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Efficient Indoor Localization Based on Geomagnetism
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Geomagnetism is promising for indoor localization due to its omnipresence, high stability, and availability of

magnetometers in smartphones. Previous works often fuse it with pedometer via particles, which are com-

putationally intensive and make strong user behavior assumptions. To overcome that, we propose Magil, an

approach leveraging geomagnetism for indoor localization. To our best knowledge, this is the first piece

of work using geomagnetism for smartphone localization without the need of pedometer or user walking

model. Magil is applicable to any open or complex indoor environment. In the offline phase, Magil collects

and stores geomagnetic fingerprints while surveyors walk indoors. In the online phase, it employs a fast al-

gorithm to match the geomagnetic variation of the target with the stored fingerprints. Given closely matched

segments, Magil constructs user trajectory efficiently with a modified shortest path formulation by selecting

and connecting these matched segments.

To further improve accuracy and deployability, we propose MagFi, which extends Magil by fusing it with

Wi-Fi. MagFi further collects opportunistic Wi-Fi RSSI for fingerprint construction. We have implemented

both Magil and MagFi and conducted extensive experiments in our campus. Results show that our schemes

outperform state-of-the-art schemes by a wide margin (often cutting localization error by 30%).
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1 INTRODUCTION

There has been much recent interest in indoor localization, mainly due to the ubiquity of smart
devices and advances in their sensing capabilities [7]. Fingerprinting emerges as a promising ap-
proach, because it is applicable to complex indoor environments without the need for any model
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Fig. 1. The magnetic fingerprint

(intensity in μT ) in a typical in-

door environment.

Fig. 2. Magnetic field intensity

along the same trajectory in dif-

ferent days.

Fig. 3. Magnetic field inten-

sity of different devices along

the same trajectory.

assumption and line-of-sight signal measurements [6, 14, 35]. In the offline (survey) phase of
fingerprint-based localization, signal strengths at predefined locations called reference points (RPs)
are collected by surveyors. The signal strengths together with their corresponding locations form
the fingerprints.1 In the subsequent online phase, user location is obtained by matching his/her
collected signals with the stored fingerprints.

Among all the sensed signals explored, geomagnetic field holds much promise, because it ex-
hibits strong local variations caused by electrical appliances and building materials [11]. This
means that an alteration in indoor layouts often has only local impacts without affecting the signal
map significantly over a wide scope. It has also been shown that the impact of mobile objects and
smartphone placements on the magnetic field is minimal [3, 11, 21, 34]. Figure 1 illustrates such lo-
cal variations in a typical indoor environment, which can be used as fingerprints to identify target
location.2

Moreover, the geomagnetic field is omnipresent, so there is no need for any extra infrastructure
support. It can be efficiently collected at a high rate while walking using commonly available mo-
bile devices. The field is more stable with much lower random fluctuation as compared with other
signals, leading to better performance [11]. To verify its reliability, we conduct an experiment that
collects the field intensity along a corridor in a week. Figure 2 shows the magnetic field at differ-
ent location each day. We can observe that magnetic fields have similar distributions within the
week. Such temporal invariance and spatial-distinguishable characteristics provide opportunities
to employ magnetic fields as fingerprints for pervasive indoor localization.

However, even though different devices in the same location may have different magnetic field
readings (i.e., device heterogeneity), constant offsets are observed among these devices. Figure 3
illustrates magnetic field data collected using different devices along the same trajectory. Clearly,
although the reading varies for different devices, the gaps between their readings remain rather
constant. Such a property leads to simplicity in design and applicability of algorithms across dif-
ferent device platforms.

In this article, we devise novel indoor localization techniques based on geomagnetic signals.
Previous work in the area has been predominantly on fusing with pedometer (step counter) using
recursive Bayesian filters such as Hidden Markov Models (HMMs) [15] and particle filters [20, 34].
They estimate the location based on maximum joint probability or particle convergence, given the
magnetic readings and walking distance of the target. Some models also assume the availability

1Unless otherwise stated, in this article we refer to RSSI as Wi-Fi RSSI.
2The x -axis and y-axis in all the maps in this article are in pixels, and 40 pixels in the maps correspond to 3m in the physical

world.
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of initial locations and accurate user walking model. Despite promising results, these approaches
are often computationally intensive for a mobile device. Furthermore, they work the best for par-
titioned environment characterised by narrow corridors where the degree of freedom of the target
is low. For large spacious settings, they hardly converge to the target location. Some other works
make strong assumptions on user behaviors or rely heavily on a meticulously tuned pedometers (to
accurately estimate steps, walking distances and directions). In practice, the pedometer is subject
to random user movement, and errors tend to accumulate over time [2].

To overcome these weaknesses, we propose Magil, a novel approach leveraging magnetic fields
for indoor localization. Without using any step counter or error-prone sensors such as a gyroscope
(which suffers from angular drift), Magil is hence robust against arbitrary user behaviors. It is
applicable to any indoor environment, including large open settings. To the best of our knowledge,
this is the first work on using geomagnetism for smartphone-based indoor localization without the
domain knowledge of a pedometer, initial position, or user walking model.

