
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 9, NO. 2, APRIL 2001 125

Distributed Servers Architecture for Networked
Video Services

S.-H. Gary Chan, Member, IEEE,and Fouad Tobagi, Fellow, IEEE

Abstract—In an on-demand video system, the video repository
generally has limited streaming capacities and may be far from the
users. In order to achieve higher user capacity and lower network
transmission cost, distributed servers architecture can be used,
in which multiple local servers are placed close to user pools and,
according to their local demands, dynamically cache the contents
streamed from the repository. We study in this paper a number
of caching schemes as applied in the local servers depending on
whether the repository is able to multicast movie contents to the
local servers or not, and whether the local servers can exchange
their cached contents among themselves or not. Our caching
schemes keep a circular buffer of data for the movie requested,
and hence movies are partially cached. By adjusting the size of
the buffer, such caching is able to achieve better tradeoff between
network channels and local storage as compared to the traditional
caching in which a movie is treated as an entity. For each caching
scheme, we study the tradeoff between the local storage and the
network channels, and address how the total cost of the system
can be minimized by appropriately sizing the buffer. As compared
to a number of traditional operations (request batching and
multicasting, true-VOD, etc.), we show that distributed servers
architecture is able to achieve much lower system cost to offer
on-demand video services.

Index Terms—Caching schemes, distributed servers architec-
ture, network channels and local storage tradeoff, unicast and
multicast, video-on-demand.

I. INTRODUCTION

A DVANCES in computer and networking technologies
have made on-demand video services (video-on-demand,

or VOD) a reality. There are many important video services
pertaining to entertainment, education, advertising and infor-
mation, such as movie-on-demand, distance learning, home
shopping, and interactive news [1]–[4].

In an on-demand video system (i.e., videos are displayed
upon user request with negligible delay), a number of repository
servers such as tertiary libraries or jukeboxes (collectively re-
ferred to as a repository) store all the video contents of interest
to a large number of geographically distributed users. If videos
were to be streamed directly to the users, the user capacity
in the system would be limited by the streaming capacity

Manuscript received January 21, 2000; revised July 20, 2000; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor E. Biersack. This work
was supported in part by the Center for Telecommunications at Stanford Univer-
sity, and by the Areas of Excellence (AoE) on Information Technology funded
by the University Grant Council in Hong Kong, and by a Direct Allocation Grant
of Hong Kong Research Grant Council. This work was presented in part at the
IEEE International Conference on Communications, June 1999.

S.-H. G. Chan is with the Department of Computer Science, Hong Kong
University of Science and Technology, Kowloon, Hong Kong (e-mail:
gchan@cs.ust.hk).

F. Tobagi is with the Department of Electrical Engineering, Stanford Univer-
sity, Stanford, CA 94305 USA.

Publisher Item Identifier S 1063-6692(01)03234-4.

of the repository. Such capacity can be increased by using a
hierarchy of servers, in which multiple streaming servers cache
the movies delivered from the repository and stream them to
the users.1 If the streaming servers were co-located with the
repository, the transmission cost incurred in streaming videos
to remote users might be high. To overcome this problem, as
well as to take advantage of the access locality and demand
characteristics of the user pool, the streaming servers may be
placed close to the user clusters, thus forming a “distributed
servers architecture.” Such a distributed servers architecture
in fact has been discussed previously [3], [5]. The system is
able to achieve scalable storage and streaming capacities by
introducing more repository servers and local servers as the
traffic increases.

We consider in this paper that a cost is associated with storing
a movie in a local server depending on how much and for how
long the storage is used (such a “storage utility” model is in fact
being offered by some companies, in which one gets storage
whenever and as much as one needs, and pays only for what
one uses). Suppose that a 1-GB disk costing today about $200
is in use for a certain number of hours per day, say, six hours.
The disk is to be amortized over a period of one year. The
cost of storage is then given by $200/(365 days6 h/day)
$0.091/h per GB. Consider the streaming rate of a movie to be

Mb/s (MPEG-II quality). Then one minute of video
data (of 0.0375 GB) costs 0.091/h0.0375 $3.42 10 /h

$5.71 10 /min of storage. From above, we see that the
storage cost depends not only on how large the data is, but also
on how long it is stored. If we take into consideration the cost
due to data redundancy for fault tolerance (e.g., by means of
mirroring or introducing error checking overheads) and the cost
of server streams (which may be a function of the storage used),
the storage cost would be higher.

Furthermore, we consider that a cost is associated with
streaming a movie from the repository to the remote users. The
cost of the network channel may range from low (e.g., when the
Internet is used) to quite high (e.g., when satellite channels are
used). In Table I, we show some values of the channel cost per
minute, (for the case $0.03/(minchannel), the delivery
of a 100-min movie costs $3, a reasonable cost for on-demand
services). Also shown is a parametergiven by the ratio of the
storage cost given above (i.e., $5.7110 /min of storage for
a 1-min video clip) to (is hence the relative cost of storage
with respect to that of the network channel). From the table, we
see that likely ranges from – (in channel/min, or
simply, in /min) for on-demand services.

1In this paper, we use the terms “movie” and “video” interchangeably to refer
to a file of long streaming duration, say, more than 30 minutes.

1063–6692/01$10.00 © 2001 IEEE

126 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 9, NO. 2, APRIL 2001

TABLE I
VALUES OF� AND (BASED ON 1 GB DISK OF $200, AMORTIZED OVER A

YEAR WITH USAGE OF6 H/DAY, AND b = 5 Mb/s)

Fig. 1. � for moviei in a video system with 500 movies and� = 4000 req/h
(geometric video popularity).

