
Scalable Real-Time Monitoring
for Distributed Applications

C.-H. Philip Yuen and S.-H. Gary Chan, Senior Member, IEEE

Abstract—In order to assess service quality of a networked application (such as a streaming session), distributed monitoring servers

need to continuously collect application-specific performance metrics in real time. Much of the previous work to address this is to use

distributed aggregation tree (DAT) rooted at each monitor. However, this approach often leads to high monitoring delay and network

stress. In this paper, we study a highly scalable monitoring network for distributed applications. In the network, there are distributed

monitors collecting application performance in two steps: first, client applications report their performance to some proxies by means of

a client overlay, and then the proxies report the performance to the distributed monitors using another proxy overlay. We first formulate

the problem to construct overlays minimizing monitoring delay. The problem is shown to be NP-hard. Then, we present a simple,

efficient, and scalable monitoring algorithm called SMon, which continuously reduces network diameter in real time in a distributed

manner. Through simulations and actual experimental measurements with implementation, we show that SMon achieves low

monitoring delay, network stress, and protocol overhead for distributed applications.

Index Terms—Distributed protocol, real-time network monitoring, peer-to-peer network, proxies

Ç

1 INTRODUCTION

IN recent years we have witnessed the deployment of
many large-scale distributed applications for file sharing,

video-on-demand (VoD), Internet TV, voice over IP (VoIP),
etc. For these applications, knowing their overall perfor-
mance in real time provides important insight into user
experience and network conditions. With such monitoring
performance, the administrators can respond in an appro-
priate and timely manner to offer good service level or
lower operating cost.

For example, if an unusually high packet delay, jitter, or
loss is detected in a certain Internet domain, some routers or
links may have failed. The local administrators can then
respond by checking and fixing that. Another example is
collecting real-time user loads at application servers. If the
load of a server is getting high, the administrator may turn
on some other servers to offer better quality of service. On
the other hand, if its load is low, the server may be turned
off, diverting the user traffic to some other servers to save
operational cost. Yet another example is to estimate the
number of concurrent users accessing a file or streaming
session. Knowing such popularity in real time leads to better
resource allocation (e.g., by tuning caching scheme and
allocating bandwidth). Furthermore, if a high user churn
rate is detected for an application in a certain Internet

domain, the administrator may turn on some proxies to
enhance network stability.

Given the importance of real-time monitoring, we
consider in this paper how to efficiently collect performance
statistics for large-scale applications (in terms of distribu-
tion, central tendency, statistical dispersion, etc.). A simple
approach to achieve this is to use a centralized architecture,
where all clients continuously feed back their performance
to some monitoring or log servers, the so-called monitors. By
pooling these feedbacks, the monitors can then summarize
the overall performance. This approach, however, suffers
from scalability problem because the monitor has to
maintain large number of connections and may be over-
whelmed by the volume of feedback traffic. Such “fan-in”
approach to the monitors also leads to much network stress.

To scale to large group, recent work has used a peer-to-
peer approach to aggregate the performance metrics. The
clients form a monitoring tree rooted at a monitor. Each
client sends its performance metrics upstream to its parents
for aggregation until the root is reached (i.e., each client is an
aggregation point of its children toward the root).1 Though
these schemes are scalable, they often have not considered
client fan out and monitoring delay in tree construction.
Furthermore, a large-scale application may have multiple
distributed monitors. Building a global aggregation tree for
each of the monitors leads to problems in scalability and
network stress. Because clients may churn (join, leave, or
fail) at any time, forming independent global trees rooted at
these monitors also make it difficult to isolate churns in one
region from the others.

We propose a highly scalable and highly efficient
monitoring network with multiple distributed monitors. To
achieve scalability and to better isolate churn effects, the
network consists of two tiers, the proxy tier and client tier.
Performance is aggregated in two steps: first, clients feed

2330 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012

. C.-H.P. Yuen is with the Department of Computer Science and
Engineering, The Hong Kong University of Science and Technology, Clear
Water Bay, Kowloon, Hong Kong. E-mail: chyuen@cse.ust.hk.

. S.-H.G. Chan is with the Department of Computer Science and Engineering,
Sino Software Research Institute, Risk Management and Business
Intelligence Program, The Hong Kong University of Science and
Technology, Clear Water Bay, Kowloon, Hong Kong, China.
E-mail: gchan@cse.ust.hk.

Manuscript received 26 Jan. 2011; revised 30 Oct. 2011; accepted 24 Jan.
2012; published online 3 Feb. 2012.
Recommended for acceptance by S. Rangarajan.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2011-01-0044.
Digital Object Identifier no. 10.1109/TPDS.2012.60. 1. The aggregate function may be MAX, MIN, SUM, AVG, COUNT, etc.