In its offline phase, Magil designs survey paths to collect magnetic field signals as fingerprints.
Through discretizing the indoor space, target movements can be represented as a sequence of
matched segments in fingerprints (and thus positions in the real world). For online location esti-
mation, Magil first collects a sequence of magnetic signals along the walking path of the user (or
target). Then it finds the trace of fingerprinted signals that best match with that sequence. It then
selects and orders the matched segments properly to yield the target locations over time.

The crux of Magil is trajectory matching, which consists of two subproblems: how to identify
the fingerprint segments best match the target observations (the so-called sequence matching prob-
lem), and, given the closely matched segments, how to select and connect those matched segments
together to form a user path (the so-called path construction problem). We formulate them as op-
timization problems. For sequence matching, we propose a novel modified Smith-Waterman algo-
rithm [22] that matches sequences obtained under different walking speeds. For path construction,
we model and solve it as a modified shortest path problem. Our algorithms are computationally
efficient.

While Magil typically works well, its accuracy can be further enhanced by fusing with Wi-Fi
Received Signal Strength Indicator (RSSI) [1, 35, 36]. This is motivated by the facts that Magil alone
may not work well when users stand still, because the magnetism readings may not show much
variation. Geomagnetic signal also lacks unique location identifiers over a broad scope, because
remote locations may possess similar geomagnetic field patterns. RSSI, however, shows distinct
spatial variation due to complex indoor structure, with nearby locations sharing similar radio en-
vironments [5, 20].

Inspired by the above observations, we propose MagFi, a scheme fusing Magil with Wi-Fi RSSI
fingerprints (MagFi). In its offline phase, MagFi collects both geomagnetic and Wi-Fi RSSI samples
and constructs an RSSI fingerprint database automatically using geomagnetic signals. In the on-
line stage, MagFi filters away those signal traces whose geomagnetic fields are not consistent with
user observed RSSIs, hence improving the computational efficiency and accuracy. Compared with
Magil, MagFi is much more robust in open areas, where geomagnetic field patterns can be quite
similar. To summarize, MagFi broadens the scope of application to more general indoor environ-
ments and user behaviors and is more accurate and robust as validated by our experiments.

We have implemented both Magil and MagFi in mobile phones and conducted extensive exper-
iments. The experimental results confirm the implementability and efficiency of our algorithms.
Both systems outperform existing and state-of-the-art algorithms by a large margin (often cutting
the location error by more than 30%).

We note in passing that the site survey of Magil can be conducted in parallel, i.e., multiple
surveyors can conduct the site survey simultaneously and their fingerprints can be combined to
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reduce the total survey time. Compared with the traditional Wi-Fi RSSI site survey procedure
where signals vectors have to be collected by standing at length at different fixed points in the area,
Magil can save time, because it collects fingerprint signals while the surveyor is walking. Further-
more, crowdsourced geomagnetism database can be integrated in our proposed system seamlessly
and the survey cost can be significantly reduced. Fingerprint update can also be achieved using
crowdsourcing methods [38].

The remainder of the article is organized as follows. After discussing related work in Section 2,
we overview the system framework for Magil and MagFi in Section 3. In Section 4, we show how to
construct the geomagnetic database for both Magil and MagFiand the RF RSSI fingerprint database
for MagFi. Magil is then presented in Section 5, followed by MagFi in Section 6. In Section 7, we
present illustrative experimental results and conclude with future works in Section 8.

2 RELATED WORK

We review related works on mobile localization in this section. There have been extensive studies
on using ambient signals for localization, e.g., Wi-Fi [1, 31], geomagnetic field [11, 20], vision [9,
13], and so on. Among them, fingerprint-based schemes [1, 18, 20, 24, 27, 36] are promising, be-
cause they do not require the knowledge of signal source or propagation. As consecutive magnetic
observations indicate much precise spatial movement information while Wi-Fi provides unique lo-
cation identifiers over a broader scope, our work applies fingerprint techniques to fusing Wi-Fi on
top of magnetic field to provide a much more robust and adaptive localization system.

There has been some work on geomagnetism-based localization [3, 4, 7, 16]. Unloc [25] pro-
poses using sparse magnetic disturbances as landmarks for indoor localization. Different from
their work, we use geomagnetic field to build the signal map. FOLLOWME [21] leverages walking
patterns of earlier travelers to navigate the following users. However, it requires that there should
be a reference trace with the same origin and destination for both earlier travelers and following
users. Magil does not have this requirement and thus is more flexible. Inspired by the observa-
tion that geomagnetism changes around pillars or gates, LocateMe [23] maps the target location
to the landmarks with the similar trend of signal change. The above works are best applied in
narrow corridors where pedestrian walking patterns are constrained. Magil is not based on these
approaches and is more applicable in complex environments.

IMU-assisted schemes (a.k.a. dead-reckoning) has been well studied [12, 21, 26]. These systems
use readings from different sensors (accelerometer, gyroscope, etc.) and floor plans to constrain
localization error. In contrast, Magil does not rely on gyroscope or accelerometer, which are error-
prone and require meticulous calibration. Therefore, we achieve consistently robust localization
results without assumptions on user behavior.