Consequently, there is a tradeoff between using a long-haul
network channel to deliver a movie and storing the movie lo-
cally (thus saving on communication cost): if the demand for
the movie is high, we should store the movie locally so as not
to incur too often network transmission cost; on the other hand,
if the demand is low, we should stream the movie directly from
the repository (the so-called “true-VOD” case) so as not to incur
too much local storage cost. For the movies of intermediate pop-
ularity, we should cache thempartially in order to achieve the
tradeoff.

Since some movies are popular while others are not, and the
popularity may change over time, there is a need to decide which
movie and how much of the movie should be cached locally
given its request rate in order to minimize the system cost. Given
the dynamic nature of the request rate, it is important that such
a decision be made continuously over time. (In other words,
the repository and local servers may have to be constantly ex-
changing movies.) For instance, the introduction of a new lec-
ture or movie title can change the popularity of some movies,
thereby making some no longer worth storing locally. As an ex-
ample, consider a geometric video popularity model in which
the access probability of the movies follows a geometric distri-
bution (i.e., the ratio of the request rate of movieto movie
is a constant less than or equal to 1 [6], [7]). We show in Fig. 1
the request rate for moviein a system of 500 titles with the ag-
gregate request rate req/h given different popularity
skewness indicated by (the notation represents that
% of the requests ask for% of the movies). We see that some

movies are very popular, with an average of tens to hundreds of
concurrent users (assuming a movie length of, say, 90 minutes),

Fig. 2. Distributed servers architecture for networked video services.

while some others are not popular at all, with an average of less
than one concurrent user. As the skewness increases, the differ-
ence in popularity between titles also increases. The request rate
of a movie can differ quite markedly by orders of magnitudes.

In a distributed servers architecture, the local servers may
not be able to exchange information among themselves due to,
for example, limited processing capacity (for frequent content
exchanges and updates), network limitation (e.g., disjoint net-
works or limited network capacity), or a lack of incentive to
do so (e.g., uncooperative service providers or security issues).
Each of the local servers therefore obtains its movies only from
the repository and operates independently from each other, and
the repository has to unicast the movies to the local servers.
This is shown in Fig. 2 for a cable-TV system, in which the
head-end servers serve their local communities through coaxial
local drops while the central repository unicasts the movies with
the use of network channels such as the Internet or satellite chan-
nels.

On the other hand, a service provider may set up a number of
local servers, each serving a region. If multicast network chan-
nels are available, they can be used to deliver videos to the local
servers to decrease the network channel requirement and cost.
A local server can get its data by joining any existing multicast
groups.

To further decrease the long-haul transmission cost, the local
servers, instead of always obtaining the data from the reposi-
tory, can be connected by a network so that they can commu-
nicate and exchange their data with each other. This is possible
for servers co-located in, for example, a campus network, an
entertainment network with cooperative service providers, or a
private enterprise network. In general, the transmission cost be-
tween the local servers are low relative to that from the reposi-
tory. By buffering part of the streamed data, the servers can serve
the subsequent local request(s) among themselves, hence con-
serving bandwidth from the repository to the server network.

CHAN AND TOBAGI: DISTRIBUTED SERVERS ARCHITECTURE FOR NETWORKED VIDEO SERVICES 127

The repository may multicast movies to the local servers, or it
may unicast the movie to a particular local server, which in turn
unicasts/multicasts the movie to the other servers using the net-
work between the local servers.

In this paper, we study a number of caching schemes as used
in the local servers. All schemes employ a circular buffer so that
data is stored in a local server for a certain maximum amount of
time, hence keeping only a portion of the movie locally (i.e.,
partial caching). In other words, the schemes keep a window
along the movie playtime, so that all requests arriving within
the window are served directly from the local cache (known as
a cache group). (Keeping a window of the movie in the local
server also offers some limited degree of interactivity to the
users.) Clearly, the larger is the window/buffer, the larger is
the storage requirement in the local server and the lower is the
network channel cost. Therefore, by adjusting the size of the
window, the network channel and local storage can be effec-
tively traded off with each other. We consider a network with
the channels properly sized so that channels can be acquired on
demand (i.e., the probability of running out of channels is low
and can be ignored). We also consider that the latency in the
central repository is low and can be ignored.

In a distributed servers architecture, the service provider may
pay for the costs of the transmission from the repository and
the local storage. In this case, it is important to examine the
conditions under which a movie should be stored so as to min-
imize the total cost, given its request rate and the cost func-
tions of storage and network channels. We show that for uni-
cast delivery, if network channel cost is linearly dependent on
its holding time, movies should be either entirely stored or not
at all and we give the cutoff point in the request rate for this.
On the other hand, for multicast delivery or communicating
servers, the optimal strategy is to use a circular buffer to cache
the movie partially. Multicast is able to lower the system cost
compared with the unicast case for a certain range of arrival
rate. If servers can communicate with each other, the system
cost can be greatly reduced. We show that, by taking advantage
of the current low storage cost, the distributed servers architec-
ture is able to achieve much lower system cost (by an order of
magnitude or so) than a system based on request batching and
multicasting, while offering on-demand services.

This paper is organized as follows. After a brief review of
the previous work in Section II, we describe in Section III the
caching schemes studied in this paper. In Section IV, we analyze
the schemes in terms of their storage and channel requirements,
and how their joint costs can be minimized. In Section V we pro-
vide illustrative numerical results and comparisons, and in Sec-
tion VI we compare the cost advantage of a distributed servers
architecture with respect to a number of traditional video sys-
tems. We conclude in Section VII.

