video stored
in each server (that is, {I(v)

m }), the retrieval probability between servers (i.e., {R(v)
mn}), the

link capacity between servers {Kmn}, and the storage and processing capacities of each
server (i.e., {Hm} and {�m}).

Claim: The joint optimization problem ORVPM is NP-hard.
Proof . We prove its NP-hardness by deriving a polynomial reduction from the Domi-

nating Set Problem, whose NP-complete version is stated as follows. In graph theory, a
dominating set for a graph T = (S, E) is a subset D ⊆ V such that every vertex not in
D is adjacent to at least one element of D. The domination number ζ (T ) is the number
of vertices in a smallest dominating set for T . For a given graph T = (S, E) and input
J, is the domination number ζ (T ) at most J?

Given T and J, we construct an instance of our decision problem as follows. The VoD
system contains only one video. Consider the case that unit storage cost is 1 per video
and unit access cost of “pulling” a video from a remote server (including the cost of
server processing capacity and the cost of link capacity and actual data transferred) is
0. Note that such an instance construction can obviously be done in polynomial time.
Our decision problem hence becomes: Given this instance, is there a joint optimization
strategy which achieves total cost of at most J?

We show that the domination number ζ (T ) is at most J if and only if there is such
an optimization strategy. First, if there is such a strategy, any server m ∈ S either
has this video or can access the video through a link mn ∈ E. Then the set of node
m whose server has the video forms a dominating set D. The size of this set D is at
most J because the storage cost of each server with a video is at least 1 and the total
cost is J. On the other hand, if we have a dominating set D with size J, we can easily
derive such a strategy by assigning the video to each server in set D. Therefore, we
reduce the Dominating Set Problem to our decision problem ORVPM that proves that
our optimization problem is NP-hard.

4. RAVO: JOINT OPTIMIZATION FOR RESOURCE ALLOCATION AND VIDEO MANAGEMENT

In this section, we present RAVO, an efficient algorithm which jointly optimizes re-
source allocation and video management. RAVO first relaxes the NP-hard ILP problem
given in Section 3 to a continuous linear program (Section 4.1). By using randomized
rounding, RAVO accordingly quantizes the LP solution to obtain the video management
decisions, that is, the video stored on each server, and the probabilities to retrieve
a missing video from remote servers (Section 4.2). Given video management, RAVO
then allocates the server storage, server processing and link capacities accordingly
(Section 4.3). We finally analyze the complexity (Section 4.4) and optimality of RAVO
(Section 4.5) of RAVO.

For clarity, we denote the symbols related to the continuous linear program with
superscript hat. For the final result after the randomized rounding by RAVO, we still
use the plain symbols.

4.1. Relaxing the Joint Formulation as a Linear Program

To address the NP-hard problem, we first relax the constraint in Equation (1) as
0 ≤ Î(v)

m ≤ 1 for all m ∈ S and v ∈ V .
After such relaxation, it is clear that our problem contains only linear constraints

of real numbers. For any arbitrary piecewise linear functions of D
S
m, D

N
mn, C

S
m, and C

N
mn
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in Equations (7), (8), (10), and (11), the above problem becomes a linear programming
(LP) problem which can be solved efficiently. Î(v)

m in LP solution refers to the fraction of
video v that server m would store.

4.2. Video Management: Storage and Retrieval

We use Î(v)
m from the joint solution of LP as the probability that video v should be stored

at server m. After making the randomized rounding of storage decision on whether to
store v at m, we use I(v)

m as the Boolean variable indicating whether server m stores
video v.

Let R(v)
mn be the probability that server n on a request for video v would retrieve

from server m after the video placement described in Section 4.2. We require that∑
m∈S R(v)

mn = 1.
If server n cannot retrieve video v at any proxy server suggested by the LP solution,

that is,
∑

m∈S I(v)
m R̂(v)

mn = 0, then the requests for the video in server n have to be served
from the repository. For the other cases, an obvious way to eliminate the probability
to retrieve from a server that does not have video v is to assign such probability to
other servers m that have video v, and the newly assigned probability is proportional
to original R̂(v)

mn given by LP. This can be obtained as

R(v)
mn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if I(v)
m = 0;

R̂(v)
mn∑

m∈S
I(v)
m R̂(v)

mn
, if I(v)

m = 1; ∀m, n ∈ S. (14)

4.3. Resource Allocation: Server Storage, Server Processing and Link Capacities

With I(v)
m , the required storage capacity at m is

Hm =
∑
v∈V

I(v)
m L(v)γ (v), ∀m ∈ S. (15)

By Equation (2), it is clear that the expectation value of Hm is Ĥm. With a large video
pool, we expect that Hm is quite close to Ĥm.