1045-9219/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

back their measured statistics to the proxies via an overlay
tree, then the proxies forward the statistics to the monitors
using yet another overlay tree among themselves. Both
clients and proxies have their own fan-out constraints due to
their processing capability and bandwidth.

We consider the important problem of jointly optimizing
the two tiers to minimize monitoring delay. We address this
design issue through the followings:

. Problem formulation and its complexity analysis: After
presenting the aggregation mechanism in this real-
time multimonitor proxy-assisted monitoring net-
work, we formulate our research problem, which is to
minimize the network diameter (i.e., the worst case
overlay delay from clients to monitors). We prove that
the problem is NP-hard.

. SMon: A distributed and adaptive algorithm for real-time
monitoring: We propose a simple, distributed, and
adaptive algorithm called SMon, which builds a low-
delay monitoring network in the presence of peer
churns.2 SMon continuously reduces monitoring
delay by adjusting the peers into better positions in
the overlay. It has constant runtime complexity due
to a randomized algorithm. The protocol is guaran-
teed to converge, and adaptive to peer churns.

. Simulation and experimental studies: We conduct
extensive simulation on SMon. We show that SMon
achieves substantially better performance as com-
pared with recent approaches (in terms of delay,
stress, etc.). Furthermore, we have implemented
SMon. Experimental measurements on real Internet
further confirm its adaptivity, effectiveness and low
overhead.

We briefly discuss previous work as follows: Research on
monitoring has been focusing on constructing Distributed
Aggregation Tree (DAT) (e.g., [1], [2], [3], [4], [5], [6]).
However, it has not considered the fan-out constraint of
peers and how to minimize monitoring delay. Though some
strong heuristics and approximation algorithms have been
proposed to reduce the network diameter [7], [8], their
centralized nature is not applicable to a large-scale dynamic
network we consider here. There has been much work on
distributed algorithms which may be used for network
monitoring [8], [9], [10], [11]. However, they consider either a
single-source or a single-tier network. The work of Split-
Stream constructs multiple multicast trees with structured
peer-to-peer overlay, rather than a single overlay on an
unstructured two-tier network as we considered here [12].
Given that the two tiers of our monitoring network are
coupled, the work cannot be directly applied to solve our
problem. Our work differs from network inference in that we
are interested in the construction of overlay trees to study
the performance of overlay nodes while network inference is
to deduce underlay network performance from pairwise
overlay path measurement [13], [14].

The rest of this paper is organized as follows: We first
present the monitoring network under consideration and its
problem formulation in Section 2. In Section 3, we discuss
how peer churns are handled in SMon. We describe in detail

how SMon adaptively builds an overlay to reduce delay in
Section 4. Illustrative simulation results is discussed in
Section 5. We conclude in Section 6. The supplementary file,
which can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TPDS.
2012.60, contains more detailed literature survey, illustra-
tions, and pseudocodes of the operations of SMon algo-
rithms, NP-hardness proof of our problem, and more
complete simulation and experimental results.

2 SYSTEM DESCRIPTION AND PROBLEM

FORMULATION

2.1 System Description

We show in Fig. 1 the two-tier monitoring network under
consideration. Multiple monitors distributed in the network
are to collect global performance statistics. The proxy-tier
consists of distributed proxies to aggregate statistics, while
the client-tier consists of clients whose performance is to be
monitored. The clients form an aggregation tree rooted at the
proxies. The proxies form an efficient spanning tree among
themselves to exchange their aggregated data from their
clients. They forward the aggregated data in real time to the
monitors attached to some proxies. The problem is to
construct efficient overlays in both client and proxy tiers
such that the monitoring delay (i.e., the maximum delay from
the clients to monitors) is minimized. To address this, we
need to answer two inter-related questions: 1) What should
the optimal aggregation trees be for the client and proxy
tiers? 2) Which clients are associated with which proxies, and
which monitors are connected with which proxies?

As in DAT, SMon makes use of data aggregation for
efficient monitoring. We show an aggregation example in
Fig. 1. The number inside the rectangle denotes the
performance metric of the client. For concreteness, let’s take
the summation as our example of aggregate function (i.e.,
the monitors are interested in the sum of the metric in the
whole network).3 A client first sends its measured metric
upstream to its parent for aggregation until a proxy is
reached. For ease of route maintenance, the proxies form a
spanning tree among themselves to further aggregate their
metrics. This is done by sending to an outgoing link the

YUEN AND CHAN: SCALABLE REAL-TIME MONITORING FOR DISTRIBUTED APPLICATIONS 2331

Fig. 1. A multimonitor proxy-assisted monitoring network.

2. In this paper, a “peer” refers to either a monitor, proxy, or client.
3. Note that some other more complex aggregation functions may be

used, such as grouping, filtering, etc.

aggregated data from all the other links in the tree. Finally,
the proxy with attached monitor(s) further sends the
aggregated metric to the monitors.