II. PREVIOUS WORK

We briefly discuss previous work as follows. Barnett and
Anido [5] compare thesetupcost of a centralized video system
with a distributed one. Given certain cost functions in storage
and streaming, they show that an optimally designed distributed
system may achieve lower cost than a centralized one. We

differ by studying theongoing runningcost of a video system.
Schaffa and Nussbaumer study a distributed video system in
which servers are configured as a hierarchical balanced tree,
and all video files are replicated at a certain level in the tree [8].
While the paper studies the symmetric case in which request
rates across the servers at a given tree level are the same, we
make no such assumption here. Lieet al. [9] and Little et
al. [10] consider a video system in which video files can be
replicated in order to reduce user loss rate. All the work above
treat a video file as a single entity, and hence a movie is either
completely stored in a local server or not at all. We consider
here partial caching, which achieves better tradeoff in storage
and bandwidth.

Papadimitriouet al. [11] consider a reservation system in
which a central repository delivers videos through a series of
caching nodes. Given a prespecified viewing schedule, the
scheduler determines when, where, and how long a file should
be cached in a storage node so as to minimize the total cost.
Our work differs in that we consideron-demandservices.
Wang et al. [12] consider movie transmission by storing the
“bursty” portion of a movie in a local server so as to reduce
the requirement in the network bandwidth (hence achieving
tradeoff in local storage and network bandwidth). Our work
does not assumea priori knowledge of the bandwidth profile of
a video as in the work. Danet al. [13] consider load-balancing
issues among multiple disks in a server. A movie stored in
a disk is divided into a number of segments. Depending on
the load of a disk, the segment can be dynamically replicated
to one of the other disks to increase the throughput. Though
partial movie storage is considered, network bandwidth issues
(i.e., its requirement and tradeoff with the storage) have not
been addressed.

We differ from all the above work in that we study using
multicasting and server caching to deliver video data to the
local servers, and consider a number of ways to cache the
multicast streams. The use of caching in multicast network has
been previously studied in the context of “client buffering,”
in which a user buffers video streams so as to decrease the
network transmission cost [14]–[22]. We study here “server
caching,” in which the server caches data on the client’s behalf
(and hence a client does not need any buffering). Such a
technique leads to storage sharing (and hence a decrease in
the overall storage cost), and some new operational schemes
(such as the prestoring and precaching schemes in this paper).
Server caching was previously studied to offer user interactive
capabilities [23]; we differ in studying distributed servers
architecture for on-demand services, and examine analytically
the tradeoff between storage and network channels.

III. CACHING SCHEMES

In this section, we describe the caching schemes studied.
We begin by describing a scheme in which the repository
unicasts video contents to each local server. Then we describe
the schemes for multicasting. Finally, we describe a scheme for
communicating servers. Since storage and network channels
can be acquired on-demand, the servicing of requests pertaining
to a given movie is independent of the servicing of requests

128 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 9, NO. 2, APRIL 2001

Fig. 3. Scheme for unicast delivery.

for other movies; therefore we can focus our discussion on a
given movie. We assume a sufficiently stable networks, and
fault recovery and service interruptions in the process of video
transmission are not the issues (and hence are not discussed).

A. Unicast Delivery

Since the local servers are operated independently in this
case, we can focus on an arbitrary local server with a fixed
buffer for each movie. To describe the scheme, let us consider
that initially no user is being served in a local server and no
movie is cached locally. (For illustration, please refer to the
timing diagram in Fig. 3, in which we show a repository and
two local servers and .) An arrival at the server leads
to an allocation of a network channel of duration minutes
to stream the movie from the repository to the local server,
while the local server caches the data with a circular buffer
of size minutes (the lightly shaded boxes in the figure).
The window size is hence the data lifetime in the local
server (). The beginning of the movie is replaced
after minutes, and hence all requests (including the first
one) arriving within the window form a cache group (i.e., they
are served by the local server with the allocation of a single
network channel). Arrivals more than minutes from the first
user in the cache group start a new stream. Clearly, the number
of streams needed in the repository at a time is the sum of all
the opened (active) channels at that time.

The buffer requirement can be further reduced if, after we
have collected a cache group, we “trim the buffer” (by cutting

) and keep only the amount of buffer enough to serve the first
and the last arrival in the group. This case has been examined
in [24], and it is shown that the saving is not very significant
and hence will not be discussed in this paper. (Another way is
to dynamically adjust the window size according to the arrival
pattern. It has also been shown that such a scheme performs
similarly with the case discussed here [24].)

B. Multicast Delivery

We consider the following two schemes, depending on
whether a certain portion of the movies are permanently stored
in the local servers or not.

Fig. 4. Prestoring scheme for multicast delivery.

• Prestoring: A local server stores permanently the
leading portion (the “leader” [7]) of each movie. Let
the leader size be minutes. There is a corresponding
periodic multicast schedule from the repository for the
movie with slot interval minutes. At the beginning
of each slot, the movie is delivered from its minutes
onwards till its end. (For illustration, please refer to Fig. 4
for a system with a repository and two local servers

and .) All requests for the movie arriving at a
local server within a multicast interval are first served
by its leader at their respective local servers. In the slot
following the requests, the repository multicasts the
remainder of the movie (of duration minutes) to
all the local servers which have requests in the previous
slot. Since the requests are offset in time, the local server
has to cache the multicast streams with a buffer of size

minutes (lightly shaded in the figure) so that, after the
display of the leader, the cached data can be used to serve
the requests. If there is no request arriving into the system
within a multicast interval, the multicast of the movie in
the following slot is canceled. Clearly, if , we have
a true-VOD system (in which the repository serves the
requests directly on the demand basis).

• Precaching: In precaching, there is no storage perma-
nently laid aside in the local servers; instead, a local server
decides in advance if it should cache a multicast movie
(i.e., precache) or not. If data is cached, future arrivals
can be served from the local cache; however, if there is
no arrival within the window, the buffer would be wasted.
If data is not cached, the repository has to serve the re-
quests directly on the demand basis with a unicast stream
(i.e., the true-VOD case). We consider the following two
schemes depending on whether the multicast schedule is
preset (the “periodic multicasting with precaching”) or re-
quest-driven (the “request-driven precaching”).