With R(v)
mn, we can calculate �mn by

�mn =
∑
v∈V

p(v)
n ε(v)

n μnR(v)
mnL(v)γ (v), ∀m, n ∈ S, (16)

and Um by Equation (6).
After getting �mn and Um, we can put them back to function D

S
m and D

N
mn in Equa-

tions (7) and (8) to get the values of �m and Kmn. Specifically, we can efficiently solve
the piecewise linear equations

D
S
m(Um,�m) = DS

m, ∀m ∈ S, (17)

and

D
N
mn(�mn, Kmn) = DN

mn, ∀m, n ∈ S, (18)

where DS
m and DN

mn are from the LP solution. Clearly, the QoS constraints described in
Equation (9) are satisfied.

4.4. Algorithmic Complexity

To solve the LP, we may employ the wide-region centering-predictor-corrector algorithm
(an interior-point method). The number of variables of the formulation is O(|S|2|V |).
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Therefore, it has a O(|S||V |1/2) worst-case iteration bound and O(|S|7|V |3.5) overall
worst-case time complexity. Usually, the iteration number is constant and the problem
is expected to be solved in O(|S|6|V |3) time.

Furthermore, the time complexity to decide video storage ( Ī(v)
m ) is O (|S||V |), because

all the servers and videos are traversed to determine which server to store which video.
Similarly, to decide video retrieval (R̄(v)

mn), we have to traverse all the links and videos.
Therefore, the complexity is O(|S|2|V |).

Given the above, the overall time complexity of RAVO is

O(|S|6|V |3 + |S|2|V |). (19)

Note that for large |V |, the term O(|S|6|V |3) will dominate.

4.5. Storage and Traffic Optimality

The cost is due to either the server storage or the traffic between servers. If we can prove
the optimality of these two components, then the optimality of RAVO is guaranteed.

We show that the expected value of the storage allocated for each server is the same
as the value of the LP solution. We also show that after randomized rounding, the
expected value of extra traffic to the repository is less than 1/e of the total traffic.

Claim: The expected value of storage after the quantization E(Hm) is same as the LP
solution Ĥm.

Proof . By Equation (15) we get

E(Hm) = E

(∑
v∈V

I(v)
m L(v)γ (v)

)
=

∑
v∈V

E
(
I(v)
m

)
L(v)γ (v)

=
∑
v∈V

Î(v)
m L(v)γ (v) = Hm, ∀m ∈ S.

(20)

Therefore, it is expected that there is no extra cost for storage due to the quantization.

Claim: The expected value of extra traffic to the repository is less than 1/e of the
total traffic.

Proof . As mentioned in Section 4.2, if a server cannot retrieve video from any proxy
server suggested by the LP solution, the request will be served from the repository.
This causes extra cost for network traffic and server streaming. We show that such
a probability is less than 1/e. We require that all the video can be retrieved from
the proxies in the network, therefore

∑
m Î(v)

m ≥ 1 for the relaxed linear program.
The probability that none of the proxy server has the video is

∏
m(1 − Î(v)

m ), which is
maximized when Î(v)

m = 1/|S| ∀m ∈ S, where |S| is the number of servers. So the upper
bound of the probability can be written as (1 − 1/|S|)|S|, which is bounded by 1/e. (i.e.,∏

m(1 − Î(v)
m ) ≤ (1 − 1/|S|)|S| ≤ 1/e.)

The cost due such extra traffic also depends on the price for the repository’s processing
power and the link price to the repository. For a practical setting such as when the price
of serving streaming at the repository is twice as serving it in the original proxy server,
the extra cost caused by quantization (i.e. the optimality gap) is less than 1/e of the
original cost.

