
Scalable and Efficient End-to-End
Network Topology Inference

Xing Jin, Student Member, IEEE Computer Society, Wanqing Tu, Member, IEEE Computer Society,

and S.-H. Gary Chan, Senior Member, IEEE Computer Society

Abstract—To construct an efficient overlay network, the information of underlay is important. We consider using end-to-end

measurement tools such as traceroute to infer the underlay topology among a group of hosts. Previously, Max-Delta has been

proposed to infer a highly accurate topology with a low number of traceroutes. However, Max-Delta relies on a central server to collect

traceroute results and to select paths for hosts to traceroute. It is not scalable to large groups. In this paper, we investigate a distributed

inference scheme to support scalable inference. In our scheme, each host joins an overlay tree before conducting traceroute. A host

then independently selects paths for tracerouting and exchanges traceroute results with others through the overlay tree. As a result,

each host can maintain a partially discovered topology. We have studied the key issue in the scheme, that is, how a low-diameter

overlay tree can be constructed. Furthermore, we propose several techniques to reduce the measurement cost for topology inference.

They include 1) integrating the Doubletree algorithm into our scheme to reduce measurement redundancy, 2) setting up a lookup table

for routers to reduce traceroute size, and 3) conducting topology abstraction and reducing the computational frequency to reduce the

computational overhead. As compared to the naive Max-Delta, our scheme is fully distributed and scalable. The computational loads

for target selection are distributed to all the hosts instead of a single server. In addition, each host only communicates with a few other

hosts. The consumption of edge bandwidth at a host is hence limited. We have done simulations on Internet-like topologies and

conducted measurements on PlanetLab. The results show that the constructed tree has a low diameter and can support quick data

exchange between hosts. Furthermore, the proposed improvements can efficiently reduce measurement redundancy, bandwidth

consumption, and computational overhead.

Index Terms—Topology inference, topology discovery, end-to-end measurement, measurement cost.

Ç

1 INTRODUCTION

IN the recent years, overlay networks have been increas-
ingly used to deploy network services. Examples include

overlay path routing, application-layer multicast (ALM),
peer-to-peer streaming and file sharing, and so on [1],
[2], [3], [4], [5]. In order to build an efficient overlay
network, the knowledge of the underlay topology is
important. For example, two seemingly disjoint overlay
paths may share common underlay links; therefore, the
selection of overlay paths, without the knowledge of
underlay, may lead to serious link congestion. However, it
is not trivial to obtain an underlay topology through end-to-
end measurements. Border Gateway Protocol (BGP) routing
tables can construct an AS-level topology [6], [7]. However,
the tables are stored at specific gateway routers and are not
publicly available. Techniques like network tomography
infer a topology based on the correlation between path
properties [8], [9]. Although it is an end-to-end approach,
the resulting topology is often inaccurate and unstable.
Therefore, the most commonly used tool is traceroute,

which can explicitly extract the router-level path between a
pair of hosts [10]. In fact, it has been shown that ALM based
on router-level topology information can achieve substan-
tially low end-to-end delay, low physical-link stress, and
high tree bandwidth [11], [12], [13].

Given a group of N hosts, conducting full OðN2Þ
traceroutes among them can certainly construct an accurate
topology (if we do not consider measurement noise such as
anonymous routers or router alias). However, we note that a
host cannot conduct lots of traceroutes at the same time. This
is because a router receiving too many traceroute-probing
packets may stop responding to the packets or simply discard
them, which incurs measurement noise of anonymous
routers. As paths starting from the same host often overlap,
if a host conducts lots of traceroutes at the same time, the
measurement results may contain many anonymous routers.
On the other hand, traceroute may take as long as minutes to
identify a router-level path. Therefore, sequential or nearly
sequential traceroutes at a host result in significantly long
measurement time. Furthermore, traceroute may generate
many network packets. The all-pair traceroutes hence incur
significant traffic in the network. In summary, all-pair
traceroutes between hosts are costly and not scalable. We
hence require each host to select a few destination hosts for
tracerouting. With an intelligent selection mechanism, it is
possible to infer a highly accurate topology with a low
number of traceroutes. Note that most overlay applications
do not require a 100 percent accurate topology. For example, it
has been shown that the Fast Application-layer Tree (FAT)
[13] achieves good performance when the topology consists

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 6, JUNE 2008 837

. X. Jin and S.-H.G. Chan are with the Department of Computer Science and
Engineering, Hong Kong University of Science and Technology, Kowloon,
Hong Kong. E-mail: {csvenus, gchan}@cse.ust.hk.

. W. Tu is with the Department of Computer Science, University College
Cork, Cork, Ireland. E-mail: wanqing.tu@cs.ucc.ie.

Manuscript received 24 Apr. 2007; revised 24 July 2007; accepted 9 Aug.
2007; published online 6 Sept. 2007.
Recommended for acceptance by Y. Pan.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2007-04-0124.
Digital Object Identifier no. 10.1109/TPDS.2007.70771.

1045-9219/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

of 93 percent of links [14]. A more accurate topology does not
lead to a significant improvement in the tree’s performance.

Previously, Max-Delta has been proposed to efficiently
infer the underlay topology among a group of hosts [13], [15].
It divides the inference process into multiple iterations. In
each iteration, a central server collects the traceroute results
from the hosts. The server then selects some representative
paths for the hosts to traceroute in the next iteration and aims
at revealing as much undiscovered information on the
underlay as possible. The simulation results on Transit-Stub
topologies have shown that in a group of 256 hosts, each host
only needs to traceroute around 10 to 14 other hosts to
discover 95 percent of underlay links. This reduces the
number of traceroutes by 62 percent as compared to a
random measurement method and by 89 percent as
compared to the full measurement method [15].

A limitation of Max-Delta is that the central server may
not be able to support a large group. First, in each iteration,
the server takes OðVp logVp þEp þNÞ time to select a
traceroute target for a host. Here N is the number of hosts
in the group. Vp and Ep are the numbers of nodes (including
the hosts and routers) and links in the already-discovered
underlay topology, respectively [13]. In total, the server
takes OðNðVp logVp þ Ep þNÞÞ time to select traceroute
targets for all the N hosts in one iteration. This complexity is
considerably high when the group size is large. Second, the
server needs to periodically accept traceroute results from
all the hosts and send out traceroute targets to them. When
the group size is large, the server may not be able to
simultaneously set up so many connections.

In this paper, we propose a distributed inference scheme
based on Max-Delta. In our scheme, each host joins an
overlay tree before topology inference. A host then conducts
traceroutes and distributes the results to all the other hosts
through the overlay tree. As a result, each host can receive
traceroute results from other hosts and maintain a partially
discovered topology. Based on that, a host can use
Max-Delta to select traceroute targets by itself and continue
conducting traceroutes. We have studied an important issue
in the scheme, that is, how the overlay tree can be
constructed so that hosts can quickly exchange traceroute
results. Since every host sends out traceroute results to
others, we need to build a source-unspecific low-diameter
overlay tree under certain degree bounds. Previous research
has shown that this problem is NP-hard, and there are no
efficient distributed algorithms to address it [16], [17]. We
propose a distributed tree construction algorithm based on
the outdegree bounds of hosts. We first identify a host as
the tree root and then insert new incoming hosts around the
root. A host with a larger outdegree bound is put closer to
the root. A low-diameter tree is hence formed.

Furthermore, we propose several techniques to reduce
the measurement cost for topology inference: 1) we note
that there is high measurement redundancy among tracer-
oute results. A router or a link may be discovered multiple
times in different traceroutes. We integrate the Doubletree
algorithm [18], [19], [20] into our scheme to reduce the
redundancy. 2) We compress traceroute results to reduce
bandwidth consumption for data exchange. Since routers
are often repeatedly discovered in multiple traceroutes, we

set up a lookup table to map each router (that is, router IP
and router name) into an integer. Later on, we represent
routers by integers. 3) As mentioned, the computational
complexity of Max-Delta is considerably high when the
group size is large. We reduce it by conducting topology
abstraction and reducing the computational frequency.