In theperiodic multicasting with precaching, the reposi-
tory multicasts a movie from its beginning at regular inter-
vals of minutes and a local server precaches the movie
using a circular buffer of minutes. (We show in Fig. 5(a)
a case in which the local servers and both pre-
cache data.) If there is any request arriving within the first

minutes of the movie multicast, the request is served
from the local cache (cases indicated by the lightly shaded

CHAN AND TOBAGI: DISTRIBUTED SERVERS ARCHITECTURE FOR NETWORKED VIDEO SERVICES 129

(a)

(b)

Fig. 5. Precaching schemes for multicast delivery. (a) Periodic multicasting
with precaching. (b) Request-driven precaching.

boxes in the figure) and the multicast stream will be held
for minutes; otherwise, the buffer would be flushed and
the multicast stream would be aborted at the end of the
minutes (cases indicated by the darker boxes in the figure).

The request-driven precachingis very similar to the
above except that movie multicast is initiated on-demand
upon the arrival of a request. We illustrate this scheme in
Fig. 5(b), in which both and precaches data for a
time of minutes. Clearly, the start of multicast streams
is driven by request arrival. All requests arriving within the
precaching window in a local server can be served from
the local buffer (cases indicated by the lighter boxes). If
there is no arrival within the window, the buffer is purged
(indicated by the darker boxes).

C. Communicating Servers

In this case, video data can be transferred from one server
to another using the server network. To describe the scheme,
let us consider that initially the system is empty without any
cached data and requests. (We illustrate the scheme in Fig. 6 for
a system with two local servers.) A request arriving at a local
server (server) leads to the unicasting of the movie from the
repository to the local server, which buffers the data for a time

minutes so that local requests arriving within the window can

Fig. 6. Scheme for communicating servers.

be served locally. Another request for the same movie arriving
at another local server (server) within the window obtains
its data directly from server instead of from the repository.

in turn buffers the data for a time minutes. A later arrival
in can then be served from by a “reverse” transfer. In
this way, video data can be relayed from one server to another
to form a “server chain” (the so-called “chaining”). The chain
is “broken” and a new network stream is allocated when two
successive buffer allocations in the system are offset in time by
more than minutes. Note that the buffers in the local servers
are not shared (i.e., there is no united cache for all the servers).

IV. SCHEME ANALYSIS

In this section, we analyze the storage and channel require-
ments for each caching scheme. As mentioned before, it suffices
to consider the single movie case. In the following, we focus on
a movie of length minutes, with streaming rate MB/min
and its request process being Poisson. We are interested in the
following performance measures.

• The average number of network channels (or concurrent
streams) used to serve the movie from the repository to
the local servers.

• The average buffer requirement (in video minutes) for the
movie in the local server, (, where is
the number of local servers in the system).

• The total system cost consisting of the channel cost and
local storage cost (the streaming cost from the local
servers to their peers and users is considered relatively in-
significant and hence is ignored). For illustrative purpose,
we consider linear storage and channel cost, though other
functions can be as well used in our analysis. Letbe the
cost in using a network channel in $/(minchannel), and

be the storage cost in $/(minMB). The total system cost
is the sum of the storage cost in all the local servers and
the network channel cost. Given that there arelocal
servers, the total average cost is then .
Defining as the normalized cost with respect toand
recalling that , we have

(1)

130 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 9, NO. 2, APRIL 2001

TABLE II
NOMENCLATURE USED IN THISPAPER

Obviously, for the true-VOD case, the buffer requirement is
zero and is given by the total arrival rate for the movie times

.
We summarize in Table II the symbols we use in this paper.

A. Unicast Delivery

In this case, we can focus on an arbitrary local server (and
hence drop its index). Requests for the movie arrive at the
server with rate req/min. Clearly, the average interval between
successive network channel allocations is given by ;
therefore, the average number of channels used is, by Little’s
formula

(2)

Note that the buffer of size minutes is held in the server for
the duration of minutes. Since such a buffer is allocated on
average once every minutes, by Little’s formula, the
average number of buffers allocated is ; hence,
the average buffer size is

(3)

We clearly see from (2) and (3) that , which
yields

(4)

Therefore, for linear cost functions, minimizing means that
we either do not cache at all (the case corresponding to ,
making) or we store the whole movie in the local
server (the case corresponding to , making and
hence).

B. Multicast Delivery

Let the request rate for the movie in serverbe req/min
() and the total request rate of the movie in the
system be given by .

• Prestoring: Serverhas to store minutes of movie per-
manently and, in addition, a variable buffer size depending
on whether any request arrives within a multicast interval.
If there is an arrival, a buffer of size minutes is held
for a time minutes. Since the probability of an ar-
rival is , the rate of such a buffer allocation
is . Using Little’s formula, the sum of the fixed and
variable parts of the buffer amount is therefore

(5)

Regarding , recall that a stream is held for a time
minutes if there is an arrival within a multicast interval
(with probability). Using Little’s formula again, we have

(6)

• Precaching: We first considerperiodic multicasting with
precaching. If there is no arrival within minutes in a
local server (with probability), an average buffer
size of minutes would be held for minutes; oth-
erwise, a buffer size of minutes is held for minutes.
Hence, the average storage used is

(7)

Regarding , if there is no request arriving within the mul-
ticast interval, the multicast stream would be aborted after

minutes; otherwise it would be used for a timemin-
utes. Therefore

(8)

Note that , which is one stream
more than the true-VOD case. This is expected because

CHAN AND TOBAGI: DISTRIBUTED SERVERS ARCHITECTURE FOR NETWORKED VIDEO SERVICES 131

when , streams are “started and aborted” continu-
ously and such wastage amounts to one full stream.