Note that since the time complexity of randomized rounding is quite low, it is possible
that we run the randomized rounding algorithm multiple times and choose the best
result to avoid the worst case.
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Fig. 2. Framework of RAVO with video clustering.

5. EFFICIENT COMPUTATION FOR LARGE VIDEO POOL

Despite its efficiency, the running time of RAVO is still high for large video pools (note
the factor O(|V |3) in Equation (19)). To further reduce the runtime complexity, we
propose an efficient video clustering algorithm for a large video pool based on spectral
clustering in Section 5.1. Video management and resource allocation are then allocated
(Section 5.2). We analyze its algorithmic reduction in Section 5.3.

Video clustering with k-means formulation has been used in Chang and Chan [2015],
which assumes uniform streaming rate and video popularity among servers so it can be
solved in polynomial time. This method cannot be directly used here due to heteroge-
neous streaming rate and geo-heterogeneity of the video popularity. Generally speak-
ing, most traditional clustering methods (such as k-means, k-medians, k-medoids, and
hierarchical clustering) are NP-hard when we have geo-heterogeneity, and therefore
they cannot reduce the time complexity of RAVO with a large video pool. Our approach
used in this section is based on spectral clustering [Fowlkes et al. 2004] and has a clear
polynomial time complexity bound even with large video pool and geo-heterogeneity,
which can effectively address these issues.

We show the approach to implement RAVO with spectral clustering in Figure 2. Given
the system parameters on the movies, servers, and network, the server first cluster
the videos into “super videos” to reduce the problem size as described in Section 5.1.
Then the server can solve the relaxed LP problem and get the continuous solution for
the “super videos” as presented in Section 4.1. With this solution, the server further
calculates the continuous solution for each video as presented in Section 5.2. Based on
the algorithm in Sections 4.2 and 4.3, the continuous solution is quantized. The video
management decisions for each video and resource allocation decisions for each server
and link can then be made accordingly.

5.1. Efficient Video Clustering Based on the Metric of Concurrency Density

In order to cluster the videos into groups, we shall consider the storage and streaming
traffic as they both contribute to the total deployment cost. To describe the streaming
traffic, we consider the user concurrency, which is the average number of users to re-
quest the video at one time. The concurrency density is defined as the user concurrency
divided by the storage requirement, which gives the per-storage user concurrency of a
video. The key idea of clustering is to put the videos with similar concurrency densities
into the same group by minimizing the sum of the difference within each group.

To formulate the problem, we begin by letting b(v)
m be the concurrency density for video

v at server m, which can be written as

b(v)
m = p(v)

m ε(m)
m , ∀m ∈ S, v ∈ V . (21)
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Let G be the set of video groups and gi be the ith group in G, and the number of
groups |G| is given as a system parameter. To further motivate our approach, consider
a set of videos v in group g. From Equation (5), the link transmission due to videos
in g is

�(g)
mn =

∑
v∈g

μnb(v)
n R(v)

mnL(v)γ (v), ∀m, n ∈ S. (22)

If all the videos v ∈ g has the same b(v)
n (given by b(g)

n ) and R(v)
mn (given by R(g)

mn), then
Equation (22) can be written as

�(g)
mn = μnb(g)

n R(g)
mn

∑
v∈g

L(v)γ (v), ∀m, n ∈ S. (23)

From above, it is clear that if we group the videos with the same b(v)
n and access the

video with the same R(v)
mn, the videos in g can be regarded as an aggregated “super

video” with concurrency density b(g)
n and file size L(g)γ (g) = ∑

v∈g L(v)γ (v) for the linear
program.

In the case that the videos are of different b(v)
m , we cluster the videos with similar b(v)

m
into one group and minimize the sum of the distances of concurrency densities within
each group. Denote

b(v) = (
b(v)

1 , b(v)
2 , . . . , b(v)

|S|
)

(24)

as a |S| dimensional vector where each dimension represent the popularity of video v
in a server. The distance between two video popularities can be measured as distance
between two vectors (e.g., Euclidean distance). Therefore, the objective of our video
grouping algorithm is to minimize

arggi

|G|∑
i=1

∑
v∈gi

∥∥d(v) − d̃
(gi )∥∥2

, (25)

where d̃
(gi ) is the mean d(v) of group gi. This formulation is exactly k-means, a method

to partition data into clusters in which each datum belongs to the cluster with the
nearest mean. Note that the group size of each group may not be the same by k-means
clustering.