Clearly, the monitoring delay is the sum of two parts: 1)
the delay from a client to its proxy through the aggregation
tree in the client-tier; and 2) the delay from that proxy to the
monitors (in the proxy-tier) through the spanning tree. We
study how to minimize the worst case delay (i.e., diameter)
subject to degree bounds of the clients and proxies (the
maximum connections it can establish with other peers).
This is not a trivial problem as the two tiers are coupled;
simply considering the two tiers independently would not
lead to optimal solution.

2.2 Problem Formulation and Its Complexity

We now formulate the research problem of minimizing the
diameter of the monitoring overlay. Let M, P, and C the
disjoint sets of all the monitors, proxies, and clients,
respectively. We model the two-tier overlay network as an
undirected graph G ¼ ðV ;EÞ, where V is the set of vertex
representing all the participating nodes given by

V ¼M[P [C; ð1Þ

and E is the set of overlay edges. Let t 2 fIP;CCg be either
the proxy-tier (IP) or client-tier (CC). For any node v 2 V , let
its degree in t be dtðvÞ and its maximum degree (degree
bound) in t be dtmaxðvÞ, i.e.,

dtðvÞ � dtmaxðvÞ; 8v 2 V ; t 2 IP;CCf g: ð2Þ

Let lij be the latency of the edge i; jh i 2 E. Let IRðu; vÞ be the
route from node u to node v in the two-tier overlay tree.
Denote the delay from node u to node v along IRðu; vÞ as
Dðu; vÞ given by

Dðu; vÞ ¼
X

i;jh i2IRðu;vÞ

lij: ð3Þ

Define �ðvÞ the worst case delay from node v to any monitor
m given by

�ðvÞ ¼ max
m2M

Dðv;mÞ: ð4Þ

The Degree-Bounded Minimum-Delay Two-Tier Overlay
(DBMDTTO) Problem: The DBMDTTO problem is to build
a two-tier overlay tree T of G, which minimizes the worse
case client-to-monitor delay, i.e.,

min max
c2C

�ðcÞ; ð5Þ

subject to (2).
The DBMDTTO problem is NP-hard. Please see the

supplementary file, available online, for the proof.

3 HANDLING PEER DYNAMICS IN SMON

Given the problem is NP-hard, we propose a simple,
distributed and effective algorithm called SMon for real-
time monitoring. In this section, we first present the
notations and terminologies used in the discussion of SMon.
Then, we discuss how SMon handles peer churns, i.e., joins,
leaves, or failures. Illustrative examples and pseudocodes of

the schemes can be found in the supplementary file,
available online.

3.1 Notations and Terminology

Let T ðV ;ET Þ be the entire overlay tree constructed out of
GðV ;EÞ, where ET � E. Denote T i;jh i (or T j;ih i) the partial
tree of T that contains proxy j (or i) after the removal of the
overlay link i; jh i. Clearly,

T i;j;h i [i; jh i [T j;ih i ¼ T ðV ;ET Þ: ð6Þ

Further, let M i;jh i, P i;jh i, and C i;jh i be the sets of all the
monitors, proxies, and clients, respectively, in T i;jh i.

Let �ðpÞ be the worst case delay from proxy p to all the
monitor(s) directly attached to it, which is given by

�ðpÞ ¼ max
m: 8m2M; p;mh i2ET

lpm: ð7Þ

Clearly, from (4), �ðpÞ � �ðpÞ; 8p 2 P. Further, define
� i;jh iðvÞ the worst case delay from node v to any monitor in
T i;jh i given by

� i;jh iðvÞ ¼
maxm2M i;jh iDðv;mÞ; if M i;jh i 6¼ ;;
�1; otherwise:

�
ð8Þ

Let Tv be the partial tree of T in client-tier rooted at v. Let
�ðvÞ be the worst case delay from any client c in Tv to node v,
as given by

�ðvÞ ¼ max
c2Tv

Dðc; vÞ: ð9Þ

Define �ðpÞ the worst case delay from any client in T to
proxy p, which can be written as

�ðpÞ ¼ max
c2C

Dðc; pÞ: ð10Þ

Clearly, �ðpÞ � �ðpÞ; 8p 2 P. Further define � i;jh iðpÞ the
worst case delay from any client in T i;jh i to proxy p:

� i;jh iðpÞ ¼
maxc2C i;jh iDðc; pÞ; if C i;jh i 6¼ ;;
�1; otherwise:

�
ð11Þ

Consider all the client-to-monitor aggregation paths that
pass through proxy p. There can be two exclusive cases to
consider: 1) the client is in Tp; and 2) the client is not in Tp.
Clearly, the worst case delay of the paths in Case 1 is
given by

�ðpÞ þ �ðpÞ; ð12Þ

while the worst case delay of the paths in Case 2 is given by

max
q: 8q2P; p;qh i2ET

� q;ph iðpÞ þ � p;qh iðpÞ
� �

: ð13Þ

We define �ðpÞ the worst case delay of all the client-to-
monitor aggregation paths that pass through proxy p, which
is given by