The decision problem on whether a server should pre-
cache or not can be formulated as follows. We associate
with server a decision variable with meaning
that the server precaches and otherwise. We mini-
mize the system cost by solving the following for the mul-
ticast schedule and variable :

minimize

w.r.t.

subject to

for

where the first line of the objective function is the total
storage cost, the second and third lines correspond to the
total network channel cost due to precaching servers (the
product term simply says that if all the servers do not pre-
cache, the overhead term given by the exponential does not
exist), and the fourth line is the network channel cost due
to those nonprecaching servers (i.e., the true-VOD case).
Note that for uniform load (i.e.,), the solution
of the above is greatly simplified: either all (all
servers do not precache) or (all servers precache).

We now considerrequest-driven precaching, and that
all servers precache (the decision problem whether a
server precaches or not can be posed similarly as above).
In this scheme, the average time between successive
channel allocation is given by , and hence (by
Little’s formula)

(9)

In a local server, the precached data (of average amount
of minutes) is flushed at the end of minutes if no
request arrives within that time (which occurs with prob-
ability) and the stream is not started by the server
(which occurs with probability). Since the two
events are independent, the probability that the precached
data is flushed is given by

(10)

Therefore, the average buffer size used in the local
server is given by

(11)

C. Communicating Servers

We consider that there are many local servers (i.e.,rea-
sonably large) so that a subsequent request likely comes from
a different server. Since the average number of concurrent re-
quests is , the average buffer requirement in the system is
given by

(12)

We next obtain . A request extends the chain if its arrival
time falls within minutes from the previous one, i.e., with
probability . Therefore, the average interarrival
time of the requests given that the successive requests are within

minutes is

(13)

Note that each such arrival extends the time which the video
data stays in the network by, on average,minutes. The av-
erage time data is kept in the server network is hence given by

(14)

Therefore, the average interval between successive channel
allocation is

(15)

By Little’s formula, the average number of concurrent streams
is given by

(16)

V. ILLUSTRATIVE EXAMPLES AND COMPARISONS

In this section, we compare the optimal window size
given in order to minimize the system cost.

A. Unicast Delivery

Recall that in unicast delivery, the tradeoff betweenand
given is linear with slope , and for linear cost function the
optimal caching strategy is either not storing the movie at all
(corresponding to) or storing the movie completely
(corresponding to), depending on whether or
not, respectively. We show in Fig. 7 the break-even request rate
with respect to . If of a movie is higher than the break-even
rate, the movie is stored completely in the local server; other-
wise, true-VOD is used. We clearly see that whenis low (i.e.,
storage cost is cheap compared to the channel cost) oris high

132 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 9, NO. 2, APRIL 2001

Fig. 7. Relationship between� and to minimize the system cost for unicast
delivery.

Fig. 8. Ĉ , S, andB versusW for prestoring (� = 5 req/min,N = 20,
 = 0:002/min, andT = 90 min).

(popular title), the movie is likely to be entirely stored at the
local servers.

B. Multicast Delivery

We first consider prestoring. We show in Fig. 8 the normal-
ized cost (with respect to) of streaming, storage, and their
total with respect to the buffer size , with ,
req/min, /min, min, and uniformly loaded
local servers. As increases, the number of network streams
required (and hence network cost) decreases. When ,
the movie is entirely stored in the local server and hence there is
no need of network channels to stream movies from the repos-
itory. On the other hand, as increases, the storage cost in-
creases from zero to a total of . Regarding the total cost

, it first decreases quite sharply to a minimum and then rises
slowly (the rise is more marked if is higher). Clearly, there
is a which minimizes . As increases (i.e., the storage

Fig. 9. W versus� for prestoring (N = 20, = 0:002/min, andT =

90 min).

Fig. 10. W versus� for precaching (= 0:002/min,N = 20, andT =

90 min).

cost becomes relatively more expensive), decreases and
increases.

We show in Fig. 9 as a function of , using the same pa-
rameters as before. Asincreases, increases quite sharply
and then remains quite flat. In the flat region, the movie is par-
tially cached. There is a minimum below which prestoring
is not worthwhile because of the low popularity of the movie
(corresponding to the true-VOD case). There is also abeyond
which the movie should be entirely stored at the local servers
(corresponding to min).

We next consider precaching. We show in Fig. 10 the optimal
as a function of for the cases of periodic multicasting

and request-driven precaching (uniform server load ,
/min, and min). As before, there is abelow

which there should be no precaching at all (corresponding to
, the true-VOD case) and aabove which the movie

should be entirely stored (corresponding to). For

CHAN AND TOBAGI: DISTRIBUTED SERVERS ARCHITECTURE FOR NETWORKED VIDEO SERVICES 133

Fig. 11. W versus� for chaining (= 0:002/min, andT = 90 min).

somewhere in between, the movie is partially cached with
remaining quite constant.

C. Communicating Servers

We plot in Fig. 11 versus for communicating servers,
with min and /min. Again, we see that
when is low, the movie should be directly streamed from the
repository (i.e., the true-VOD case). Asincreases, first
increases rather sharply so that requests can be chained more
effectively, and then decreases due to the fact that the higher
request rate makes a chain easier to be formed, leading to a lower
buffer requirement.