As compared to the naive Max-Delta, the distributed
scheme eliminates the central server from the system. In the
scheme, the computational loads for target selection are
distributed to all the hosts instead of a single server. A host
only communicates with a few other hosts, and the consump-
tion of its edge bandwidth is limited. Therefore, the scheme
is fully distributed and scalable. We have done simulations
on Internet-like topologies and conducted measurements
on PlanetLab. The results show that the constructed tree has
a low diameter, and the proposed improvements can
efficiently reduce the measurement redundancy, bandwidth
consumption, and computational overhead.

Note that the Internet is an asymmetric network in terms of
both connectivity and distance. In a connectivity-asymmetric
network, the traceroute path from a host A to another host B
may not be the reverse of the path fromB toA. The selection of
traceroute targets in Max-Delta, and in our distributed
inference scheme, is independent of connectivity asymmetry.
In a connectivity-asymmetric network, we only need to
regard the path from A to B and the path from B to A as
two different paths. However, for ease of illustration, in this
paper, we assume that the network is connectivity symmetric.
Following this assumption, if the path from A to B has been
tracerouted, we will not traceroute the path from B to A. On
the other hand, we have used tools for estimating host
coordinates in topology inference. These tools implicitly
assume that the network is distance symmetric. The assump-
tion on distance symmetry has little impact on our inference
efficiency. This is because as shown in [15, Fig. 7], the
inaccuracy in coordinate estimation has limited impact on
Max-Delta performance.

The rest of this paper is organized as follows: In Section 2,
we briefly review related work. In Section 3, we discuss the
design of the distributed inference scheme. In Section 4, we
discuss the improvement techniques. In Section 5, we
present illustrative numerical results based on Internet-like
topologies and PlanetLab measurements. We finally con-
clude in Section 6.

2 BACKGROUND AND RELATED WORK

2.1 Previous Work on Network Topology Inference

There are many ways of inferring a network topology.
Network tomography techniques periodically send probing
traffic and exploit the performance in correlation to infer
network topologies [8], [9]. However, because the network
properties measured (for example, loss rate or delay) are often
unstable and inaccurate, it is difficult to infer an accurate
topology. BGP routing tables can provide AS-level informa-
tion, but they usually are not available to normal hosts in the
Internet [6], [7]. We hence adopt traceroute, which can obtain
explicit router-level information by end hosts [10].

Traceroute is implemented with Internet Control Message
Protocol (ICMP) messages. Each time, the source sends out an

838 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 6, JUNE 2008

IP datagram with a certain Time-to-Live (TTL) value to the
destination. A router that receives the datagram is required to
decrement the TTL by one before forwarding the packet.
When a router receives an IP datagram whose TTL is 1, it
throws away the datagram and returns an ICMP “time
exceeded” error message to the source. The returned message
contains the router’s name, IP address, and round-trip time
(RTT) from the source. In another case, if the datagram arrives
at the destination with an unused port number (usually larger
than 30,000), the destination generates an ICMP “port
unreachable” error message and returns it to the source.
Therefore, in traceroute, the source sends out a series of
IP datagrams with increasing TTL to the destination, and each
datagram can identify one router in the path. The whole
router-level path is hence identified. All the datagrams of
traceroute are sent by UDP. An outgoing datagram in
traceroute contains 12 bytes of user data, 8 bytes of UDP
header, and 20 bytes of IP header, for a total of 40 bytes. The
size of the returned datagrams changes. The returned ICMP
message contains 20 bytes of IP header, 8 bytes of ICMP
header, 20 bytes of IP header of the datagram that caused the
error, and 8 bytes of UDP header, for a total of 56 bytes. For
each TTL value, three ICMP messages are sent. According to
these data, we can compute the network bandwidth con-
sumed by a traceroute.

Traceroute-like tools have been widely used in Internet
measurements such as Skitter, Mercator, and Rocketfuel [21],
[22], [23]. Skitter sends traceroute packets from different
locations worldwide to actively measure the Internet
topology. Mercator utilizes a modified version of traceroute
to reduce the probing time. Rocketfuel combines information
from BGP tables, traceroutes, and Domain Name System
(DNS) to infer Internet service provider (ISP) topologies. All
these work focuses on Internet-level or ISP-level topology
inference, and the major concern is how we can discover a
complete network topology, including all the routers and
links. However, in our study, we are only interested in the
topology among a certain group of hosts that are arbitrarily
distributed in the Internet. Furthermore, we only need an
approximate topology, because most overlay applications
are tolerant to a small distortion of the underlay topology.
For example, as shown in [14], it is enough to discover
around 93 percent of links for the FAT scheme to build a tree
with low delay and low bandwidth consumption. Therefore,
the key problem is how the measurement cost can be
reduced while keeping high topology accuracy.

Barford et al. study the relationship between the
measurement accuracy and the number of traceroute
sources in topology inference [24]. Given a list of destina-
tions, they find that the marginal utility of adding
additional traceroute sources declines rapidly after the
second or third one. In other words, the first two or
three sources can traceroute the destinations and discover
the majority of the complete topology. Here, the complete
topology is formed by the traceroute results from all the
sources to all the destinations. In their experiments, the
number of sources is much less than the number of
destinations, for example, 8 sources and 1,277 destinations
or 12 sources and 313,709 destinations. However, in our
study, each host is a source and may be another’s

destination. The number of sources is equal to the number
of destinations. Therefore, their conclusion may not work
well in our system. We show an example by simulations on
Transit-Stub topologies. We randomly put N ¼ 500 hosts in
the network. The complete topology is formed by all-pair
traceroutes between the hosts. When the numbers of
sources are 1, 2, 10, 50, 100, and 200 (for each source, the
destination hosts are all the other hosts in the network),
the portions of underlay links discovered are 65 percent,
70 percent, 76 percent, 84 percent, 89 percent, and
94 percent, respectively. Clearly, if we select not more than
10 sources, as suggested in [24], we only discover not more
than 76 percent of underlay links. This level of accuracy is
far from the aforementioned 93 percent. When we increase
the number of sources to 200, we can discover around
94 percent of links. In this case, the total number of
traceroutes is

P200
i¼1ðN � iÞ ¼ 79;900 (assuming that paths

are symmetric). On the average, each host has to traceroute
159.8 paths. As a comparison, given N ¼ 512, Max-Delta
only requires each host to traceroute around 40.2 paths to
discover 95 percent of links (see [15, Fig. 8b]). Clearly,
Max-Delta is much more efficient in discovering underlay
links. Furthermore, in order to reduce the measurement
time, we require hosts to conduct traceroutes in parallel. We
do not use two or three hosts as sources to traceroute all the
others, even though this can discover the majority of the
underlay, because this takes long measurement time and
puts uneven measurement loads on hosts.

A problem in traceroute measurement is that traceroute
results often contain anonymous routers, which significantly
distort and inflate the inferred topology. Broido and Claffy
report that nearly 1/3 of the probed paths contain
anonymous, private, or invalid routers [25]. They propose
two methods (that is, the so-called arcs and placeholders) to
bypass anonymous routers in the inferred topology. Despite
their simplicity, these two methods hide much topology
information and cannot efficiently reduce router inflation in
the resulting topology. Yao et al. study how a topology can
be inferred, given the traceroute results, where the inferred
topology should be consistent with the traceroute results
and contain the minimum number of anonymous routers
[26]. They show that producing either an exact or an
approximate solution for this problem is NP-hard. They
further propose a heuristic to merge anonymous routers
while keeping the consistency constraint. However, as
shown in [15], the consistency check has impractically high
complexity. Two fast algorithms without the consistency
constraint are then proposed to merge anonymous routers
and construct an approximate topology [15]. All these work
on anonymous routers is orthogonal to our study in this
paper. For simplicity, we have assumed that traceroute
results do not contain anonymous routers. We can integrate
any of the above work into our study to infer an approximate
topology in the presence of anonymous routers.

2.2 Review on Max-Delta

Max-Delta considers how we can quickly and efficiently
infer the router-level topology among a group of N hosts
[13], [15]. As the router-level network is a sparse graph [27],
it is anticipated that fully OðN2Þ traceroutes among hosts
are not necessary. Fig. 1 shows an example, where A, B, C,

JIN ET AL.: SCALABLE AND EFFICIENT END-TO-END NETWORK TOPOLOGY INFERENCE 839

and D are hosts, and 1, 2, 3, 4, and 5 are routers. The dashed
lines indicate the overlay paths between hosts. As the figure
shows, paths A�B, A�D, and B� C have revealed all the
underlay links and, therefore, we need to measure only
three, instead of all the possible six, paths.