�ðpÞ ¼

max
�ðpÞ þ �ðpÞ;

maxq: 8q2P; p;qh i2ET � q;ph iðpÞ þ � p;qh iðpÞ
� �

 !
:
ð14Þ

We show in Fig. 2 an example of the above symbols
(see Table 1 for nomenclature). In Fig. 2, the delay on all

2332 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012

the overlay links are the same. The path for �ðp3Þ is ðp3 �
p2�p1�m1Þ; the path for � p3;p4h iðp3Þ is ðp3�p4�m2Þ; the path
for �ðp3Þ is ðc2�c1�p1�p2�p3Þ; the path for � p3;p4h iðp2Þ is

ðc4�p4�p3�p2Þ; and the path for �ðp3Þ is ðc2�c1�p1�p2�
p3�p4�m2Þ.

3.2 Monitor Churns

A joining monitor should connect to a proxy neighbor that
leads to low delay from all the clients. As in many distributed

systems such as peer-to-peer networks, there is a Rendezvous

Point (RP) in the network, which is essential to bootstrap the

joining process. The RPs in SMon are well-known servers

performing different functions as suitable for monitors,
proxies, and clients. All peers should know the RPs. Note

that the RP load is low as it is only connected at the join times
of requests.

A new monitor m receives from RP a random list of

proxies as the potential proxy neighbors. It may seek more

potential neighbors through gossip. After receiving the
candidates, the monitor requests �ðpÞ of each of the potential

proxy neighbor p and evaluates ð�ðpÞ þ lpmÞ. After comput-
ing the delays, m connects to the proxy neighbor p with

available degree and with the lowest ð�ðpÞ þ lpmÞ.
When a monitor is about to leave, it informs its attached

proxy. Upon detecting a monitor has left, the proxy it
attached to updates its set of neighbors. The failure of a

monitor is detected by its absence of heart-beat. In this case,

the proxy it attached to also updates its set of neighbors.

3.3 Client Churns

An arriving client should connect to a parent that leads to low
delay to all the monitors. A new client c receives from RP a

random list of proxies and clients as its potential parents.
Client c then requests �ðvÞ from each of the potential parent v

and evaluates ð�ðvÞ þ lcvÞ with respect to each of them. The

client may request more peers in a gossip manner. After
computing the delays, c connects to the parent v with

available degree of the lowest ð�ðvÞ þ lcvÞ.
When a client is about to leave, it initiates a leave

message to its parent, asking the parent to update its set of

children. It also sends a message to all its children, asking

them to look for new parents. The repair process of the
children is two-phase. First, they will try to connect to their

grandparent. If the first phase fails (due to, for example,

their grandparent does not have available degree), they will
start the join process.

In order to ensure connectivity in the join process, each
of the clients maintains a Root-Path that begins from its root
proxy toward itself.4 Keeping the Root-Path is important
because in the rejoin process, a peer in the potential-parent
list returned by RP may be a descendant of the repairing
client. A loop will exist if a client takes its descendant as its
parent. The repairing client eliminates looping (hence
overlay disconnection) in the rejoin process by examining
whether the Root-Path of the potential parents contains its
own identity or not.

Note that the length of the Root-Path of a node is the
same as its depth in the monitoring tree. The tree in steady
state is very close to a complete tree as SMon effectively
utilizes the available degrees of nodes to form a low-delay
overlay. As a result, the tree depth, and hence the maximum
length of Root-Path, is OðlognÞ. It is clear that the memory
and traffic overhead to keep the Root-Path updated is low.

A client may fail at anytime. To handle this, each client
regularly sends its heartbeat to its parent and children.
When a client finds its parent fails, it looks for a new parent
using the repair process. On the other hand, when it finds
some of its children fail, it updates its set of children.

3.4 Proxy Churns

A newly arrived proxy should look for a proxy neighbor
that leads to low delay to all the monitors. A new proxy p

receives a random list of potential proxy neighbors from RP.
It then requests �ðqÞ of each of the potential proxy neighbor
q and evaluates ð�ðqÞ þ lpqÞ with respect to each of them. It
may get more candidates through gossip. After computing

YUEN AND CHAN: SCALABLE REAL-TIME MONITORING FOR DISTRIBUTED APPLICATIONS 2333

Fig. 2. Notations.

TABLE 1
Table of Nomenclature

4. Such root path can be easily maintained as follows: A root proxy sends
the Root-Path that contains its identity to its children. The child concatenates
its identity to the Root-Path and sends to its children, and so on.

the delays, p connects to proxy neighbor q with available
degree of the lowest ð�ðqÞ þ lpqÞ.