We finally compare the optimal cost for all the schemes we
have studied by showing in Fig. 12 their (corresponding to

) versus , with /min, and min.
Also shown is the case of true-VOD, whose cost increases lin-
early with . We have considered for simplicity that the costs
of unicast and multicast channels are the same. (Note that they
certainly do not have to be so and this can be easily taken into
account given our analysis.) All our schemes achieve lower cost
than true-VOD. For unicast delivery, the cost first follows that of
true-VOD () and then flattens off at the point at which
the movie is stored completely at the local servers. We see that
multicasting can achieve substantial cost reduction when com-
pared with the unicast case only if the request rate is within a
certain (narrow) window of . If multicast streams are more ex-
pensive than unicast streams, the cost advantage of multicasting
would be further reduced. Compared with all the other schemes,
chaining achieves significantly lower cost. Even if there were
a cost associated with interserver communication, the cost of
chaining is not likely to be higher than the other systems (un-
less such communication cost is very high).

VI. COST COMPARISON WITH A SYSTEM USING REQUEST

BATCHING AND MULTICASTING

In order to increase the user capacity of the repository, re-
quest batching and multicasting has been proposed, in which
requests for a movie arriving within a period of time are grouped
or “batched” together and served with a single multicast stream.

Fig. 12. Comparison of̂C versus� for the proposed caching schemes (=
0:002/min, andT = 90 min).

(See [2], [25], [26] and references therein for more details.) If
users can tolerate a certain maximum delay of minutes,
the batching period can be set to be no more than minutes.
We may use a batching scheme in which the first user following
a movie showing starts a batching window of size ,
at the end of which the movie is multicast to all the requests
arriving within the window. By Little’s formula, the average
number of streams required given the movie’s request rate,
and hence the normalized total system cost (because there is no
storage cost), is [26].

A distributed servers architecture achieves negligible user
delay by means of streaming servers. This advantage, however,
comes with the cost of additional servers and storage. However,
when compared with request batching in which the repository
directly multicast movies to the requests, a distributed servers
architecture may achieve even lower total system cost de-
pending on the acceptable maximum user delay and the storage
cost. This is illustrated as follows.

Let us first consider a distributed servers architecture using
the unicast caching scheme. Let be the number of servers in
the system, with the request rate at serverfor a movie being

, with . The minimum cost as discussed before
can be expressed as

(17)

where is the unit-step function with for
and otherwise.

We plot in Fig. 13 the cost of the distributed servers archi-
tecture versus given a certain value of . Also
shown is the cost of a system in which the repository multi-
casts movies directly to the requests (i.e., the “request batching”
system), with min (we have considered that the cost
of unicast channels is the same as that of the multicast channels).
For values of higher than a certain value (), the
distributed servers architecture indeed has a higher cost, hence
trading off system cost with lower (zero) user delay. However,

134 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 9, NO. 2, APRIL 2001

Fig. 13. Comparison of̂C versus� between a system with request batching
and a distributed servers architecture based on unicast delivery (D = 6min,
andT = 90 min).

with a low enough (), the cost lines of both sys-
tems cross at

(18)

From the above, we see that if many movies havehigher than
, the distributed servers architecture as compared to a batching

system can achieve both lower costandlower delay to the users.
This is because distributed servers architecture can effectively
trade off the (cheaper) storage cost with the (more expensive)
network channel cost. To achieve an even lower system cost,
we can use a “combined” scheme: when we use request
batching at the repository to deliver movies to users, and for

we store the movie at the local server.
As an illustrative example on the cost advantage of a dis-

tributed servers architecture, let us consider a system with 500
movie titles of heterogeneous video popularity of 80/20 geo-
metric movie popularity (refer to Fig. 1) with aggregate arrival
rate req/h, with /min and /min (corre-
sponding to the second column in Table I). We consider four
“traditional” systems for comparison:

1) True-VOD: There are no local servers and the repository
serves all the requests on the demand basis.

2) Batching: There are no local servers and the repository
uses request batching and multicasting to serve all the
requests with maximum user delay .

3) All stored locally: A system with local servers, each of
which replicates all the movies and serves req/min.

4) 20% local movies: A system with a repository and
uniformly loaded local servers, each of which stores the
most popular 20% of the movies.

We compare the cost of the above systems with the distributed
servers architecture proposed in this paper, namely:

1) Unicast: A system with a repository and uniformly
loaded local servers using unicast delivery.

Fig. 14. Total cost per minute versus� for different systems (= 0:002/min,
� = $0:03/(min�channel),N = 20, number of movies= 500, 80/20 video
popularity,D = 6 min, andT = 90 min).

2) Combined scheme: A system of a repository and uni-
formly loaded local servers, with the local servers storing
movies with , and the repository using batching
and multicasting to deliver the rest of the movies.

3) Multicast (request-driven precaching): A system using
request-driven precaching with uniformly loaded
servers.

4) Chaining: A chaining system with many communicating
servers.

We show in Fig. 14 the cost versus the aggregate request
rate , for the systems (, min, and
min). From the cases of true-VOD and storing all the movies
locally, we see that when is low, we should use true-VOD,
and when is high, we should replicate all the movies lo-
cally. Batching reduces the cost substantially as compared to the
true-VOD case. However, whenis high, batching actually has
a higher cost when compared with replicating all the movies lo-
cally (because batching cannot take advantage of the low storage
cost). Storing the more popular set of movies locally achieves
good cost saving for a certain range of, showing that naively
storing 20% of the most popular set of movies in local servers
does not always achieve good cost saving.

Our unicast case and combined scheme achieve similarly low
cost. This is expected because batching is not effective for those
not-so-popular movies. Using multicast achieves further reduc-
tion in cost. However, the reduction in cost is not so signifi-
cant, mainly because, as shown before, multicasting achieves
lower cost only for a certain (narrow) range of movie request
rate (while in this example, the request rate of the movies differs
by orders of magnitude). Chaining achieves by far the greatest
saving in cost. We see that distributed servers architecture can
achieve lower cost by more than an order of magnitude as com-
pared with the true-VOD case. It achieves significantly lower
cost than a batching systemwhileoffering on-demand services.
Such cost advantage is greater when the video popularity is more
skewed. As decreases, the cost of distributed servers archi-
tecture decreases further because less data is replicated.