Max-Delta works as follows: 1) Hosts utilize lightweight
tools such as GNP [28] or Vivaldi [29] to estimate their
network coordinates and report them to a central server and
2) the following inference procedure is divided into multi-
ple iterations. In each iteration, the server selects a target for
each host to traceroute. Hosts then traceroute their targets
and report the results to the server. The server then
combines all the results obtained in the iteration, and based
on that, it starts the next iteration on target assignment.
Such a process is repeated until a predefined stop rule
(for example, a certain number of iterations) is achieved.

A target is selected as follows: For a certain hostA, suppose
that the path between A and another host B has not been
measured. The server computes the distance between A and
B in the discovered topologyDpðA;BÞ by using shortest path
routing. The server also computes the distance between them
based on their coordinates euclideanðA;BÞ. Given the
coordinates of A and B in a d-dimensional space, say,
ðXA1; XA2; . . . ; XAdÞ and ðXB1; XB2; . . . ; XBdÞ, we can com-
pute euclideanðA;BÞ as

ffi
ðXA1 �XB1Þ2 þ ðXA2 �XB2Þ2 þ . . .þ ðXAd �XBdÞ2

q
:

If the coordinate estimation is accurate, euclideanðA;BÞ
will approximate the real network distance between A
and B. Define the gap between these two values as

�ðA;BÞ ¼ DpðA;BÞ � euclideanðA;BÞ:

If �ðA;BÞ is large, it is with high probability that some links
between A and B (leading to a shorter path in the
discovered topology) are not discovered yet. For all
unmeasured paths between A and other hosts, the server
selects the path with the maximum � value as A’s
traceroute target.

As discussed, the scalability of Max-Delta is limited by
the edge bandwidth and the computational power of the
central server. Therefore, we need to design a distributed
inference scheme to support large groups. We further
reduce the measurement cost of the scheme from several

aspects. In [30] and [31], we have proposed a distributed
inference scheme based on Max-Delta and discussed how
the measurement cost can be reduced. In this paper, we
combine our previous work to present a complete inference
scheme with high scalability and efficiency.

2.3 Review on Doubletree

Donnet et al. note that large-scale traceroute measurements
such as Skitter have high intra-monitor and inter-monitor
redundancies [18], [19], [20]. That is, routers and links are
often repeatedly discovered in multiple traceroutes. We
take Fig. 1 as an example to show the following types of
measurement redundancies:

1. Intramonitor redundancy. Such a redundancy exists in
traceroutes from one monitor (that is, the traceroute
source) to multiple destinations. Suppose that A
and B are two destinations and C is a monitor.
When C conducts traceroutes to A and B, C
obtains two traceroute paths: C � 4� 3� 1�A and
C � 4� 3� 2�B. Clearly, routers 4 and 3 have been
visited twice in the two traceroutes. Intramonitor
redundancy hence occurs.

2. Intermonitor redundancy. Such a redundancy exists in
traceroutes from multiple monitors to the same
destination. Suppose that C and D are two monitors.
When they conduct traceroutes to the same destina-
tion A, they obtain paths C � 4� 3� 1�A and
D� 5� 3� 1�A, respectively. In this case, routers 3
and 1 have been visited twice in the two traceroutes.
Intermonitor redundancy hence occurs.

Donnet et al. have proposed a Doubletree algorithm to
reduce the redundancies. As discussed, a normal traceroute
sends a series of IP datagrams with increasing TTL to the
destination. The TTL values start from 1. Doubletree
modifies the working process of traceroute. Given a source
and a destination, a traceroute in Doubletree starts probing
with TTL ¼ h, where h is a predefined system parameter.
The probing then proceeds toward the destination and
backward to the source. Both the backward and forward
probings use stop sets. The one for backward probing,
called the local stop set, consists of all the routers already
discovered by the source. The forward probing uses the
global stop set of ðrouter; destinationÞ pairs accumulated
from all sources. A pair enters the global stop set if the
router is visited in a traceroute toward the corresponding
destination. In either case, the probing stops whenever a
member of the stop set is met.

We give an example to show how Doubletree reduces
the intermonitor redundancy. Suppose that C and D are
two monitors and they will traceroute the paths to the same
destination A. Suppose that both C and D set h ¼ 2. When
C first traceroutes the path to A, C starts from the
router h hops away from itself (that is, router 3) and
conducts the following:

1. Forward probing. C sequentially discovers routers 3
and 1 until it reaches the destination A. In this
probing, it accumulates a global stop set of
fð3; AÞ; ð1; AÞg. This global stop set will be shared
with D.

840 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 6, JUNE 2008

Fig. 1. An example of an underlay network. The dashed lines indicate

overlay paths between hosts.

2. Backward probing. C discovers router 4 and inserts
the router into its local stop set. Now C’s local stop
set includes all the routers it has discovered, that is,
f3; 1; 4g.

Afterward, when D traceroutes the path to A, D also

starts from the router h hops away from itself and conducts

the following:

1. Forward probing. D first discovers router 3. It checks
its global stop set (assuming that C has shared its
global stop set with D) and finds that this router has
appeared in the global stop set, that is, ð3; AÞ.
Therefore, D stops forward probing.

2. Backward probing. D discovers router 5 and inserts
the router into its local stop set.

In this example, router 1 will be visited only once when

both C and D traceroute the paths to A. Intermonitor

redundancy is hence reduced.
In this paper, we integrate the Doubletree algorithm into

Max-Delta to reduce the measurement redundancy. That is,

after destination selection by Max-Delta, a traceroute starts

and stops under Doubletree’s supervision. We study how

we can set the parameter h and analyze the reduction in
bandwidth consumption through simulations.

3 A DISTRIBUTED INFERENCE SCHEME

In this section, we discuss the design of the distributed

inference scheme. We first give an overview of host actions
and then explore the tree construction and maintenance

issues.

3.1 Design Overview

In the distributed scheme, hosts exchange traceroute results
through an overlay tree. Each host maintains a partially
discovered topology and uses the Max-Delta heuristic to
select traceroute targets by itself. Suppose that A is a new
incoming host. We describe the actions of A in a sequential
order as follows:

1. Estimate the network coordinates. A first uses some tool
(for example, GNP or Vivaldi) to estimate its
network coordinates. For example, if GNP is used,
A should ping a few public landmarks and use the
network distances to landmarks and the landmark
coordinates to compute its own coordinates.

2. Join the overlay tree. A then identifies a host in the
system as its parent to join the overlay tree. The
detailed tree joining and maintenance mechanisms
will be explained later.

3. Conduct first-round traceroute. The first-round tracer-
outes from all the hosts had better form a connected
graph among them. Otherwise, the distance between
two hosts in the discovered topology Dp may not be
available. Therefore, we require A to traceroute the
path to its parent in the first round. Clearly, if each host
traceroutes like this, all the first-round traceroute
paths form a tree spanning the hosts on the overlay.

4. Distribute the coordinates and first-round traceroute
along the tree. A sends its coordinates and first-round
traceroute to its neighbors.

5. A then keeps doing the following things in parallel:

. Select paths to be tracerouted. A maintains a
discovered topology based on its own
traceroutes and traceroute results from other
hosts. Based on that, A can select its tracer-
oute targets as in the naive max-delta. Clearly,
it takes OðVp logVp þ Ep þNÞ time to select
one traceroute target.

. Accept data from its neighbors if any.

. Periodically send data (including its own traceroute
results and other hosts’ traceroute results) to its
neighbors.

A aggregates its own traceroute results and data
received from its neighbors. It then periodically
floods the data along the tree. Clearly, data received
from a neighbor are forwarded to all its other
neighbors in the tree, and its own traceroute results
are sent to all the neighbors.