When a proxy is about to leave, it initiates a leave message
to all of its monitor neighbors, proxy neighbors, and client
children, asking them to rejoin the network. To guarantee
connectivity in the spanning tree after the rejoin process, we
put a special node in the proxy-tier network, termed virtual
root, which acts as the root of proxy-tier (note that the virtual
root may be colocated with the RP). The virtual root connects
to exactly one of the proxies and will not leave the network
(like RP). The only responsibility of the virtual root is to send
the Root-Path that contains its identity to its proxy neighbor
p. Proxy p will then concatenate its identity to the Root-Path
and send to its proxy neighbors. By doing so, we can
maintain an unidirectional path in the proxy-tier, and thus
the repairing proxy can eliminate looping (hence overlay
disconnection) in the rejoin process. The operation of how
proxies handle neighbor failures is similar to that of clients.

4 ADAPTATION TO REDUCE DELAY IN SMON

The monitoring network should keep evolving over time to
accommodate peer churns by continuously moving peers
into better position through adaptation to reduce delay. Each
peer in SMon periodically runs an adaptation algorithm. An
adaptation is performed if and only if it reduces the worst
case source-to-end delay. As will be clear in the following,
the cost of dynamic adaptation is bounded by the degree of
each peer. As the maximum degree of each peer is a
constant, our adaptation algorithms achieve constant-time
complexity (i.e., Oð1Þ).

It worths pointing out here that our focus is on overlay to
monitor performance (i.e., the control plane). The plane is
independent of and separated from data distribution (i.e., the
data plane). The planes may treat each other as background
traffic and handle errors independently. For performance
monitoring, the control plane does not have to be 100 percent
reliable, i.e., occasional packet losses due to adaptation may
be tolerated or recovered through retransmissions with best
effort. In the following, we discuss how the monitors,
proxies, and clients adapt to achieve low monitoring delay.
We prove the convergence of the algorithms in the
supplementary file, available online.

4.1 Monitor Adaptation

A monitorm, attached to a proxy p, periodically requests �ðqÞ,
where q is the proxy neighbors of p. It evaluates ð�ðqÞ þ lmqÞ.
The monitor replaces the proxy with the lowest delay.

4.2 Proxy Adaptation

A proxy p periodically broadcasts a Migration Request
Message (MRM) to its proxy neighbors with a time to live
(TTL) value, which is decremented by 1 each time it is
forwarded until it hits 0. When a proxy q with available
degree receives MRM, it replies p with a GRANT message,
which is a tuple of � p;rh iðqÞ; � p;rh iðqÞ; lpq

� �
, where r is p’s one-

hop proxy neighbor.
Proxy p may receive a number of GRANT messages. For

each replier q, proxy p considers a new two-tier overlay
tree constructed by replacing the overlay link p; rh i with the
overlay link p; qh i, and calculates �ðpÞ for the overlay tree

according to (14) using the tuple. The proxy neighbor that
yields the smallest �ðpÞ is chosen as the new neighbor.

4.3 Client Adaptation

There are two adaptation cases for clients: Grandparent
Migration where a client chooses its grandparent as its better
parent, and Proxy Migration where a client chooses a better
proxy to associate with. Both cases aim at pushing clients
closer to monitors to reduce delay subject to the degree
bounds. They are discussed below:

. Grandparent Migration:
A client c sends a migration request to its grand-
parent d. The grandparent d with available degree
adopts client c as its child if this reduces the delay
from c toward monitors, i.e., client c leaves its
current parent and connects to d if

dCCðdÞ < dCC
maxðdÞ; ð15Þ

and

lcd þ �ðdÞ < �ðcÞ: ð16Þ

If d does not have available degree to perform the
above step, it “triggers” one of its children to seek for a
new parent so as to free itself up for client c. The clients
being affected in this case are c and the triggered
client. Clearly, the worst-case client-to-monitor delay
of the affected clients before adaptation is

max �ðcÞ þ �ðcÞ; �ðeÞ þ �ðeÞð Þ; ð17Þ

where e is the triggered client. Client d will trigger its
child e that has the smallest ðled þ �ðeÞÞ to seek for a
new parent to achieve a much balanced overlay tree.
Note that if e is the parent of c, c will leave e in the
adaptation. Therefore, in this case �ðeÞ becomes

max
v2 TenTcf g

�ðvÞ � �ðeÞð Þ: ð18Þ

Child e will seek for a parent that yields the
smallest client-to-monitor delay from a set consisting
of d’s children and c. This triggering will be
performed if and only if the worse case client-to-
monitor delay of the affected clients after adaptation
is lower than (17).