The above grouping scheme leads to the following:

—Length: Each group size L(gi ) is given by

L(gi ) =
∑
v∈gi

L(v), ∀gi ∈ G. (26)

—Average streaming rate: The average streaming rate of each group γ (gi ) is given by

γ (gi ) =
∑

v∈gi
L(v)γ (v)∑

v∈gi
L(v)

, ∀gi ∈ G. (27)

—Group concurrency density: The group concurrency density b(gi )
m is given by

b(gi )
m =

∑
v∈gi

b(v)
m L(v)γ (v)

L(gi )γ (gi )
, ∀gi ∈ G, m ∈ S. (28)
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After video grouping, we run linear programming on these groups by treating them
as |G| “super videos” with concurrency density b(gi ), length L(gi ), and streaming rate
γ (gi ).

5.2. Video Management and Resource Allocation

We discuss in this section how to obtain the quantized parameters for each video v.
In server m, we have I(gi )

m L(gi )γ (gi ) space to store all the videos v ∈ gi. All the videos in
the same group should have similar number of replicas in the cloud. Therefore, we use
rarest first in video placement. When a server makes a placement decision for a group
gi, it selects the video v in group gi that is the least globally stored until the space
budget of the group gi is fully consumed.

In our retrieval algorithm, we can make R(v)
mn = R(gi )

mn for v ∈ gi. Then we use the
method in Section 4 for further parameter quantization.

5.3. Complexity Reduction

General k-means clustering problem is NP-hard and the algorithmic complexity of its
solutions is not easy to analyze. The recent development of spectral clustering has
better performance and a clearer time complexity of O(|S||V |) [Fowlkes et al. 2004].

After we group the videos, the complexity to solve the linear program is reduced
to O(|S|6|G|3). Since the quantization takes O(|S|2|V |) time, the total complexity is
O(|S|6|G|3 + |S|2|V |). In terms of |V |, the complexity is reduced to linear in |V | (from
O(|V |3). In addition, for the solution of linear programming, the complexity is reduced
from O(|S|6|V |3) to O(|S|6|G|3), which is very substantial (e.g., |G| is around hundreds,
while |V | can be more than tens of thousands).

Note that we can adjust |G| to make the tradeoff between time complexity and
optimality. For a larger |G|, we can achieve better optimality at the cost of higher time
complexity.

6. ILLUSTRATIVE SIMULATION RESULTS

In this section, we first present our simulation environment and performance metrics
in Section 6.1, followed by illustrative results in Section 6.2. To further validate our
work, we give trace-driven simulation results based on real data from a large-scale
deployed VoD system [Liu et al. 2014] in Section 6.3.

6.1. Simulation Environment and Performance Metrics

RAVO is general enough to be applied to any pricing scheme, any level of video popu-
larity, and level of geographically heterogeneous video popularity. For concreteness in
our simulation, we consider that the local video popularity follows the Zipf distribution
with Zipf parameter z, that is, the request probability of the ith video, denoted as f (i),
is given by f (i) ∝ 1/iz. To address the geographic heterogeneity of the popularity, we
allow a fraction of the video rank to differ for different servers. Denote the heterogene-
ity coefficient ρ (0 ≤ ρ ≤ 1) to be the fraction of videos to be reshuffled. For each server,
we randomly pick up ρ|V | from |V | videos and randomly insert them back. Note that
this process only changes the order of videos, but the Zipf distribution remains the
same.

In our simulation, we consider that requests arrive at each proxy server according to
a Poisson process with total rate μ (req./second). From Section 4, it is clear that RAVO
does not depend on the specific request process or trace pattern so long as the request
rate is same.