CHAN AND TOBAGI: DISTRIBUTED SERVERS ARCHITECTURE FOR NETWORKED VIDEO SERVICES 135

VII. CONCLUSION

In a video system, a number of repository servers store all
the video contents of interest to a large number of geograph-
ically distributed users. Due to the limited repository capacity
and likely high transmission cost from the repository to users,
using only the repository to serve the population would not be
cost effective. A better solution is to use a distributed servers
architecture, in which local servers are put close to user clusters
and cache video contents according to their local demands. By
increasing the number of repository and local servers, this ar-
chitecture achieves storage and streaming scalabilities.

We have studied a number of local caching schemes to offer
networked on-demand video services. The caching schemes
pertain to whether the repository is able to multicast data to the
local servers or not, and whether the local servers can exchange
video contents with each other or not. All of our caching
schemes keep a circular buffer for each movie being displayed
and hence the movie is partially cached. The schemes are
able to reduce the network bandwidth used and, as compared
with treating a movie as a single entity, achieves much better
tradeoff between network channels with local storage (and
hence lower overall system cost). We have studied the tradeoff
between the number of network channels required and the local
storage required for each scheme. Given certain cost functions,
we have addressed how much to cache in order to minimize the
total system cost consisting of the costs of local storage and
repository streams.

Generally, the unpopular movies should be streamed directly
from the repository, and the popular ones should be replicated
entirely at the local servers. Movies of intermediate popularity
are likely to be partially cached in the local servers. Multicas-
ting is able to offer substantial reduction in system cost only for
a certain range of movie request rate. If the local servers can ex-
change data with each other, the system cost can be significantly
reduced. We show that, given today’s low storage cost, dis-
tributed servers architecture effectively trades off storage cost
with communication cost. As compared with a system using re-
quest batching and multicasting, distributed servers architecture
can achieve both lower overall system cost and lower user delay.
The more skewed the video popularity is, the more saving a dis-
tributed servers architecture can achieve.

REFERENCES

[1] T. Little and D. Venkatesh, “Prospects for interactive video-on-demand,”
IEEE Multimedia Mag., pp. 14–24, Fall 1994.

[2] V. O. K. Li and W. Liao, “Distributed multimedia systems,”Proc. IEEE,
vol. 85, pp. 1063–1108, July 1997.

[3] F. A. Tobagi, “Distance learning with digital video,”IEEE Multimedia
Mag., pp. 90–94, Spring 1995.

[4] A. D. Gelman, H. Kobrinski, L. S. Smoot, S. B. Weinstein, M. Fortier,
and D. Lemay, “A storeand-forward architecture for video-on-demand
service,”Can. J. Electr. Comput. Eng., vol. 18, pp. 37–40, Jan. 1993.

[5] S. A. Barnett and G. J. Anido, “A cost comparison of distributed and
centralized approaches to video-on-demand,”IEEE J. Select. Areas
Commun., vol. 14, pp. 1173–1183, Aug. 1996.

[6] L. D. Giovanni, A. M. Langellotti, L. M. Patitucci, and L. Petrini, “Di-
mensioning of hierarchical storage for video on demand services,” in
Proc. IEEE ICC, 1994, pp. 1739–1743.

[7] Y. N. Doğanata and A. N. Tantawi, “Making a cost-effective video
server,”IEEE Multimedia Mag., pp. 22–30, Winter 1994.

[8] F. Schaffa and J.-P. Nussbaumer, “On bandwidth and storage tradeoffs
in multimedia distribution networks,” inProc. Infocom, 1995, pp.
1020–1026.

[9] P. Lie, J. Lui, and L. Golubchik, “Threshold-based dynamic replication
in large-scale video-on-demand systems,” inProc. 8th Int. Workshop Re-
search Issues in Data Engineering, Orlando, FL, Feb. 1998, pp. 52–59.

[10] T. D. C. Little and D. Venkatesh, “Popularity-based assignment of
movies to storage devices in a video-on-demand system,”ACM/Springer
Multimedia Syst., no. 2, pp. 280–287, 1995.

[11] C. Papadimitriou, S. Ramanathan, P. V. Rangan, and S. SampathKumar,
“Multimedia information caching for personalized video-on-demand,”
Comput. Commun., vol. 18, pp. 204–216, Mar. 1995.

[12] Y. Wang, Z.-L. Zhang, D. H. C. Du, and D. Su, “A network-conscious ap-
proach to end-to-end video delivery over wide area networks using proxy
servers,” inProc. IEEE Infocom, San Francisco, CA, Mar. 29–Apr. 2,
1998, pp. 660–667.

[13] A. Dan, M. Kienzle, and D. Sitaram, “A dynamic policy of segment
replication for load-balancing in video-on-demand servers,”Multimedia
Syst., vol. 3, pp. 93–103, July 1995.

[14] S. Viswanathan and T. Imielinski, “Metropolitan area video-on-demand
service using pyramid broadcasting,”Multimedia Syst., vol. 4, pp.
197–208, Aug. 1996.

[15] L.-S. Juhn and L.-M. Tseng, “Enhanced harmonic data broadcasting and
receiving scheme for popular video service,”IEEE Trans. Consumer
Electron., vol. 44, pp. 343–346, May 1998.

[16] C. C. Aggarwal, J. L. Wolf, and P. S. Yu, “Design and analysis of permu-
tation-based pyramid broadcasting,”ACM/Springer Multimedia Syst.,
vol. 7, no. 6, pp. 439–448, 1999.