3.2 Tree Construction

During measurement, each host needs to send traceroute
results to others. We hence consider building a source-
unspecific tree among hosts. To achieve quick data exchange
between hosts, we minimize the diameter of the tree, which
is the longest simple path (in terms of the number of overlay
hops) in the tree. Previous research has shown that building
a minimum-diameter degree-bounded spanning tree is NP-
hard, and there are no efficient distributed algorithms to
address it [16], [17]. In this paper, we propose a distributed
tree construction algorithm based on the outdegree bounds
of hosts. In our algorithm, we first identify a host as the tree
root, which is usually the host with the largest outdegree
bound. We then insert new hosts around the root. During
tree construction, we assume that the root is the only source
in the system and is about to distribute data to all other hosts.
Each new host needs to identify another host as its parent in
order to join the tree. Except for the parent, all the other
neighbors of a host in the tree are called its children. Clearly,
during real measurement, there is no such parent-child
relationship between hosts, since every host is a source.

Each host has an outdegree bound according its edge
bandwidth, which indicates how many children a host can
have in the tree. The position of a host in the tree depends on
its outdegree bound. The larger the outdegree bound that a
host has, the closer to the root it is put. In other words, a host
has a larger outdegree bound than all its descendants in the
tree. DenoteBi as the outdegree bound of host iand denoteDi

as the real outdegree of i in the tree. Furthermore, denote
Disti as the minimum number of overlay hops from i to the
root in the tree. Clearly, Disti ¼ Disti0s parent þ 1. Finally, we
denoteNewi as the minimum number of overlay hops from a
new host to the tree root if the new host becomes i’s
descendant. Given a host i, if Bi > Di, Newi ¼ Disti þ 1.
Otherwise, Newi ¼ minfNewy j 8y 2 i0s children setg.

First, hosts in the tree periodically exchange theirDist and
New values with the neighbors. Each host can then
accordingly compute its own Dist and New values. When a
new incoming host wants to join the tree, it first contacts a
public rendezvous point (RP) to obtain the IP address of the
root. It then joins the tree, as shown in Algorithm 1. We

JIN ET AL.: SCALABLE AND EFFICIENT END-TO-END NETWORK TOPOLOGY INFERENCE 841

briefly explain the joining process of a host i as follows: If i is

the first joining host, i becomes the root and claims itself to
the RP. If this is not the case but i has a larger outdegree

bound than the current root, i becomes the new root: It

accepts the current root and the children of the current root as
its children and then claims itself to the RP. If none of the

above cases occurs, i starts a recursive joining procedure

from the root. That is, i identifies a host x to start the

JOINði; xÞ procedure (see line 14 of Algorithm 1), where x is
the root at the beginning. Note that following our algorithm,

we have Bi < Bx in the JOINði; xÞ procedure, which is a

precondition for invoking JOINði; xÞ. Therefore, i can only be

x’s descendant and cannot be x’s ancestor. If x has residual
outdegree (that is, Bx > Dx), x accepts i as its child.

Otherwise, i turns to check x’s children. From all x’s children

whose outdegree bounds are smaller than that of i, the one

with the maximum outdegree bound is selected, say, m. If
there exists such a host m, i takes up m’s position in the tree:

i selects m’s parent as its parent, accepts m’s children as its

children, and accepts m as its child. If there is no such a

host m (that is, the outdegree bounds of x’s children are all
larger than or equal to that of i), i has to move one level down.

i selects from x’s children the host with the smallest

New value and repeats the joining process from this host.

Algorithm 1: JOINING PROCEDURE OF HOST i.

1: procedure TREEJOIN ðiÞ
2: if i is the first joining host then

3: i becomes the root and notifies the RP.

4: return

5: end if

6: if Bi > Broot then

7: i becomes the new root: it accepts root and root’s

children as its children and notifies the RP.

8: return

9: else

10: JOIN ði; rootÞ.
11: return

12: end if

13: end procedure

14: procedure JOIN ði; xÞ
15: if Bx > Dx then

16: x accepts i as its child.

17: return

18: else

19: if 9t 2 x’s children set such that Bt < Bi then

20: select x’s child m such that Bm ¼ maxfByj8y 2 x’s

children set & By < Big.
21: i replaces m (that is,

i selects m’s parent as its parent and accepts m’s

children as its children) and accepts m as its child.

22: return

23: else

24: selectx’s childn such thatNewn¼minfNewyj8y2x0s
children setg.

25: JOIN ði; nÞ.
26: return

27: end if

28: end if

29: end procedure

We show an example in Fig. 2, where hosts A, B, C, D, E,
F , G, and H join the tree in a sequential order. We describe
the joining steps (corresponding to the figures in Fig. 2) as
follows:

(a) When A joins the tree, it first contacts the RP. Since it
is the first joining host in the tree, A becomes the root
and claims itself to the RP.

(b) When B joins the tree, it also contacts the RP and
knows that A is the tree root. B then contacts A to
compare their outdegree bounds.

(c) B finds that its own outdegree bound is larger than
that of A (that is, BB > BA). Hence, B becomes the
new root and accepts A as its child.

(d) When C joins the tree, it first contacts the RP and
then contacts the tree root B.

(e) C finds that its own outdegree bound is smaller than
that of B. It becomes B’s child, since B still has a
residual outdegree.

(f) D, E, and F join the tree in a similar way as C. All
these hosts have smaller outdegree bounds than the
root B.

(g) When G joins the tree, it contacts the RP and the tree
root B. Now, B does not have a residual outdegree
and cannot accept G as its child. B finds that it has a
child (that is, E) whose outdegree bound is smaller
than G. B hence forwards G to this child.

(h) G replaces E and accepts E as its child.
(i) When H joins the tree, it contacts the RP and the tree

root B. Still, B cannot accept H as its child. Now, all
of B’s children have larger outdegree bounds than
H. B hence forwards H to its child with the
minimum New value, which is A in this example
(in fact, A, C, D, G, and F have the same New value
of 2).

(j) H becomes A’s child.

Note that in our scheme, data exchanged between
two hosts are of a small size. For example, a traceroute
result is of several kilobytes. In view of the capabilities of
today’s computers and networks, a powerful PC can
support simultaneous data exchange with hundreds of
neighbors. The outdegree bounds of hosts in our scheme are
hence much larger than those in other applications such as
streaming or file sharing.

3.3 Tree Maintenance

Upon leaving or the failure of a host, all its children in the
tree need to rejoin the tree. A rejoining process is similar to
host joining.

As well known, tree-based overlay is not resilient to host
dynamics, as host failure or leaving affects all its descendants
in the tree. A tree hence does not perform well for streaming
applications [32]. This is because in streaming, each host
needs to continuously receive data at a certain rate. During
rejoining, a host cannot receive any data and has to suffer
service outage. The loss rate then increases, and the streaming
quality decreases. Therefore, in streaming applications, there
have been many proposals to reduce the time for host

842 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 6, JUNE 2008

rejoining [33]. However, in our inference scheme, host
rejoining does not have high impact on system performance.
Topology inference does not require continuous data
receiving at hosts. When a host is disconnected from the tree,
it can still select traceroute targets based on its own topology
and keep tracerouting. Therefore, in our scheme, we do not
need to focus on reducing the host rejoining time as in
streaming applications.

Certainly, frequent host joining and leaving decrease the
stability of the tree. We may integrate previous research to
improve the tree stability. For example, it has been shown
that the longest first tree is often more stable, where a new
host selects from all its parent candidates the longest lived
one as the parent [34], [35]. We can then take the host
lifetime into consideration when constructing the tree.

4 REDUCING MEASUREMENT COST

In this section, we propose several techniques to reduce
the measurement cost for topology inference, including
reducing measurement redundancy, reducing traceroute
size, and reducing computational overhead.

4.1 Reducing Measurement Redundancy

We integrate Doubletree into Max-Delta to reduce the
measurement redundancy. That is, after a host selects a
traceroute target by Max-Delta, it starts and completes the

traceroute under Doubletree’s supervision. In the distrib-

uted inference scheme, all traceroute results will be

distributed to all the hosts in the system. The sharing of

the global stop set is hence trivial. Now, we focus on the

selection of h.
The selection of h is important to the system perfor-

mance. According to [19], a small h leads to high

intramonitor redundancy, whereas a large h leads to high

intermonitor redundancy. In [19], each monitor sets its own

value of h in terms of the probability p that the path between

the monitor and a random destination does not have more

than h hops. For example, Fig. 3 shows the cumulative mass

function of p for a Skitter monitor (see [19, Fig. 5]). In order

to restrict the probability that the first ICMP message of a

traceroute (with TTL ¼ h) hits the destination to a certain

value, say, 10 percent, the monitor should start probing at

h ¼ 10 hops. In [19], Donnet et al. suggest setting p to 0.05.