Fusion of fingerprint signals and sensors has been recently studied [8, 29, 32]. MapCraft [32],
Mapel [29], and the work in Reference [19] utilize the conditional random field (CRF) to local-
ize users. In these works, sequential motion and sensor readings are fed to a graphical model for
location estimation. GROPING [38] fuses geomagnetic fingerprints with gyroscope readings to
crowdsource fingerprint database and localize users. Magil advances from them by modeling the
problem as a signal matching problem, which achieves higher localization accuracy without rely-
ing on user walking direction estimations and error-prone step counters [2, 39] and gyroscopes.

Particle-filter-based fusion has been widely studied in recent years for geomagnetic field local-
ization. Magicol [20] considers a two-way particle filter to improve the fusion of Wi-Fi fingerprint
and magnetic fields. MaLoc [33, 34] implements a novel augmented particle filter to address motion
estimation errors. MaWi [37] fuses Wi-Fi with geomagnetism based on particle filter to estimate
user velocity and locations. The work in Reference [8] approximates the floor map by connected
line segments. All these works require either a meticulously tuned pedometer or a walking model
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Fig. 4. System framework for Magil and MagFi.

to estimate user movements including walking distances, velocities, and directions. Unlike these
works and others [2, 37, 39], Magil is not based on pedometers and walking models. Instead, it
transforms the localization problem into a signal matching and path construction problem. Fur-
thermore, we modify the typical Smith-Waterman algorithm by introducing a new cost function
to align two sequences. The advantage of our approach is that the Smith-Waterman algorithm al-
lows gaps while aligning, which is not allowed in dynamic time warping. After that, our substring
matching and selection algorithm is applied to generate all favored local alignments.

A preliminary version of this work has been reported in Reference [30]. We further advance
from it in the following major ways: (1) Significant computation efficiency improvement: The pre-
vious trajectory matching algorithm still suffers from high computational overhead in the online
phase. We improve it to achieve approximately 2.3× speedup. (2) Advanced fusion and accuracy

enhancement: We propose MagFi, which fuses Magil with RF fingerprints (Wi-Fi RSSI) to improve
localization accuracy. (3) Extensive experiment studies: We conduct more extensive experimental
evaluations to validate the performance of Magil and MagFi by comparing them with other state-
of-the-art algorithms.

3 SYSTEM FRAMEWORK FOR MAGIL AND MAGFI

We show in Figure 4 the system framework for Magil and MagFi. It consists of two phases, the
offline phase and the online phase. Note that Magil only has solid lined modules while MagFi has
both solid lined modules and dotted modules. In the offline phase, surveyor(s) carries a smartphone
while walking through the area. While walking, geo-magnetic field signals and their corresponding
timestamps are fed to the module magnetic field data preprocessing. Given the map information,
the module generates the fingerprint signal map and stores it in the database for online use. Fur-
thermore, in MagFi, if Wi-Fi sensing results are available during the offline phase, then they will
also be processed to construct a Wi-Fi RSSI fingerprint database.

In the online phase, a user continuously measures the geo-magnetic field, which is fed to the
magnetic field indoor localization module. The module consists of two steps. First, in the module
magnetic field sequence matching, we use our proposed modified Smith-Waterman algorithm [22]
to find those segments whose fingerprint variations best match the target observations. If RSSI
fingerprints are available, then MagFi also leverages them to further filter the matched segments
to eliminate the segments whose RSSI fingerprints are not similar to the corresponding user obser-
vations. Second, in the module formulating and solving the shortest path problem, we formulate a
novel shortest path problem. By solving this problem, we reorder the matched segments properly
and find the trajectories and locations of the user. The results are then returned to the user.
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4 FINGERPRINT DATABASE CONSTRUCTION FOR GEOMAGNETISM AND WI-FI

In this section, we first discuss how to collect magnetic fields using smartphones and identify
magnetic field features for fingerprints in Section 4.1. Given that, in Section 4.2 we describe how
to construct the magnetic signal fingerprint database for both Magil and MagFiand a Wi-Fi RSSI
fingerprint database for MagFi.

4.1 Extracting Geomagnetism Features

The magnetic field vector Bp can be measured by a smartphone’s magnetometer [11]. However, the
raw magnetic readings are under the smartphone’s coordinate system. We hence need to transform
the readings into the one under the Earth’s coordinate system by the yawψ , pitch θ , and roll ϕ of
the smartphone, i.e.,

Bp = Rx (θ )Ry (ϕ)Rz (ψ )Be , (1)

where Be is the magnetic field vector at the same location in terms of the Earth’s coordinate sys-
tem, and Rx (θ ), Ry (ϕ), Rz (ψ ) are corresponding rotation matrices w.r.t. the three axes of the smart-
phone [11]. Then we obtain

Be = R
−1
z (ψ )R−1

y (ϕ)R−1
x (θ )Bp . (2)