To address RAVO’s capability of utilizing cheap resources, we consider that the price
of link bandwidth for each link follows a Zipf distribution (independent of each other).
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Table II. Baseline Parameters Used in Our Study

Parameter Default value
Number of proxy servers 20
Number of videos 10,000
Number of video groups 400
Server storage price σH 0.015
Server processing capacity price cm 0.005
Zipf parameter of local video popularity 1.2
Video length 90 minutes
Average video holding time Video length (ε(m) = 1)
Video streaming rate 1 Mbits/s
Total request rate in the network 30 req./s (equally distributed to proxies)
Link price between central and proxy server cmn 0.05
Link price between proxies cmn Zipf with parameter 0.6 and mean 0.005
Heterogeneity coefficient 0.3
Delay constraint D̄ 1

Fig. 3. Delay model for a link between servers.

The VoD cloud consists of a number of distributed proxy servers. All our results are
obtained at steady state. Unless otherwise stated, we use the default values shown in
Table II for our system parameters (the baseline case).

We use M/M/1 queueing model to calculate the delay in each server and link. We
show in Figure 3 the link delay DN

mn versus �mn/Kmn in our simulation, where Kmn is
the link capacity from server m to server n and hence �mn/Kmn is the link utilization of
the link. A piecewise linear function with 4 linear segments approximates the M/M/1
delay curve. The delay increases more sharply with the link utilization as the consumed
bandwidth �mn approaches the link capacity Kmn. The delay caused by server processing
DS

m depends on Um/�m and has the similar curve.
We consider the link cost from server m to server n proportional to the link capacity

between them, that is,

CN
mn = C

N
mn(�uv, Kuv) = cmnKmn, ∀m, n ∈ S, (29)

where cmn is some constant (by definition, cmm = 0).
The cost of a server is a function of its storage and its total processing capacity to

serve the remote servers, modeled as

CS
m = C

S
m(Hm,�m,Um) = σH Hm + cm�m, ∀m ∈ S. (30)

To validate our simulation settings, we show in Table III the price from Google Cloud
Platform [Google 2015], which indicates that linear functions fit the price of link cost
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Table III. Link Cost (per GB) from Google Cloud

Used monthly To China To Australia To Others
0-1 TB $ 0.23 $ 0.19 $ 0.12
1-10 TB $ 0.22 $ 0.18 $ 0.11
10+ TB $ 0.20 $ 0.15 $ 0.08

well. Google [2015] also indicates the storage cost as fixed at $0.026 for a GB per month,
which agrees with our storage price.

The performance metrics we are interested in are as follows:

—Total cost, which is the sum of server cost and link cost according to Equation (12).
This is the deployment cost of the network.

—Server cost, which is the sum of its storage and processing capacities defined in
Equations (10) and (30). We further examine the following cost components: Storage
cost is the total cost due to server storage. Processing cost is the cost of server
processing capacity to support other servers.

—Link cost, which is the cost due to traffic between servers defined in Equations (11)
and (29).

—Delay, which is the maximum delay caused by links and servers.

As mentioned in Section 2, previous work seldom considers the joint optimization
of resource allocation and content management, while simply combining an existing
resource allocation scheme with a content management scheme cannot assure the
service quality. To cover all the important aspects, we extend some state-of-the-art
work as the comparison schemes. We compare RAVO with the following schemes:

—iGreedy [Laoutaris et al. 2005] with optimal resource allocation, where each proxy
server stores the locally most popular videos and retrieves other videos from the
repository. This scheme considers the local video popularity but does not take advan-
tage of cooperative replication. It optimizes between the server storage and process-
ing capacities to achieve low cost for the resource allocation.

—IPTV (Internet Protocol television) Resource Allocation and Management (IPTV-RAM)
[Li and Wu 2010] with optimal content management, which divides the videos into
two categories: those globally popular ones that all servers store (full replication)
and those globally unpopular ones that only some proxy servers store. By selecting
server locations for unpopular videos, it seeks to minimize deployment cost.

—Super-optimum, which is the LP solution without quantization. We call this the super-
optimum solution because it is no worse than the NP-hard real optimal solution. Note
that RAVO must be no better than the NP-hard solution. We will see in Section 6.2
that RAVO is very close to the Super-optimum. Therefore, RAVO is also close to the
NP-hard solution.