They also suggest estimating the distribution of p by

sampling a few randomly selected paths. However, this

estimation method is not feasible here. This is because the

estimation accuracy is highly related to the sampling size.

However, in Max-Delta, it is impossible to afford a large

sampling size, because the number of traceroutes conducted

by each host is small (for example, 10-14 in a group of

256 hosts), and it is not feasible to have a larger sampling

cost than the measurement cost.

JIN ET AL.: SCALABLE AND EFFICIENT END-TO-END NETWORK TOPOLOGY INFERENCE 843

Fig. 2. An example of tree construction (for a certain host x, Bx is the outdegree bound of x).

We note that Max-Delta can discover a majority of the
underlay topology in its first several iterations. Table 1
shows the link ratio (as defined in Section 5.1) achieved by
Max-Delta in the first several iterations on Transit-Stub
topologies. In a group of 256 hosts, 74.3 percent of underlay
links can be discovered after the first iteration of tracer-
outes. After 13 iterations, over 97.1 percent of links are
discovered. When N ¼ 1; 024, 65.1 percent of links are
discovered after the first iteration. After 19 iterations, over
91.1 percent of links are discovered. We hence estimate h as
follows: Since each host maintains a partially discovered
topology, a host can compute the shortest paths between
itself and all the other hosts in the topology. When the
discovered topology contains the majority of the links on
the underlay (this may be the case after several iterations),
the shortest path between two hosts in the discovered
topology is supposed to approximate the actual path
between them. Note that the partially discovered topology
is not complete yet. Missing of links clearly leads to the
overestimation of path length in the discovered topology.
We hence discard a certain number of paths with the most
hops and use the rest of the results to compute the
distribution of p. Our simulation results show that it is
good to discard around 20 percent to 30 percent paths with
the most hops.

4.2 Reducing Traceroute Size

In a traceroute result, a router is represented by its IP address
and router name, which often consist of 20-40 digits or letters.
On the other hand, a router is often visited multiple times in
different traceroutes, even with Doubletree integration (as
shown in Section 5.3). We hence consider using a compact
form to represent routers in order to reduce the size of
traceroute results.

A straightforward approach is to discard router names
and only keep router IPs in traceroute results. As each IP
can uniquely identify an interface of a router, discarding the
router names does not introduce additional ambiguity.
However, an IP address still contains around 12 digits or
letters. We would like to further reduce the representation
size. Furthermore, it is better to keep the router name
information, which may be used in future studies. For
example, router names can be used to infer the geographic
locations of routers [36].

Therefore, we set up a mapping table to map each router
to an integer. First, such mapping should be one to one so
that traceroute results can be freely transformed between
two forms without ambiguity. Second, the mapping should
be universal to all the hosts. Therefore, we identify one host
in the tree to conduct mapping. A possible choice is the tree
root. The root can maintain a lookup table for routers. When
the root finds a new router in traceroute results, it inserts
the router into the lookup table. It then replaces routers in
traceroute results by their corresponding serial numbers in
the lookup table. In this way, each router is represented by
an integer, whose length depends on the total number of
routers (not more than six digits in practice). Later on, the
root delivers the compact traceroute results and the lookup
table to other hosts. Note that the lookup table is only
delivered once to each host. Fig. 4 shows an example of a
raw traceroute result and a compact traceroute result.

In the above approach, the root always receives raw
traceroute results without compression. To reduce band-
width consumption at the root, we can accordingly decrease
the number of children of the root. If a root leaves or fails,
according to the tree construction mechanism in Section 3, a
new root will be selected from the root’s children as the one
with the largest outdegree bound. The new root then takes
the responsibility of compressing traceroute results. We
may also use the root replication technique proposed in [37]
to improve the root resilience. In the technique, the root has
multiple backup hosts. All the information at the root is
copied at each of the backup hosts. If the current root fails
or leaves, one of the backup hosts serves as the new root.

4.3 Reducing Computational Overhead

We propose two techniques to reduce the computational
overhead of the inference scheme.

844 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 6, JUNE 2008

Fig. 3. Length of paths for a Skitter monitor (from [19]).

TABLE 1
Link Ratio Achieved by Max-Delta in

Different Iterations (in Percent)

Fig. 4. Setting up a lookup table for routers.

4.3.1 Topology Abstraction

Given an underlay topology, we can simplify it before
computing the shortest paths between hosts. That is, we
consider reducing Vp and Ep in the topology. For example,
in Fig. 1, links 3-4 and 4� C can be concatenated as
one link, and the length of the new link is equal to the
length of link 3-4 plus the length of link 4� C. This is
because any path crossing link 3-4 also crosses link 4� C.
After concatenating them, the distance of the shortest path
between any two hosts in the new topology is the same as
that in the original topology.

Define a path segment as a maximal subpath of an overlay
path so that all the inner routers in the subpath are not
adjacent to any other physical links in the underlay
network. In other words, two end points of a path segment
have degree 1 or not less than 3 in the underlay network,
whereas all its inner routers have degree 2. In the following,
we call the inner router in a path segment a segment router
and the link adjacent to a segment router a segment link.

Given an underlay topology, we would like to find all
the path segments in it and replace each of them with a
single virtual link. We can use any traverse algorithm such
as Breadth-First Search or Depth-First Search to visit all the
links and routers in the topology. Whenever we find a
router of degree 2, we merge its two adjacent links. By
traversing the whole topology in OðVp þ EpÞ time, all the
path segments can be abstracted as single links. We can
then use this simplified topology as the basis to compute
the shortest paths between hosts.

4.3.2 Reducing Computational Frequency

To select a traceroute target, a host needs to compute the
distance gaps along all unmeasured paths adjacent to it. In
fact, after each computing, we can reuse the results to select
the subsequent targets without computing again. Suppose
that a host A has computed all the � values at a certain
time. A marks all the links in the discovered topology as old.
In the following, it marks the newly discovered links as new.
Only when the number of new links is larger than a certain
threshold t does A recompute the � values between itself
and other hosts and remark all the links as old.

As shown, a large portion of the topology can be
discovered in the first several iterations. Later on, only a
few new links are discovered in one iteration. As the new
links are few, they have limited impact on the distance gaps,
and we do not need to compute the distance gaps in each
iteration. The computational overhead is hence reduced.

5 ILLUSTRATIVE NUMERICAL RESULTS

In this section, we evaluate our inference scheme through
simulations on Internet-like topologies and measurements
on PlanetLab.

5.1 Simulation Setup

We generate a number of Transit-Stub topologies with
GT-ITM [38]. Each topology is a two-layer hierarchy of
transit networks and stub networks. Unless otherwise
indicated, a topology contains 3,200 routers and around
20,000 links. We randomly put N hosts into the network
(N ¼ 500, unless otherwise indicated). Each host is connected

to a unique stub router with a 1-ms delay, whereas the delay
of core links is given by the topology generator.

Furthermore, we randomly select 79 hosts from
PlanetLab and conduct all-pair traceroutes between them
[39]. Due to network and host dynamics (some hosts
unexpectedly failed during our measurements), a small
portion of the traceroutes cannot be completed. The
resulting topology contains 5,589 overlay paths (out of the
total 78� 79 ¼ 6; 162 ones), 1,950 links, 946 known routers,
and some anonymous routers.

For a host in the system, the receiving of traceroute
results from other hosts and the conducting of traceroutes
are in parallel. In our simulations, for simplicity, we assume
that data exchange between hosts is very quick and the
conducting of one traceroute is considerably slow. In other
words, we use similar settings as in the centralized
Max-Delta; that is, in each iteration, a host conducts
one traceroute and receives one traceroute result from each
of the other hosts. This assumption does not qualitatively
affect the results and conclusions in the following. Based on
this assumption, our distributed inference scheme has the
same measurement efficiency as the centralized Max-Delta
scheme. Since the performance of the centralized Max-Delta
has been thoroughly evaluated in [13] and [15], we do not
repeatedly present similar results here.