In this way, we can measure the magnetic field Be irrespective of the dynamic smartphone head-
ings. However, we do not use Be directly as the observation, because a smartphone’s heading esti-
mation is error-prone [39] and these errors would be amplified on Be . Some works [11, 20] suggest
using the magnitude of Bp as fingerprints, because it is a rotation-invariant scalar quantity and
quite stable. However, there is only one fingerprint dimension, which reduces the uniqueness of
the fingerprints. However, most smartphones have been equipped with gravity sensors that sense
the direction of gravity and are stable with location and time [11]. Therefore, we can retrieve
both the vertical and horizontal components (w.r.t. gravity), Bv and Bh , of Bp and combine them
with the magnitude of Bp to generate an observation at location o, i.e.,

Bo = ( | |Bp | |,Bv ,Bh ). (3)

4.2 Database Construction

In the offline phase, we conduct magnetic field data collection and database construction as follows:

1. Survey path planning: We preplan several survey paths from the floor map we obtain in the
map preprocessing step. Typically, these paths should be along the corridors, across lobbies,
and at the peripheries of obstacles and cover various walking directions. For an extremely
large open space, we can add more paths that altogether form a grid with diagonal lines to
ensure the coverage of positions and walking directions of interest. An example is shown
in Figure 5, where the corridor is covered by one survey path and a large indoor area is
covered by many survey paths in any potential directions. Note that we can adaptively
align the survey paths according to the site shape. For example, in constrained corridors
we align the trajectories along the accessible paths, while in open spaces we may align
them in intersecting parallels. Note that for each survey path, we only need to walk in one
direction to collect the fingerprint data.

2. Magnetometer and motion sensor measurement: A surveyor(s) walks along paths while
his/her smartphone records magnetic field data and corresponding timestamps during the
walk. Note that the surveyor(s) should walk at a reasonably constant speed for the better
data-trajectory matching purpose, which is introduced in the following.
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Fig. 5. An example of survey paths and cor-

responding walking directions. One finger-

print magnetic field data vector Seqfingerprint =

〈Bf1
Bf2
. . .Bfn

〉 is also shown in the figure.

Fig. 6. Magnetic field sample matching be-

tween fingerprint and observations. Note

that only the parts in the boxes match each

other well.

3. Data-trajectory matching and data preprocessing: An actual trace is mapped against a pre-
planned path based on data timestamps and turns. We calculate the locations of intermedi-
ate magnetic field data proportionally according to their timestamps and the overall time
interval between two turns. The physical location of each magnetic field data collected
is interpolated into segments of preplanned paths proportional to their timestamp differ-
ences. If Wi-Fi RSSI readings are available, then we also bind each RSSI vector to the mag-
netic field data with the closest timestamp and interpolate its location accordingly. This
is because Wi-Fi data sampling frequency in most COTS smartphones (roughly 0.25–2Hz)
is much lower than the magnetic field sampling frequency. After this, Piecewise Aggre-
gate Approximation (PAA [10]) is performed separately on the magnetic field data of each
survey path to reduce the data dimensionality. More specifically, the length of the data
is denoted as n. Then the data are partitioned into n

10 equally sized frames, within each of
which we calculate the mean value of the magnetic field data. A vector of these mean values
from all frames becomes the dimension-reduced representation of the magnetic field data
and is stored in the database. Note that as a by-product, a Wi-Fi RSSI fingerprint database
can be constructed in the mean time.

It is worth noting that, in practice, we find that geomagnetic fields may vary dramatically within
a small region. Hence we require all the survey paths to cover the whole area of interest to capture
the geomagnetism variation accurately, which increases the database and localization accuracy
in turn. Clearly, the above procedures can be conducted in parallel (i.e., multiple surveyors can
conduct the site survey in the meantime and combine the fingerprints together to reduce the total
survey time). Compared with the traditional Wi-Fi RSSI site survey procedure where signals vec-
tors have to be collected by standing at length at different fixed points in the area, our system can
save time, because it collects fingerprint signals while surveyor(s) is walking. Moreover, the more
dense the survey paths are, the more time it may take to complete the site survey task. To balance
the performance of our system, we require the physical distance between two parallels to be 1m.

Note that Magil and MagFi also work seamlessly in cooperation with existing crowdsourced
fingerprint databases, which can reduce the site survey effort. However, since our article focuses
on locating users given geomagnetism (and opportunistical Wi-Fi signals), interested readers are
referred to References [28, 38] for crowdsourcing fingerprints.
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Table 1. Major Symbols Used in Magil

Notations Definitions
Bp Geomagnetism reading under phone coordinate system
Bo Geomagnetism observation under Earth coordinate system
〈Bo1 Bo2 . . .Bom

〉 User observation sequence Seqobserve whose length ism
〈Bf1

Bf2
. . .Bfn

〉 A fingerprint magnetic field data vector Seqfingerprint

whose length is n
G The corresponding graph generated by transforming all

matched parts of fingerprints and user observations
N The number of vertexes in G
M The number of edges in G

5 MAGIL: INDOOR LOCALIZATION BASED ON GEOMAGNETISM

In this section, we present the problem formulations and solutions for sequence matching and path
constuction in Magil. The important symbols used are summarized in Table 1.