[17] K. A. Hua and S. Sheu, “Skyscraper broadcasting: A new broadcasting
scheme for metropolitan video-on-demand systems,”ACM Comput.
Commun. Rev., vol. 27, pp. 89–100, Oct. 1997.

[18] L. Gao, J. Kurose, and D. Towsley, “Efficient schemes for broadcasting
popular videos,” inProc. NOSSDAV, Cambridge, U.K., July 1998.

[19] K. A. Hua, Y. Cai, and S. Sheu, “Patching: A multicast technique for
true video-on-demand services,” inProc. ACM Multimedia, New York,
NY, Sept. 14–16, 1998, pp. 191–200.

[20] J.-F. Pâris, S. W. Carter, and D. D. E. Long, “A hybrid broadcasting pro-
tocol for video on demand,” inProc. 1999 IS&T/SPIE Conf. Multimedia
Computing and Networking, San Jose, CA, Jan. 1999, pp. 317–326.

[21] S. Sheu, K. A. Hua, and W. Tavanapong, “Chaining: A generalized
batching technique for video-on-demand systems,” inProc. IEEE Int.
Conf. Multimedia Computing and Systems, Ottawa, Canada, June 1997,
pp. 110–117.

[22] J. Y. B. Lee, “UVOD—A unified architecture for video-on-demand ser-
vices,” IEEE Commun. Lett., vol. 3, pp. 277–279, Sept. 1999.

[23] W. Liao and V. O. K. Li, “The split and merge protocol for interactive
video-on-demand,”IEEE Multimedia Mag., pp. 51–62, Oct.–Dec. 1997.

[24] S.-H. G. Chan and F. A. Tobagi, “Caching schemes for distributed
video services,” inProc. IEEE Int. Conf. Communications (ICC’99),
Vancouver, BC, Canada, June 1999, pp. 994–1000.

[25] , “On achieving profit in providing near video-on-demand ser-
vices,” inProc. IEEE Int. Conf. Communications (ICC’99), Vancouver,
Canada, June 1999, pp. 988–994.

[26] S.-H. G. Chan, F. A. Tobagi, and T.-M. Ko, “Providing on-demand video
services using request batching,” inProc. IEEE Int. Conf. Communica-
tions (ICC’98), Atlanta, GA, June 1998, pp. 1716–1722.

S.-H. Gary Chan (M’98) received the Ph.D. degree
in electrical engineering with a minor in business
administration from Stanford University, Stanford,
CA, in 1999, and the B.S.E. degree (Highest Honor)
in electrical engineering from Princeton University,
Princeton, NJ, in 1993.

He is currently an Assistant Professor with the De-
partment of Computer Science, Hong Kong Univer-
sity of Science and Technology, Hong Kong, and an
Adjunct Researcher with Microsoft Research China,
Beijing. He was a Visiting Assistant Professor in net-

working at the University of California, Davis, from September 1998 to June
1999. During 1992–1993, he was a Research Intern at the NEC Research In-
stitute, Princeton. His research interest includes multimedia networks, services,
and systems, high-speed and wireless communications networks, and Internet
technologies and protocols.

Dr. Chan was a William and Leila Fellow at Stanford University during
1993–1994. At Princeton, he was the recipient of the Charles Ira Young
Memorial Tablet and Medal, and the POEM Newport Award of Excellence in
1993. He is a member of Tau Beta Pi, Sigma Xi, and Phi Beta Kappa.

136 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 9, NO. 2, APRIL 2001

Fouad Tobagi (M’77–SM’83–F’85) received the
Engineering degree from Ecole Centrale des Arts et
Manufactures, Paris, France, in 1970 and the M.S.
and Ph.D. degrees in computer science from the
University of California, Los Angeles, in 1971 and
1974, respectively.

From 1974 to 1978, he was a Research Staff
Project Manager with the ARPA project at the
Computer Science Department, University of
California, Los Angeles, and engaged in research
in packet radio networks, including protocol design,

and analysis and measurements of packet radio networks. In 1978, he joined
the faculty of the School of Engineering at Stanford University, Stanford, CA,
where he is Professor of electrical engineering and computer science. In 1991,
he co-founded Starlight Networks, Inc., a venture concerned with multimedia
networking, and served as Chief Technical Officer until 1998. His research
interests include packet switching in ground radio and satellite networks,
high-speed local area networks, fast packet switching, broadband integrated
services digital networks, asynchronous tranfer mode, multimedia networking
and communications, and modeling and performance evaluation of network
systems. He has served as Associate Editor for Computer Communications for
the IEEE TRANSACTIONS ONCOMMUNICATIONS from 1984 to 1986, Editor for
Packet Radio and Satellite Networks in theJournal of Telecommunications
Networksfrom 1981 to 1985, Co-Editor of the special issue on local area
networks of the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS

(November 1983), Co-Editor of the special issue on packet radio networks of
the PROCEEDINGS OF THEIEEE (January 1987), and Co-Editor of the special
issue on large scale atm switching systems for B-ISDN of the IEEE JOURNAL

ON SELECTED AREAS IN COMMUNICATIONS (October 1991). He has also
served as co-editor ofAdvances in Local Area Networks, a book in the series
Frontiers in Communications(New York: IEEE Press). He is currently serving
as editor for a number of journals in high-speed networks, wireless networks,
multimedia, and optical communications.

Dr. Tobagi is a member of the Association for Computing Machinery and
served as an ACM National Lecturer from 1982 to 1983. He was the winner of
the 1981 Leonard G. Abraham Prize Paper Award in the field of communica-
tions systems for his paper "Multiaccess Protocols in Packet Communications
Networks," and co-winner of the IEEE Communications Society 1984 Maga-
zine Prize Paper Award for the paper "Packet Radio and Satellite Networks." He
was co-recipient of the 1998 Kuwait Prize in the field of applied sciences.