We have done simulations on both types of topologies. We
find that the conclusions on the PlanetLab topology are
qualitatively the same as those on the Transit-Stub topologies.
We hence mainly present results on Transit-Stub topologies.
We use the following metrics to evaluate an inference scheme:

1. Router visiting frequency �. This is defined as the
number of occurring times of a router in a set of
traceroute paths.

2. Link ratio �. This is defined as the ratio of the number
of links in the inferred topology to the total number
of links in the actual underlay topology [15].

3. Router ratio �. This is defined as the ratio of the
number of routers in the inferred topology to the
total number of routers in the actual underlay
topology [15].

4. Resource usage. Given a traffic between two points,
the resource usage is computed as the size of packets
delivered times the delay between the two points.
We compute the resource usage of an inference
scheme as the total resource usage of traceroutes in
the inference.

5. ICMP message reduction ratio �. This is defined as the
ratio of the number of ICMP messages reduced by
Doubletree to the total number of ICMP messages by
naive traceroutes.

5.2 Performance of Distributed Inference

As mentioned, the measurement efficiency (in terms of link
ratio and router ratio) of the distributed scheme is similar to
the centralized Max-Delta. We hence skip it. Fig. 5 shows
the tree diameter versus the group size. The outdegree
bounds of hosts are uniformly distributed within [30, 100].
As mentioned, the data exchanged are of a small size, and
hosts can have relatively large outdegree bounds. In the
figure, we see that the tree diameter is kept low. When

JIN ET AL.: SCALABLE AND EFFICIENT END-TO-END NETWORK TOPOLOGY INFERENCE 845

N ¼ 16;000, the tree diameter is only 4.7. Therefore, data
exchange between hosts can be quickly accomplished.

The consumption of edge bandwidth at a host mainly
consists of three parts:

1. Bandwidth for traceroute measurements. The host may
actively traceroute some paths. The host may also be
selected as the traceroute target by other hosts. It
hence consumes bandwidth for sending and receiv-
ing ICMP messages.

2. Bandwidth for the exchange of traceroute results. Ideally,
a traceroute result is distributed from the traceroute
source to all the other hosts. In a group of N hosts, it
takes, in total, 2ðN � 1Þs edge bandwidth at hosts to
distribute the traceroute result (including data
receiving and forwarding), where s is the size of
the traceroute result. Therefore, during the whole
inference, the average edge bandwidth consumed
for data exchange at a host is 2ðN � 1ÞS=N , where S
is the total size of traceroute results. The value of S is
shown in Fig. 7b.

3. Bandwidth for tree construction and maintenance. The
host needs to exchange control messages with other
hosts to join and maintain the overlay tree.

As compared to the centralized Max-Delta, parts 2 and 3
are additional bandwidth consumption. On the other hand,
in the centralized Max-Delta, each host needs to send its
traceroute results to the central server. This incurs, on the
average, S=N bandwidth consumption at each host (we do
not count the bandwidth consumption at the server).
Therefore, in terms of bandwidth assumption for the
exchange of traceroute data, the distributed scheme incurs
an 2ðN � 1ÞS=N � S=N ¼ ð2N � 3ÞS=N additional band-
width consumption at each host.

5.3 Reducing Measurement Redundancy

We first test the selection mechanisms of h on different
topologies. We generate four types of Transit-Stub topologies
with different network sizes. The number of routers (or links)
in the topologies are 1,800, 3,200, 5,120, and 12,000 (or around
9,000, 20,000, 32,000, and 170,000), respectively. In the
following, these four types of topologies are denoted as
R-1800, R-3200, R-5120, and R-12000, respectively. For each
type, we generate five topologies. We then randomly put

500 hosts into the network and compute the average number
of hops in the interhost paths. After repeating the above
process for 10 times, the average numbers of hops in these
four types of topologies are 7.5, 8.9, 9.7, and 14.2, respectively.
We test three selection mechanisms ofh. The first one sets h to
a constant 4. The second one estimates h as in Doubletree,
with a sampling of 20 paths. The last one estimates h as in
Section 4.1, where 25 percent of paths with the most hops are
discarded. These three methods are denoted as “Constant,”
“Sampling,” and “Topology-based,” respectively.

Fig. 6a shows � at the 30th iteration achieved by different
h-selection mechanisms. On R-1800 and R-3200, Constant
has good performance. However, it does not perform well
on R-5120 and R-12000. It shows that Constant is not flexible
to different networks. Sampling always achieves higher �
than the Topology-based approach. It also incurs additional
sampling cost. It is hence not a good choice. The Topology-
based approach achieves good performance on all the four
types of topologies. It does not incur any additional cost
and is hence applicable for our inference scheme.

Figs. 6b, 6c, 6d, 6e, and 6f show the performance of the
inference scheme with Doubletree integration on R-3200,
where N ¼ 500. Fig. 6b shows the accumulative link ratios �
achieved by the inference schemes. The naive Max-Delta
performs slightly better than the integration one. As the
iteration number increases, � achieved by Max-Delta con-
verges toward 0.992, whereas that of the integration
scheme converges toward 0.965. On the other hand, these
two schemes achieve almost the same router ratio, as shown
in Fig. 6c. These results show that the stop rules in Doubletree
have slight impact on the measurement accuracy.

Fig. 6d compares the accumulative router visiting
frequencies achieved by the schemes. In Max-Delta, �
quickly increases with the iteration number. In the
first iteration, � is only 4.9. However, after 30 iterations,
the average � increases to 98.5. On the other hand, in our
PlanetLab measurements, there are totally 82,212 known
routers in the 5,589 paths. However, there are actually
946 different routers. It means that each router, on the
average, appears 82; 212=946 ¼ 86:9 times. This confirms
that routers are repeatedly visited for many times. The
integration of Doubletree can significantly reduce �. After
30 iterations in the integration scheme, the average � is only
47.1, which is less than half of 98.5.

Fig. 6e shows the resource usage for traceroutes in the
integration scheme. The flat curve in the figure indicates the
resource usage for measurement in the integration scheme,
and the precipitous curve indicates the reduction in
resource usage due to Doubletree. Clearly, the sum of these
two values is the resource usage for naive traceroutes. As
shown, with Doubletree, the resource usage for measure-
ment increases slowly. Furthermore, the amount of reduc-
tion increases quickly when the iteration continues. It shows
that Doubletree can significantly reduce the resource usage,
especially when the number of iterations is large.

Fig. 6f shows the ICMP message reduction ratio � in the
integration scheme. The curve denoted “Per iteration” shows
the result in each individual iteration. Note that in the
second iteration, � is negative. This is because the probing
distance h is too large, and the first ICMP message of a
traceroute has reached the destination. As a result, more
ICMP messages are sent out than that in a naive traceroute. In

846 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 6, JUNE 2008

Fig. 5. Tree diameter versus group size.

the following iterations, � quickly increases to around 0:6. It

shows that a significant reduction in the number of ICMP

messages has been achieved. The curve denoted “Accumu-

lative” shows the accumulative ICMP message reduction

ratio. After 30 iterations, we can achieve an overall 57 percent

reduction in the number of ICMP messages. Clearly, the

integration of Doubletree is efficient and effective.

5.4 Reducing Traceroute Size

As shown in Fig. 6d, the router visiting frequency is
remarkably high, even with the integration of Doubletree.
A lookup table for routers can hence significantly reduce
the traceroute size. Fig. 7a shows the number of routers
discovered in the integrated scheme combining Max-Delta
and Doubletree. The upper curve shows the number of

JIN ET AL.: SCALABLE AND EFFICIENT END-TO-END NETWORK TOPOLOGY INFERENCE 847

Fig. 6. Reducing the measurement redundancy ðN ¼ 500Þ. (a) Selection of h. (b) Accumulative link ratio. (c) Accumulative router ratio.