The user’s smartphone first samples a sequence of magnetic field data, and Magil performs
the similar PAA [10] on the geomagnetism data to obtain a shorter sequence of magnetic field
observations. After that, we need to address the problem of how to determine the user location
based on the signal sequence given the magnetic fingerprint database. In geomagnetism-based
localization, the following two subproblems arise before the target can be effectively located.

From Figure 3, we note that along the same trajectory, the shapes of magnetic field sequences
among devices are similar. As each sample is collected by a user somewhere in the survey path, the
first subproblem, the so-called sequence matching problem, is as follows: Given a vector with each
component being an observation sampled by the user and a magnetic field fingerprint data vector
obtained from the database, how do we determine whether and, if so, where they are similar?

Furthermore, a user may traverse any place, and thus different observations may match different
magnetic field fingerprint data vectors. Therefore, the second subproblem, the so-called path con-

struction problem, is as follows: How can we perform “concatenation” on the matchings to obtain
the whole estimated walking trajectory?

To address the above two subproblems, we propose a novel geomagnetism-based localization al-
gorithm. To match the geomagnetism sequence, we modify the Smith-Waterman algorithm [22] to
determine the similarity between the signal observations from the user and the observations from
survey paths (Section 5.1). Given the matching results, we convert them into vertices and a graph,
formulate a shortest path problem (Section 5.2), and solve it efficiently via a modified Dijkstra al-
gorithm (Section 5.3). For practical deployment of Magil, we introduce several improvements in
Section 5.4. We end by summarizing the computational efficiency (Section 5.5).

5.1 Sequence Matching for Geomagnetic Field

We first match the user magnetic observations against the fingerprint. Figure 6 shows a matching
example between a observation sequence and the fingerprint. We can clearly see that the parts
in the boxes match each other well. The problem here is how to identify the similar parts among
sequences.

We devise a magnetic field sequence matching scheme by modifying the Smith-Waterman algo-
rithm [22]. The Smith-Waterman algorithm is a dynamic programming algorithm for performing
local sequence alignment that has been widely used in bioscience (e.g., to determine similar regions
between two strings of nucleotides or protein sequences).
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We make modifications to the original Smith-Waterman algorithm to support the magnetic field
sequence matching. We denote an observed sample (after performing PAA) as Bo and the user ob-
servation sequence as Seqobserve = 〈Bo1 Bo2 . . .Bom

〉, wherem is the sequence length. Note that each
magnetic field observation Bo can be viewed as a point in 3D space. We also denote a magnetic field
fingerprint data vector as Seqfingerprint = 〈Bf1

Bf2
. . .Bfn

〉, where Bfi
is the ith fingerprint magnetic

field data (which is also an observation). However, we cannot determine whether Boi
matches Bfj

by simply calculating their Euclidean distance, since different devices may yield different magnetic
field values even if samples are collected at the same place. Figure 3 also shows this characteris-
tic. To address this, our key observation is that the differences between readings among different
devices are almost the same despite locations. Let dist(·, ·) be the Euclidean distance between two
samples. Based on this observation, we can make use of it and determine Boi

and Bfj
match each

other if and only if д(oi , fj ), the average Euclidean distance between adjacent samples of Boi
and

Bfj
after the mean removal, is less than a certain threshold, i.e.,

д(oi , fj ) < Threshold, (4)

where

д(oi , fj ) = C ·
window∑

t=−window

dist(Boi+t
−Mean(oi ),Bfj+t

−Mean( fj )), (5)

Mean(oi ) = C ·
window∑

t=−window

Boi+t
,

Mean( fj ) = C ·
window∑

t=−window

Bfj+t
,

C = 1/(2 · window + 1).

(6)

In practice, we empirically set window = 5 and Threshold = 2μT, which balances the robustness and
reasonable computation time. We assign a score 1 for matches and the penalty cost for mismatches
is set to an empirical value of −1, which yields competitive performances in practice. We perform
this modified Smith-Waterman sequence matching algorithm on each original magnetic field fin-
gerprint data vector 〈Bf1

Bf2
. . .Bfn

〉 and its corresponding reversed data vector 〈Bfn
Bfn−1

. . .Bf1
〉,

since the user can walk in two different directions along the same path. Note that user observation
sequence and fingerprint data vector may be collected under different walking speeds even walk-
ing through the same path (hence their length may be different), and our algorithm can perform
alignment for sequences with different lengths.

After running the sequence matching algorithm for a magnetic field fingerprint data vector and
a user observation sequence, we can obtain several possible matched substrings with high match-
ing scores. Note that a substring of the user observation sequence can match many substrings of
the magnetic field fingerprint data vector due to the similarities in magnetic field data, and a sub-
string of fingerprint magnetic field data vector can match many substrings of the user observation
sequence, because the user can walk around the same place many times. Another characteristic is

that if substring �a matches �b with a high score, then another substring �c whose position is near �a

can also match �b with a relatively high score. We call this phenomenon pattern repetition. To select
those substrings with high matching scores and reduce pattern repetition (thus reduce the time
and space complexity), we introduce a new substring selection algorithm (Algorithm 1).