6.2. Illustrative Results

We compare in Figure 4 the total deployment cost versus the total user request rate
for different schemes. Total cost increases with request rate due to the increase in
link traffic and storage. RAVO clearly achieves much lower total cost compared with
iGreedy and IPTV-RAM, beating it by a large margin. In other words, given the same
deployment budget, RAVO can support a much higher request rate (i.e., more concur-
rent users in the system). iGreedy does not perform well because it mainly relies on the
central server to serve the requests for the unpopular videos. IPTV-RAM uses global
popularity instead of considering the geographic heterogeneity, assuming that a video
has the same popularity at all the servers. Therefore, IPTV-RAM may not store the
most locally popular video in the proxy server, which increases the cost.
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Fig. 4. Deployment cost given different request
rate.

Fig. 5. Deployment and component cost given dif-
ferent delay requirement.

Fig. 6. Total deployment and component cost given
difference storage price.

Fig. 7. Total deployment and component cost given
difference link price.

We compare in Figure 5 the total cost versus the delay constraint for different com-
ponents of the deployment cost. Total cost increases with a more demanding delay
constraint. RAVO clearly achieves close-to-optimum performance as the gap between
the RAVO and Super-optimum is quite small. Server storage and sever processing cost
remain nearly unchanged but the link cost increases drastically with the demand of the
lower delay constraint. This indicates that increasing link capacity is more effective to
reduce the total delay.

We show in Figure 6 the cost components and total cost versus storage price. The
server storage cost increases with the increasing of the storage price, but the cost of
server processing and link capacity remains steady. This indicates that a minimum
requirement of storage is needed to keep the popular videos.

We show in Figure 7 the cost components and total cost versus link price. The
storage cost and the link cost both increase with the increasing of the link price, but
the processing cost decreases. This shows the tradeoff between storage and processing.
When the link price is higher, it is economical to store videos locally.

We plot in Figure 8 the individual server cost for different schemes. We sort the
proxy servers according to the average link price to retrieve video from a server in
descending order, and the last one refers to the repository. With cheap link price,
server cost increases because it will serve more remote requests. RAVO utilizes very
well the cheap resources of proxy servers, leading to significantly lower server cost.
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Fig. 8. Server cost distribution given different
schemes.

Fig. 9. Total cost versus group number.

Fig. 10. Deployment cost given different Zipf pa-
rameter of video popularity.

Fig. 11. Deployment cost given different hetero-
geneity of video popularity.

As iGreedy only stores the most popular videos at the proxy servers, it has lower proxy
cost but high repository cost. IPTV-RAM chooses a cheap proxy server for unpopular
videos, but the popularity heterogeneity makes fewer videos globally popular. There-
fore, the storage and processing cost for globally unpopular videos is even higher.

We plot in Figure 9 the total cost versus group number for video clustering. Due to
the large video number, it is impossible to calculate the unclustered super-optimum. As
group number increases, the load indices in the same group are closer to each other and
the problem is better approximated. Therefore, the cost decreases with more groups
(and more computation time).

We plot in Figure 10 the total cost versus the Zipf parameter of video popularity
given different schemes. The total cost in general decreases with the skewness. This
is because more requests are concentrated on fewer popular videos, which leads to
lower miss rate and hence lower processing and link cost. In other words, iGreedy and
IPTV-RAM perform better with higher Zipf parameter because the decision made from
RAVO, iGreedy, and IPTV-RAM become more similar. However, RAVO achieves the
lowest total cost even for low skewness (i.e. when the popularity is quite uniform). This
shows that RAVO makes good decision on video management and resource allocation.

We plot in Figure 11 the total cost versus the geographic heterogeneity of video
popularity given different schemes. The total cost of RAVO increases with the geo-
graphic heterogeneity. This is because higher geographic heterogeneity will introduce
more error in the clustering process. The cost of iGreedy is unchanged because the Zipf
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Fig. 12. Movie access probability in descending
order.