(d) Accumulative router visiting frequency. (e) Accumulative resource usage. (f) ICMP message reduction ratio.

routers reported in each iteration. In each iteration, each
host usually traceroutes one path (in some cases, a host
may not be able to find a traceroute target and hence does
not conduct traceroute). In the first iteration, each host
tracerouts its parent in the tree, and the total number of
routers is 4,899. It means that a path, on the average,
contains 4;899=500 ¼ 9:8 routers. In the next iteration, the
total number of routers is only 1,534. This is because Max-
Delta preferentially selects a path with a large � value,
which corresponds to a small euclidean distance and,
hence, a short path. In other words, Max-Delta preferen-
tially selects the shortest paths. Therefore, in the following
iterations, we see an increase in the total number of
routers reported. The bottom curve shows the accumula-
tive number of different routers achieved by the scheme.
In the first four iterations, over 99 percent of routers have
been discovered. It shows that routers are more easily and
quickly discovered than links (refer to Figs. 6b and 6c).
Since the number of different routers is small, a router
can be uniquely represented by a small integer in a
lookup table.

We compare the sizes of traceroute results with and
without the lookup table in Fig. 7b. The size of traceroute
results is estimated as follows: The formats of raw

traceroute results and compact traceroute results follow
those in Fig. 4. From the PlanetLab measurements, we have
946 different routers. The representation of a router
(including the router name and router IP), on the average,
consists of 41.5 letters or digits. With a lookup table, each
router can be represented by four digits (four digits can
represent at most 10,000 routers). In the figure, the upper
curve shows the results with no lookup table, and the
middle curve shows the results with a lookup table
(including the delivery cost for the lookup table). As shown,
the lookup table can, on the average, reduce the traceroute
size by 50.2 percent. In addition, we show the delivery cost
for the lookup table in different iterations. In the first
iteration, almost the whole lookup table has been con-
structed. The lookup table is around 45 Kbytes. In the
following iterations, new entries of the lookup table are
very few, and their size is not more than 2.2 Kbytes. This
is because the first-round traceroutes can discover over
93.7 percent of routers (as shown in Fig. 7a). In the
following iterations, there are only a few new routers
discovered. As the lookup table is delivered to each host
once, it does not incur high delivery overhead. In summary,
the use of a lookup table is efficient and effective.

5.5 Reducing Computational Overhead

Fig. 8 shows the reduction in the computational overhead
on R-3200. Fig. 8a shows the ratio of the number of segment
routers (or segment links) to the number of all routers (or all
links) in different iterations. In the first several iterations,
there are lots of segment routers and segment links in the
inferred topology. As the iteration continues, such ratios
converge to around 2 percent to 4 percent. Clearly, topology
abstraction can significantly reduce the computational
complexity in the first several iterations. As topology
abstraction incurs additional computational overhead, we
may only conduct it in the first several iterations.

On the other hand, if the computational frequency is
reduced as proposed, only a few iterations require the
distance gap computing (mostly in the first several
iterations). Fig. 8b shows the result with t ¼ 3 percent; that
is, the distance gap computing is conducted whenever the
number of new links is equal to or large than 3 percent of
the number of old links. As shown, in the first 30 iterations,
only the 1st, 2nd, 4th, and 18th iterations require the
computing (as indicated by the vertical lines). In addition,
the resultant link ratio is slightly lower that in a naive
integration scheme. Therefore, frequency reducing has
small impact on the measurement accuracy.

As shown, by the frequency reducing technique, most
computational loads for distance gaps are in the first several
iterations. As topology abstraction can significantly simplify
the topology in the first several iterations, we can combine
the two techniques to efficiently reduce the computational
overhead at a host.

6 CONCLUSION

Previously, Max-Delta has been proposed to infer a highly
accurate topology among a group of hosts with a low
number of traceroutes. As it is centralized and not scalable,
we propose in this paper a distributed inference scheme for

848 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 6, JUNE 2008

Fig. 7. Reducing the traceroute size (N ¼ 500 on R-3200). (a) Number of

routers. (b) Size of traceroute results.

scalable topology inference. In our scheme, hosts form an

overlay tree to exchange traceroute results. A host inde-

pendently selects paths for tracerouting, without the need

of central scheduling. We further propose several techni-

ques to reduce the measurement cost, including reducing

measurement redundancy, reducing traceroute size, and

reducing computational overhead. Simulation results show

that our data delivery tree has a low diameter and that the

proposed improvement mechanisms can significantly re-

duce bandwidth consumption and computational overhead

for measurements.

ACKNOWLEDGMENTS

The work at HKUST was supported, in part, by the Research

Grant Council of the Hong Kong Special Administrative

Region under Grant HKUST611107 and Hong Kong Innova-

tion and Technology Commission under Grant GHP/045/05.

The work of W. Tu was supported by the Embark Postdoctoral

Fellowship of Ireland under Grant 501-et-5044890.

REFERENCES

[1] D.G. Andersen, H. Balakrishnan, M.F. Kaashoek, and R. Morris,
“Resilient Overlay Networks,” Proc. 18th ACM Symp. Operating
Systems Principles (SOSP ’01), pp. 131-145, Oct. 2001.

[2] Y.H. Chu, S. Rao, S. Seshan, and H. Zhang, “A Case for End
System Multicast,” IEEE J. Selected Areas in Comm., vol. 20, no. 8,
pp. 1456-1471, Oct. 2002.

[3] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable
Application Layer Multicast,” Proc. ACM SIGCOMM ’02,
pp. 205-217, Aug. 2002.

[4] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy,
S. Shenker, I. Stoica, and H. Yu, “OpenDHT: A Public DHT
Service and Its Uses,” Proc. ACM SIGCOMM ’05, pp. 73-84,
Aug. 2005.

[5] Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarca,
J. Hellerstein, and S. Shenker, “A Case Study in Building
Layered DHT Applications,” Proc. ACM SIGCOMM ’05,
pp. 97-108, Aug. 2005.

[6] D.G. Andersen, N. Feamster, S. Bauer, and H. Balakrishnan,
“Topology Inference from BGP Routing Dynamics,” Proc. ACM
Internet Measurement Workshop (IMW ’02), pp. 243-248, Nov. 2002.

[7] F. Wang and L. Gao, “On Inferring and Characterizing Internet
Routing Policies,” Proc. ACM Internet Measurement Workshop
(IMW ’03), pp. 15-26, Oct. 2003.

[8] M. Coates, R. Castro, R. Nowak, M. Gadhiok, R. King, and
Y. Tsang, “Maximum Likelihood Network Topology Identifi-
cation from Edge-Based Unicast Measurements,” Proc. ACM
SIGMETRICS ’02, pp. 11-20, 2002.

[9] M. Coates, A. Hero, R. Nowak, and B. Yu, “Internet Tomography,”
IEEE Signal Processing Magazine, vol. 19, no. 3, pp. 47-65, May 2002.

[10] Traceroute, http://www.traceroute.org/, 2007.
[11] M. Kwon and S. Fahmy, “Topology-Aware Overlay Networks for

Group Communication,” Proc. 12th ACM Int’l Workshop Network
and Operating Systems Support for Digital Audio and Video
(NOSSDAV ’02), pp. 127-136, May 2002.

[12] J. Han, D. Watson, and F. Jahanian, “Topology Aware Overlay
Networks,” Proc. IEEE INFOCOM ’05, pp. 2554-2565, Mar. 2005.

[13] X. Jin, Y. Wang, and S.-H.G. Chan, “Fast Overlay Tree Based on
Efficient End-to-End Measurements,” Proc. IEEE Int’l Conf. Comm.
(ICC ’05), pp. 1319-1323, May 2005.

[14] X. Jin, Q. Xia, and S.-H.G. Chan, “A Cost-Based Evaluation of End-
to-End Network Measurements in Overlay Multicast,” Proc. IEEE
INFOCOM Mini-Symposium ’07, June 2007.

[15] X. Jin, W.-P.K. Yiu, S.-H.G. Chan, and Y. Wang, “Network
Topology Inference Based on End-to-End Measurements,” IEEE
J. Selected Areas in Comm., vol. 24, no. 12, pp. 2182-2195, Dec. 2006.

[16] S.Y. Shi, J.S. Turner, and M. Waldvogel, “Dimensioning Server
Access Bandwidth and Multicast Routing in Overlay Networks,”
Proc. 11th ACM Int’l Workshop Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV ’01), pp. 83-91,
2001.