We use a parameter R in Algorithm 1 to determine the number of pattern repetitions. A large R
will reduce pattern repetition, but it can also remove some correctly matched substrings. A small
R can lead to both more pattern repetitions and more substrings. In our system we choose R = 10,
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ALGORITHM 1: Matching Substrings Selection Algorithm

Input: Fingerprint magnetic field data vector Seqfingerprint, user observation sequence Seqobserve,
matching score matrix Mm×n obtained from the previous magnetic field sequence matching
algorithm

Output: Matched substrings
1: D ← 0m×n

2: while True do

3: Select an entry (a1,b1) with the highest score M (a1,b1) satisfying D (a1,b1) = 0; if impossi-
ble, break the while loop

4: if M (a1,b1) < Threshold1 then

5: Break
6: end if

7: Backtracking from (a1,b1) to reconstruct the optimum alignment 〈(Bfa1
,Bob1

), . . .
(Bfat
, Bobt

)〉 between two sequences by using Mm×n

8: if t < Threshold2 then

9: Break
10: end if

11: for all 1 ≤ p ≤ m, 1 ≤ q ≤ n do

12: if
√

((a1 − p)2 + (b1 − q)2 < R then

13: D (p,q) ← 1
14: end if

15: end for

16: Calculate the maximum length of platform of 〈a1a2 . . . at 〉 as Plat〈a1a2 ...at 〉 =max {|p −
q |��
�
ap = ap+1 = · · · = aq }. Similar calculation is also performed for 〈b1b2 . . .bt 〉.

17: if Plat〈a1a2 ...at 〉 ≤ Threshold3 ∧ Plat〈b1b2 ...bt 〉 ≤ Threshold3 then

18: Yield these two substrings as matched substrings
19: else

20: Discard these two substrings
21: end if

22: end while

an empirical value that balances the time complexity and the overall performance. Note that we
also use several thresholds in the algorithm. The first one, Threshold1, is to avoid the substrings
whose scores are too low (thus not similar). The second one, Threshold2, is to avoid the substrings
too short to match to increase robustness. The last one, Threshold3, is to avoid the substrings in
which too many deletions and insertions occur during matching. This is because when a user walks
along or near a survey path in the same walking direction and the same path as the surveyor, the
observations are also order-preserving; we cannot skip too many magnetic field samples during
matching, since they walk through the same place. We introduce some empirical values of these
thresholds and analyze the system’s performance under different thresholds in Section 7.

5.2 Shortest Path Formulation for Path Construction

Since a user may traverse many places, matches between the user observation sequence and one
magnetic field fingerprint data vector may cover only a fraction of the whole observation sequence.
We need an algorithm to combine matches among different fingerprints of magnetic field data
vectors to obtain a path that covers the whole observation sequence.
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More specifically, we denote that for each magnetic field fingerprint data vector Seqfingerprinti

we find a set of substrings Si = {si,1, si,2, . . . si,k } using Algorithm 1. Each si, j = 〈Bfi,aj,1
Bfi,aj,2

. . .

Bfi,aj,t
〉 (1 ≤ j ≤ k ) matches some part of user observations, say, 〈Bob1

Bob2
. . .Bobt

〉. We note that

each substring si, j can also be viewed as a corresponding physical route, since each sample can be
mapped to a unique physical location. In the following, we use the words substring and physical
route interchangeably for convenience. Our target is to find an ordered sequence of substrings
Seq that together can cover all user observations in order and physically connected. Here physi-

cally connected means that every two consecutive substrings in Seq are connected head-to-tail in
physical locations. This constraint is necessary, because user movement is continuous.

We approach this subproblem by transforming it into a shortest path problem. We consider all
substrings as vertexes in a graph G. For any two vertexes, or two substrings si and sj , there is a
directed edge between them if there exists some physical location LOC such that both substrings go
through the nearby LOC . Say that the nearest sample in si to LOC is Bfi,ax

, and the nearest sample
in sj to LOC is Bfj,ay

. We assign two weights, bx and by , to the edge, where Bobx
aligns to Bfi,ax

in

si and Boby
aligns to Bfj,ay

in sj . The cost of the edge is the absolute value of the difference between

bx and by . Note that bx can be smaller or bigger than by due to the noise in magnetic field samples
and alignment, and there may be many edges between two vertexes, as there can be infinitely
many potential LOCs if the user walks through the same place multiple times. To limit the number
of edges between two vertexes, we only select those LOCs that are not so physically close, say at
least 0.4m in Euclidean distance between any two LOCs. Note that LOCs are determined online,
and the graph is built based on the substrings.