. Proxy Migration:
A client c, given its parent is a proxy p, requests
from each of p’s proxy neighbors with available
degree labeled as q�ðqÞ and evaluates ðlcq þ �ðqÞÞ.
Client c leaves its current parent and connects to
proxy q if this reduces the delay toward monitors,
i.e., it switches if

dCCðqÞ < dCC
maxðqÞ; ð19Þ

and

lcq þ �ðqÞ < �ðcÞ: ð20Þ

If q does not have available degree to perform the
above step, it may trigger one of its children to seek
for a new parent so as to free itself up for client c. The
clients being influenced in this case are c and the

2334 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012

triggered client and their descendants. The worst case
client-to-monitor delay of the influenced clients
before adaptation is (17). The selection of the
triggered client and its new parent are the same as
that of the case of Grandparent Migration. This trigger
case will be performed if and only if the worst case
client-to-monitor delay of the influenced clients after
adaptation is lower than (17).

Clients only migrate to their grandparent (found in their
Root-Path) to reduce the monitoring delay and the main-
tenance overhead on the list of potential parents. Note that it
is possible for a client to connect to a parent that is not in its
current path to the root monitor. This is the case when the
client is a direct child of a proxy and it finds a better parent
in one of the neighbors of the proxy.

5 ILLUSTRATIVE SIMULATION RESULTS

We have conducted extensive simulation and experimental
studies on SMon. This section presents our simulation
results. The experimental results on our implementation of
SMon are shown in the supplementary file, available online.

5.1 Simulation Environment and Metrics

We have implemented an event-driven simulation on SMon
using C++. We use Brite [15] to generate a two-level top-
down hierarchical topology consisting of eight autonomous
systems each of which has 625 routers (yielding a total of
5,000 routers and about 20,000 links). Brite also provides us
link latency in millisecond. Peers are attached to the routers
randomly. Proxies and clients arrive according to a Poisson
process with rate �p (request/minute) and �c (request/
minute), respectively. The sojourn time of the proxies and
clients are exponentially distributed with mean 1=�p
(minutes) and 1=�c (minutes), respectively. Clearly, the
number of proxies and clients in the system is Poisson with
mean �p=�p and �c=�c, respectively [16]. Unless otherwise
stated, we use the following baseline parameters: �p ¼ 0:2
request/minute, 1=�p ¼ 100 minutes, �c ¼ 20 request/min-
ute, 1=�c ¼ 40 minutes, proxy-tier degree bound ¼ 10,
client-tier degree bound ¼ 5, number of monitors ¼ 3,
adaptation interval ¼ 1 minute, TTL ¼ 4, and processing
delay per hop ¼ 30 msec.

We use the following evaluation metrics in our study:

. Monitoring delay: Monitoring delay is the path delay
from a client to a monitor. We are interested in its
maximum (i.e., diameter), average, and distribution
among all the clients.

. Network stress: Network stress is defined as the
average number of connections established in an
used underlay link.

. Network overhead: Network overhead is defined as the
average number of request messages in adaptation
sent in the network per unit time (including those
flooded ones).

We compare SMon performance with the following
traditional and recent schemes:

. Random-tree: In this scheme, the clients form a tree
rooted at a proxy by connecting to a random parent
subject to their degree bounds. The proxies form
another spanning tree among themselves by connect-
ing to a random neighbor subject to the degree
bounds. The scheme is simple to implement, and
may approximate many DAT approaches making use
of DHT.

. Multi-DAT: In this scheme, the proxies in the proxy-
tier form multiple DATs, each of which rooted at a
monitor. We use closest parent scheme for our
overlay construction. Newly arrived peers choose
parents that are closest to them, subject to the degree
bound. This scheme is simple, and captures locality
of the peers.

. STS: In this scheme, the clients form a DAT rooted at
the proxies using closest parent scheme. The scheme
builds the proxy-tier network using Shared Tree
Streaming (STS) protocol [10]. STS has been shown
to achieve low network diameter.

5.2 Illustrative Results

We plot in Fig. 3 the maximum monitoring delay (i.e.,
diameter) against the number of clients. We increase the
number of clients by increasing 1=�c (as the expected
number of clients in the system is �c=�c). The delay in all
schemes increases with the number of clients. This is
expected due to a larger overlay. SMon outperforms the
other three schemes because its peers continuously move
into better positions in the overlay so as to reduce
the monitoring delay. Both Multi-DAT and STS do not
perform so well as SMon, because they have not considered
joint optimization of proxy tier and client tier as SMon does.
Random-Tree performs the worst because it has many long
aggregation paths.

The cumulative distribution function (CDF) of the mon-
itoring delay of the four schemes is shown in Fig. 4. Clearly,
the delay of SMon is lower than the other three schemes. This
shows the effectiveness of the adaptation mechanism in

YUEN AND CHAN: SCALABLE REAL-TIME MONITORING FOR DISTRIBUTED APPLICATIONS 2335

Fig. 3. Maximum monitoring delay versus number of clients.
Fig. 4. Monitoring delay distribution.

reducing delay of SMon. Moreover, the variation of the delay
of SMon is lower than the other three schemes as it has lower
spread in delay.