[17] S.Y. Shi and J.S. Turner, “Routing in Overlay Multicast Net-
works,” Proc. IEEE INFOCOM ’02, pp. 1200-1208, June 2002.

[18] B. Donnet, T. Friedman, and M. Crovella, “Improved Algorithms
for Network Topology Discovery,” Proc. Sixth Int’l Workshop
Passive and Active Network Measurement (PAM ’05), Mar. 2005.

[19] B. Donnet, P. Raoult, T. Friedman, and M. Crovella, “Efficient
Algorithms for Large-Scale Topology Discovery,” Proc. ACM
SIGMETRICS ’05, pp. 327-338, June 2005.

[20] B. Donnet, P. Raoult, T. Friedman, and M. Crovella, “Deployment
of an Algorithm for Large-Scale Topology Discovery,” IEEE
J. Selected Areas in Comm., vol. 24, no. 12, pp. 2210-2220, Dec. 2006.

[21] Skitter, http://www.caida.org/tools/measurement/skitter/,
2007.

[22] R. Govindan and H. Tangmunarunkit, “Heuristics for Internet
Map Discovery,” Proc. IEEE INFOCOM ’00, pp. 1371-1380,
Mar. 2000.

[23] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP
Topologies with Rocketfuel,” Proc. ACM SIGCOMM ’02,
pp. 133-145, Aug. 2002.

[24] P. Barford, A. Bestavros, J. Byers, and M. Crovella, “On the
Marginal Utility of Network Topology Measurements,” Proc.
ACM Internet Measurement Workshop (IMW ’01), pp. 5-17,
Nov. 2001.

[25] A. Broido and K. Claffy, “Internet Topology: Connectivity of IP
Graphs,” Proc. SPIE Int’l Conf. and Exhibits on the Convergence of IT
and Comm. (ITCom ’01), Aug. 2001.

JIN ET AL.: SCALABLE AND EFFICIENT END-TO-END NETWORK TOPOLOGY INFERENCE 849

Fig. 8. Reducing the computational overhead (N ¼ 500 on R-3200).

(a) Router and link reduction by topology abstraction. (b) Reducing the

computational frequency (the vertical lines indicate the iterations that

require the computing of distance gaps).

[26] B. Yao, R. Viswanathan, F. Chang, and D.G. Waddington,
“Topology Inference in the Presence of Anonymous Routers,”
Proc. IEEE INFOCOM ’03, pp. 353-363, Apr. 2003.

[27] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On Power-Law
Relationships of the Internet Topology,” Proc. ACM SIGCOMM ’99,
pp. 251-262, Sept. 1999.

[28] T.S.E. Ng and H. Zhang, “Predicting Internet Network Distance
with Coordinates-Based Approaches,” Proc. IEEE INFOCOM ’02,
pp. 170-179, June 2002.

[29] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A
Decentralized Network Coordinate System,” Proc. ACM
SIGCOMM ’04, pp. 15-26, Aug. 2004.

[30] X. Jin, Q. Xia, and S.-H.G. Chan, “A Distributed Approach to End-
to-End Network Topology Inference,” Proc. IEEE Int’l Conf. Comm.
(ICC ’07), June 2007.

[31] X. Jin, W.-P.K. Yiu, and S.-H.G. Chan, “Improving the Efficiency
of End-to-End Network Topology Inference,” Proc. IEEE Int’l Conf.
Comm. (ICC ’07), June 2007.

[32] X. Zhang, J. Liu, B. Li, and T.-S.P. Yum, “CoolStreaming/DONet:
A Data-Driven Overlay Network for Peer-to-Peer Live Media
Streaming,” Proc. IEEE INFOCOM ’05, pp. 2102-2111, Mar. 2005.

[33] Z. Fei and M. Yang, “A Proactive Tree Recovery Mechanism
for Resilient Overlay Multicast,” IEEE/ACM Trans. Networking,
vol. 15, no. 1, pp. 173-186, Feb. 2007.

[34] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang, “The
Feasibility of Supporting Large-Scale Live Streaming Applications
with Dynamic Application End-Points,” Proc. ACM SIGCOMM ’04,
pp. 107-120, Aug. 2004.

[35] G. Tan and S.A. Jarvis, “Improving the Fault Resilience of Overlay
Multicast for Media Streaming,” IEEE Trans. Parallel and Dis-
tributed Systems, vol. 18, no. 6, pp. 721-734, June 2007.

[36] V.N. Padmanabhan and L. Subramanian, “An Investigation of
Geographic Mapping Techniques for Internet Hosts,” Proc. ACM
SIGCOMM ’01, pp. 173-185, Aug. 2001.

[37] J. Jannotti, D.K. Gifford, K.L. Johnson, M.F. Kaashoek, and
J.W. O’Toole, “Overcast: Reliable Multicasting with an Overlay
Network,” Proc. Fourth Symp. Operating System Design and
Implementation (OSDI ’00), pp. 197-212, Oct. 2000.

[38] E. Zegura, K. Calvert, and S. Bhattacharjee, “How to Model an
Internetwork,” Proc. IEEE INFOCOM ’96, pp. 594-602, Mar. 1996.

[39] PlanetLab, http://www.planet-lab.org, 2007.

Xing Jin received the BEng degree in computer
science and technology from Tsinghua Univer-
sity, Beijing, in 2002. He is currently working
toward the PhD degree in the Department of
Computer Science and Engineering, Hong Kong
University of Science and Technology, Kowloon.
Since 2006, he has been a junior editor of the
Journal of Multimedia. His research interests
include overlay multicast, and its applications
and QoS issues, Internet topology inference,

end-to-end measurements, and peer-to-peer streaming. He is a student
member of the IEEE Computer Society. He received the Microsoft
Research Fellowship in 2005.

Wanqing Tu received the PhD degree from the
City University of Hong Kong in 2006. She is
currently a postdoctoral researcher of computer
science at the University College Cork, Ireland.
Her research interests include QoS, overlay
networks, wireless mesh networks, end-host
multicast, and distributed computing. She re-
ceived the Embark Postdoctoral Fellowship of
Ireland and the Best Paper Award in the 2005
International Conference on Computer Networks

and Mobile Computing (ICCNMC). She is a member of the IEEE
Computer Society.

S.-H. Gary Chan received the BSE degree (with
highest honors) in electrical engineering from
Princeton University, Princeton, New Jersey, in
1993, with certificates in applied and computa-
tional mathematics, engineering physics, and
engineering and management systems, and the
MSE and PhD degrees in electrical engineering
from Stanford University, Stanford, California, in
1994 and 1999, respectively, with a minor in
business administration. He is currently an

associate professor in the Department of Computer Science and
Engineering, Hong Kong University of Science and Technology,
Kowloon, and an adjunct researcher at Microsoft Research Asia,
Beijing. From 1998 to 1999, he was a visiting assistant professor of
networking with the Department of Computer Science, University of
California, Davis. From 1992 to 1993, he was a research intern at the
NEC Research Institute, Princeton. From 1993 to 1994, he was a
William and Leila Fellow at Stanford University. From 2003 to 2006, he
was the vice-chair of the IEEE ComSoc Multimedia Communications
Technical Committee (MMTC). He is a guest editor of the IEEE
Communications Magazine (special issue on peer-to-peer multimedia
streaming) and the Springer Multimedia Tools and Applications (special
issue on advances in consumer communications and networking). He
was the cochair of the Workshop on Advances in Peer-to-Peer
Multimedia Streaming for the 15th ACM International Conference on
Multimedia (Multimedia 2005), the 2006 IEEE GLOBECOM Multimedia
Symposium, and the 2005 IEEE ICC Multimedia Symposium. He is a
cochair of the 2007 IEEE ICC Multimedia Symposium. His research
interests include multimedia networking, peer-to-peer technologies and
streaming, and wireless communication networks. He is a member of
Tau Beta Pi, Sigma Xi, and Phi Beta Kappa and a senior member of the
IEEE Computer Society. He is the recipient of the Charles Ira Young
Memorial Tablet and Medal from the Princeton University and the 1993
POEM Newport Award of Excellence.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

850 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 6, JUNE 2008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