Finally, we need to align the beginning and the end of user observations. We add two new ver-
texes toG: START connects to each of the substrings matching the beginning of user observations
with two weights: 0 and the index of the first matched user observation (also the matched user
observation with the smallest index), while END is connected by each of the substrings matching
the end of user observations with two weights: the index of the last matched user observation
(also the matched user observation with the largest index) and m, the length of the user observa-
tion sequence. Note that due to the noise in the measurements, the beginning and the end of user
observations may not be matched. Therefore, we propose that START connects to the substrings
with the smallest index of the matched user observation no greater than R1, and END connects
to the substrings with the largest index of the matched user observation no smaller than m − R1.
A large R1 can tolerate more noise but introduce more edges that increases the time complexity,
while a small R1 requires a stricter matching of the sequences but reduces the number of edges.
Here we set R1 = 6, which balances the performance of our system. We require that a valid path is
a simple path where two consecutive edges, e1 with weights b1x and b1y , e2 with weights b2x and
b2y , satisfy that:

b1y ≤ b2x . (7)

This is because we can only align samples in time order.
We illustrate an example in Figure 7, where each colored arrow represents a survey path with

walking direction (and thus one corresponding fingerprint vector). Suppose the user walks along
the traceA-LOC1-LOC2-B. Then after applying the magnetic field sequence matching and selection
(Algorithm 1), we can obtain several matched substrings. In Figure 7, each colored number repre-
sents the index of user observations matching the fingerprint with the same color. For example, the
first 15 samples of user observations 〈Bo1 Bo2 . . .Bo15〉match a part of the blue trace from locationA
to LOC1 (so there is a blue number 1 and a blue number 15 near the blue magnetic field fingerprint
data vector Seqfingerprint1

, corresponding to the beginning and the end of the matched substring,
respectively). Additionally, 〈Bo13 Bo14 . . .Bo19〉 matches a part of the fingerprint Seqfingerprint4

of the
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Fig. 7. An example of location inference. Fig. 8. The corresponding graphG after trans-

forming the example in Figure 7 into a short-

est path problem.

orange trace from location LOC3 to LOC2, and so on. Note that the index of matched user obser-
vations around LOC1, LOC2, and LOC3 can be different due to the noise in measurement.

After transforming this example into a shortest path problem, we obtain a graph G shown in
Figure 8 containing four vertexes, each of which represents a matched substring (a part of col-
ored arrow), besides START and END. Each vertex corresponds to the same-corresponding-color
matched substring in Figure 7. We can see that the corresponding simple path from START to
END (which is also the only available simple path) (the term “path” means “simple path” in this
article) has edge weights (0, 1), (15, 16), (19, 20), and (25, 27), where 27 is the length of the user
observation sequence. We can clearly see that the weights satisfy the condition mentioned before,
thus the path is a valid path that is preferable.

Note that the corresponding path of traceA-LOC1-LOC3-C is not a valid path, since (15, 16) and
(13, 15) are weights belonging to two adjacent edges in the corresponding path, and they do not
satisfy the constraint (7). Thus this path is not to be considered matching. If we walk along the trace
A-LOC1-LOC3-C in reality, then we will align the reversed fingerprint sequence corresponding to
the orange arrow instead. Recall that the constraint (7) ensures that samples are aligned in the
correct time order. Also, we note that there is no edge connecting the green vertex (corresponding
to a matched substring in the magnetic field fingerprint data vector Seqfingerprint3

) to vertex END.
This is because in the corresponding substring, the largest index of the matched user observation
is only 17, which is smaller than 27 − R1 = 21 (thus not close to the end of the user observation
vector). Therefore, the user does not walk in the direction that the green arrow shows.

We denote the cost of a path as the sum of the weights of all edges in the path. For instance, in the
above example, the cost of the valid path from START to END is |0 − 1| + |15 − 16| + |19 − 20| +
|25 − 27| = 5. Then all valid paths from START to END can be viewed as possible user trajectories,
and the minimum cost valid path corresponds to the estimated user trajectory where substrings
can match as many user observations in the correct order as possible. In this context, the minimum
cost path can be viewed as the shortest path from START to END interchangeably if we view the
cost of an edge as the distance.

5.3 Effective Solution for the Modified Shortest Path Problem

We denote N and M as the number of vertexes and edges in G, respectively. To solve the above
shortest path problem, we need to convert the constraint (7) into a more usable one. If we add a
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new edge e0 to G that only connects to START with both weights 0, and add another new edge
eend to G that only connects with END with both weights INT_MAX (a sufficiently large inte-

ger), and view edges in G as new “vertexes” in Ĝ, and convert the weights of edges into weights

of “vertexes” in Ĝ, and add new “edges” into Ĝ between two adjacent “vertexes” e1 and e2 (here
adjacent means that the corresponding edges of the “vertexes” are connected head-to-tail inG) if a
valid path passes through those “vertexes” (or equivalently, b1y ≤ b2x ), then the original subprob-
lem is then equivalent to finding the shortest path (w.r.t. minimum sum of node weights instead
of edge weights) from the “vertex” corresponding to e0 to the “vertex” corresponding to eend in

Ĝ. However, a simple implementation of the above using traditional Dijkstra’s algorithm together
with a min-priority queue can run inO (N 3 + N 2loдN ) in the worst case, which is computationally
expensive, not to mention there may be a large number of “edges” that consumes much memory to

store. To efficiently reduce both time and space complexity, in reality we do not construct such Ĝ.
Instead we maintain the shortest path from e0 to other edges separately. In each step we extract the
unexplored edge with the minimum distance and update its neighbors’ distances if possible. The
pseudocode is as follows (Algorithm 2), which is adapted from the standard Dijkstra’s algorithm.