We plot in Fig. 5 the network stress against the number of
clients. The stress in all schemes increases as the number of
clients increases. This is because the number of connections
increases when the network size increases. SMon outper-
forms the other three schemes as the number of clients
increases. This is because in SMon, peers continuously move
into better positions in the overlay. This eliminates many
long connections and saves much bandwidth in the network.
More efficient routing leads to lower network stress. Multi-
DAT builds multiple DATs each for a monitor overlapping
each other, hence has a higher stress than STS. The stress in
Random Tree is the highest, because the connections are
made randomly with some physical links may be used
multiple times by different peers.

We plot in Fig. 6 the network diameter against the
degree bound of the client-tier. The delay in all schemes
decreases as the degree bound increases. This is because a
larger bound yields a flatter overlay, therefore lowering the
delay. The delay of SMon is substantially lower than the
others as SMon better utilizes the available degrees of peers
to reduce delay.

We plot in Fig. 7 network overhead against number of
clients. The overhead increases with the number of clients,
because the more the clients, the more the messages are
introduced into the network. The overhead of SMon is low,
which can be illustrated by picking a point in the graph. Take
800 clients, which means a total of 19.5 message/second.
Assume the control message is of size 8 kb (a reasonable
estimate). Then each client generates on average (19.5
message/second/800� 8 kb) ¼ 0:195 kb/second overhead.

Because the control traffic shares the same paths on the

overlay tree as monitoring traffic, it has a stress of 1.2 (see

Fig. 5); each used underlay link hence has only on average

(0.195 kb/second � 1:2Þ ¼ 0:234 kb/second control traffic

overhead. This is negligible as compared with the data rate

and monitoring traffic of the application.

6 CONCLUSIONS

In this paper, we have studied a highly scalable real-time

monitoring network with multiple monitors for large-scale

applications. Our monitoring network uses data aggregation

and consists of two tiers, the proxy tier and client tier. In the

proxy tier, multiple proxies are set up to isolate peer churns.

In the client tier, distributed clients form an overlay tree to

aggregate their performance data.
We have studied minimizing the monitoring delay of this

network. We first formulate the problem and prove that it is

NP-hard. We then propose and study a simple, efficient, and

distributed algorithm called SMon, which continuously

reduces the monitoring delay in the presence of peer churns.

Our simulation results show that SMon indeed achieves

substantially lower delay and network stress than existing

and state-of-the-art approaches. It also has low-communica-

tion overhead. We have implemented SMon and our

experimental measurements further confirm its adaptivity

and effectiveness.

ACKNOWLEDGMENTS

This work was supported, in part, by the General Research

Fund from the Research Grant Council of the Hong Kong

Special Administrative Region, China (611209), and Google

Mobile 2014 and Faculty Research Awards.

REFERENCES

[1] B. Yu, J. Li, and Y. Li, “Distributed Data Aggregation Scheduling
in Wireless Sensor Networks,” Proc. IEEE INFOCOM, 2009.

[2] S. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong, “TAG: A
Tiny AGgregation Service for Ad-Hoc Sensor Networks,” ACM
SIGOPS Operating Systems Rev., vol. 36, no. SI, pp. 131-146, 2002.

[3] R.V. Renesse, K.P. Birman, and W. Vogels, “Astrolabe: A Robust
and Scalable Technology for Distributed System Monitoring,
Management, and Data Mining,” ACM Trans. Computer Systems,
vol. 21, no. 2, pp. 164-206, 2003.

[4] P. Yalagandula and M. Dahlin, “A Scalable Distributed Informa-
tion Management System,” Proc. Conf. Applications, Technologies,
Architectures, and Protocols for Computer Comm., pp. 379-390, 2004.

2336 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012

Fig. 5. Network stress versus number of clients.

Fig. 6. Maximum monitoring delay versus client-tier degree bound.

Fig. 7. Network overhead versus number of clients.

[5] I.A. Dahlia, I. Abraham, D. Malkhi, and O. Dobzinski, “LAND:
Locality Aware Networks for Distributed Hash Tables,” Technical
Report 2003-75, Leibnitz Center of the School of Computer Science
and Eng., the Hebrew Univ. of Jerusalem, 2003.

[6] W.-P.K. Yiu, X. Jin, and S.-H.G. Chan, “VMesh: Distributed
Segment Storage for Peer-to-Peer Interactive Video Streaming,”
IEEE J. Selected Areas in Comm., special issue on advances in peer-
to-peer streaming systems, vol. 25, no. 9, pp. 1717-1731, Dec. 2007.

[7] K.H. Vik, C. Griwodz, and P. Halvorsen, “Constructing Low-
Latency Overlay Networks: Tree Vs. Mesh Algorithms,” Proc.
IEEE 33rd Conf. Local Computer Networks (LCN ’08), pp. 36-43, 2008.