Fig. 13. Concurrency density and replica number
versus movie index.

parameter of local popularity is the same. IPTV-RAM, on the other hand, has a much
higher cost with more heterogeneous popularity because the difference between global
and local popularity is larger. Still, RAVO is close to the super optimum and outperforms
iGreedy and IPTV-RAM by a wide margin.

6.3. Trace-Driven Simulation Results

To further validate our work, we give trace-driven simulation. The original data about
time-varied traffic, movie traffic proportion, and file size are from a major IPTV service
provider company of China, with traces covering about 2 million users over nearly 5
months [Liu et al. 2014]. The traces include user access logs, composed of movie id,
viewing time, movie file size, bit rate, and so on. We select 6,148 Netflix-like videos
where each video’s length is over 40 minutes (i.e., 2,400s). The simulation is carried
out based on 5-day trace data (i.e., a planning phase). For other simulation settings
unrelated to the trace data, we still use the baseline parameters.

We plot in Figure 12 the movie access probability in descending order. In log-log
scale, the plot is nearly linear, which demonstrates that the movie access probability
follows Zipf ’s distribution. By regression, the Zipf parameter for the trace data is 0.80.
The results agree with our simulation assumptions in the previous subsection.

We plot in Figure 13 the concurrency density and replica number versus movie index.
Note that in Figures 12 and 13 the movie indices differ, as in Figure 13 we sort the
movies in descending order according to their concurrency densities. The concurrency
density follows a distribution different from the movie access probability, where for
movies with concurrency density less than 1 the skewness is drastically increased.
Usually a movie with concurrency density less than 1 indicates that most of the users
do not finish watching the whole movie. In Figure 13, we also see that a video with
higher concurrency density will have more replicas on the cloud. This is because such
movies have more user demands so it is more cost-efficient to have more copies over
the proxies.

As from the trace data, the level of user demand is fixed. To show how the deployment
cost changes with more user requests, we add some synthetic trace data to increase
the user requests rate. The newly added synthetic requests have the same statistical
features of the original real-world data.

We show in Figure 14 the total deployment cost versus the total user request rate
for different schemes. The results further confirm the results in Figure 4. With real-
world trace data, RAVO still outperforms the comparison schemes by a large margin.
In Figure 15, we show the component cost of RAVO. The storage cost increases more
slowly than the other two components when the request rate increases. This is due to
the constraint on the replica number. Each movie can at most have one copy per proxy
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Fig. 14. Deployment cost given different request
rate.

Fig. 15. Deployment and component cost given dif-
ferent request rate.

and at least one copy in the repository. Therefore, there is an upper and a lower limit
for each movie’s storage cost. Also, as shown in Figure 13, there are a lot of movies
where the user even does not want to finish watching them. Such movies’ storage cost
is insensitive to the change of user requests. In other word, one copy in the repository
is good enough for them.

7. CONCLUSION AND FUTURE WORK

We have studied the novel problem of jointly optimizing video management and re-
source allocation for a large-scale VoD cloud with distributed collaborative servers
where videos have geographically heterogeneous popularity. The deployment cost con-
sists of renting link capacities, server storage, and server processing capacity to serve
the misses at remote servers. We seek to minimize the deployment cost given a certain
QoS constraint on user delay.

We first formulate the joint optimization problem. Our model captures the important
system parameters. After proving the problem NP hard, we propose RAVO, a novel
algorithm to jointly allocating system resources and managing videos to achieve low
deployment cost. For a large video pool, we further present a video clustering algorithm
that achieves close-to-optimal performance with a substantial (polynomial) reduction
in running time.

We have conducted extensive simulation to compare the performance of RAVO with
other state-of-the-art schemes. Our results show that RAVO significantly outperforms
the other schemes with much lower deployment cost (cutting it by multiple times). Our
trace-driven simulation based on real data further confirms its performance.

There is some future work to be done. First, cloud data centers now provide auto-
scaling feature so one can rescale a resource, such as storage and streaming capacity,
within minutes. It is an interesting problem to utilize this feature to accommodate the
variation of user request over a day and further reduce the deployment cost. Also, we
can integrate the current VoD network architecture with fog computing so users can
contribute their own resource for efficient video delivery.
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