[8] E. Brosh, A. Levin, and Y. Shavitt, “Approximation and Heuristic
Algorithms for Minimum-Delay Application-Layer Multicast
Trees,” IEEE/ACM Trans. Networking, vol. 15, no. 2, pp. 473-484,
Apr. 2007.

[9] S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, and S.
Khuller, “OMNI: An Efficient Overlay Multicast Infrastructure for
Real-Time Applications,” Computer Networks, vol. 50, no. 6,
pp. 826-841, 2006.

[10] T.M. Baduge, A. Hiromori, H. Yamaguchi, and T. Higashino, “A
Distributed Algorithm for Constructing Minimum Delay Span-
ning Trees under Bandwidth Constraints on Overlay Networks,”
Systems and Computers in Japan, vol. 37, no. 14, pp. 15-24, 2006.

[11] S.-H. G. Chan and F. Tobagi, “Distributed Servers Architecture for
Networked Video Services,” IEEE/ACM Trans. Networking, vol. 9,
no. 2, pp. 125-136, Apr. 2001.

[12] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “Splitstream: High-Bandwidth Multicast in Co-
operative Environments,” SIGOPS Operating Systems Rev., vol. 37,
pp. 298-313, Oct. 2003.

[13] Y. Chen, D. Bindel, H.H. Song, and R.H. Katz, “Algebra-Based
Scalable Overlay Network Monitoring: Algorithms, Evaluation,
and Applications,” IEEE/ACM Trans. Networking, vol. 15, no. 5,
pp. 1084-1097, Oct. 2007.

[14] M. Coates, Y. Pointurier, and M. Rabbat, “Compressed Network
Monitoring for IP and All-Optical Networks,” Proc. Seventh ACM
SIGCOMM Conf. Internet Measurement (IMC ’07), pp. 241-252, 2007.

[15] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: Universal
Topology Generation from A User’s Perspective,” Proc. MASCOTS
’01, Jan. 2001.

[16] L. Kleinrock, Queueing Systems: Theory, vol. 1. John Wiley & Sons,
1976.

C.-H. Philip Yuen received the BEng degree in
computer science and the MPhil degree in
computer science and engineering from the
Hong Kong University of Science and Technol-
ogy (HKUST), Kowloon, in 2008 and 2010,
respectively. His research interests include
computer networks, multimedia networking,
and peer-to-peer systems.

S.-H. Gary Chan (S’89-M’98-SM’03) received
the BSE degree (highest honor) in electrical
engineering from Princeton University, Prince-
ton, NJ, in 1993, with certificates in applied and
computational mathematics, engineering phy-
sics, and engineering and management systems
and the MSE and PhD degrees in electrical
engineering from Stanford University, Stanford,
CA, in 1994 and 1999, respectively, with a minor
in business administration. He is currently an

associate professor of the Department of Computer Science and
Engineering, director of Sino Software Research Institute, and co-
director of Risk Management and Business Intelligence program, The
Hong Kong University of Science and Technology (HKUST), Hong
Kong. His research interest includes multimedia networking, peer-to-
peer streaming and technologies, and wireless communication net-
works. He has been an associate editor of IEEE Transactions on
Multimedia (2006-2011), and is a vice-chair of Peer-to-Peer Networking
and Communications Technical subcommittee of IEEE Comsoc Emer-
ging Technologies Committee. He has been guest editors of IEEE
Transactions on Multimedia (2011), IEEE Signal Processing Magazine
(2011), IEEE Communication Magazine (2007), and Springer Multi-
media Tools and Applications (2007). He was the TPC chair of IEEE
Consumer Communications and Networking Conference (CCNC) 2010,
Multimedia symposium in IEEE Globecom (2007 and 2006), and IEEE
ICC (2007 and 2005), and Workshop on Advances in Peer-to-Peer
Multimedia Streaming in ACM Multimedia Conference (2005). He is the
recipient of Google Mobile 2014 award in 2010 and 2011, and is a
member of honor societies Tau Beta Pi, Sigma Xi, and Phi Beta Kappa.
He has been a visiting professor/adjunct researcher in Microsoft
Research Asia (2000-11), research collaborator at Princeton University
(09), visiting associate professor at Stanford University (2008-2009),
director of Computer Engineering Program at the HKUST (2006-2008),
visiting assistant professor in Networking at University of California at
Davis (1998-1999), and research intern at the NEC Research Institute,
Princeton, NJ (1992-1993). He was a William and Leila Fellow at
Stanford University (1993-94). At Princeton, he was the 1993 recipient of
the Charles Ira Young Memorial Tablet and Medal and the POEM
Newport Award of Excellence. He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

YUEN AND CHAN: SCALABLE REAL-TIME MONITORING FOR DISTRIBUTED APPLICATIONS 2337

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