In Algorithm 2 we useOut (e ) to represent the set of outgoing edges of e . We note a key observa-
tion that in Algorithm 2 we remove some edges fromOut (e1) after relaxation to further reduce the
time complexity (line 20). This is because for each edge e2, if its dist value is updated from e1 the
first time, then after that its dist value cannot be updated from other e3 connecting to e2. Dijkstra’s
algorithm is a greedy algorithm that updates distances in an increasing manner, thus for any e3

connecting to e2 that updates dist later than e1, if b3y ≤ b2x , then Dijkstra’s algorithm guarantees
that dist[e3] ≥ dist[e1]; if b3y > b2x , then e3 cannot further update dist[e2] due to the constraint in
line 16 in Algorithm 2. In this way we can see that each edge inG can be updated at most once, and
the overall time complexity can be reduced to O (MloдM ), or roughly O (N 2loдN ) after using our
algorithm. Finally, we can backtrack the shortest path from END to START (line 24–29) and obtain
the estimated user trajectory by mapping the matched parts of the magnetic field fingerprint data
vector back to the real world coordinates.

5.4 Further Improvements

In our implementation, we also note several approaches to speed up the calculation:

• By noting that the matching score matrix Mm×n is updated only when a new user observa-
tion is generated and the Smith-Waterman algorithm fills the matching score matrix row by
row, we can leverage results in the last row to help update the matrix and find matched sub-
strings. More specifically, we use a max heap of fixed size to keep the matched substrings
with high scores (we only keep the top H = 100 matched substrings). After filling the last
row of M , we only need to check the newly matched substrings ending in the last row with
high scores, since the others ending in the previous rows are already kept in the heap. Af-
ter finding the new matched substrings, we only keep the top H matched substrings in the
heap, and discard the matched substrings whose scores are relatively low. This can help
reduce the amortized complexity. Here we also note that there is no need to backtrack the
whole alignment until its beginning, since if checking the backtracking path for an align-
ment in M , then we can see that the path will eventually go through the previous row at
some location l . Hence, to obtain the whole alignment we can simply concatenate the part
of alignment from its end to l and the alignment starting from l , which can be updated
column by column when a new user observation is generated.

• Since the length of alignments can become very large if the user walks for a long time,
we also consider removing the old data periodically. After every minute, we prune all the
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ALGORITHM 2: Finding Minimum Cost Path Algorithm

Input: Constructed graph G.
Output: Minimum cost path from START to END

1: Add a new edge e0 to G that only connects to START with both of weights 0
2: Add another new edge eend toG that only connects withEND with both of weights INT_MAX ,

a sufficiently large integer
3: dist[e0]← 0
4: for edge e ∈ G − {e0} do

5: dist[e]← ∞
6: end for

7: for edge e ∈ G do

8: back[e]← NULL
9: end for

10: Q ← all edges in G
11: while Q � ∅ do

12: Extract e1 ∈ Q with the minimum distance dist[e1]
13: if e1 == eend then

14: Break
15: end if

16: for e2 ∈ Out (e1),b1y ≤ b2x do

17: if dist[e2] > dist[e1] + cost (e2) then

18: dist[e2]← dist[e1] + cost (e2)
19: back[e2] = e1

20: remove e2 from Out (e1)
21: end if

22: end for

23: end while

24: Backtrack ← back[eend ]
25: MinCostPath ← ∅
26: while Backtrack � e0 do

27: MinCostPath ← MinCostPath ∪ {Backtrack }
28: Backtrack ← back[Backtrack]

29: end while

alignments to remove the samples with timestamps earlier than 1 minute before the current
time. In this way, we also reduce the space complexity efficiently.

5.5 Time Complexity

Denote the number of magnetic field fingerprint data vectors as K , and the number of RSSI fin-
gerprints as P . The total time complexity of the magnetic field sequence matching and selection
(Algorithm 1) is

O
(
Kmn

(
1 +

1

R2

))
, (8)

where m is the length of user observation sequence, n is the maximum length of magnetic field
fingerprint data vector, and R is the parameter mentioned in Algorithm 1. This is due to the time
complexities for matching and substring selection being O (Kmn) and O (K mn

R2 ), respectively. Note
that after the substring selection algorithm we may select at most O (K mn

R2 ) substrings in total.
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After the above procedures, we convert the localization problem into a shortest path problem
in O (N 2), which can be solved in roughly O (N 2loдN ) by using Algorithm 2, where N is the total
number of matched magnetic field substrings. Thus the overall time complexity of Magil is

O

(
K2m2n2

R4
log

(Kmn

R2

))
. (9)

The amortized time complexity is O (K (n + H ) log(H )), where H is the size of the heap men-
tioned in Section 5.4. If RSSI fingerprints are given, then the amortized time complexity becomes
O (R + K (n + H ) log(H )), since we only need to calculate the estimated physical location of each
user observation only once (Section 6).

6 MAGFI: FUSING MAGIL WITH WI-FI RSSI

Given the wide deployment of Wi-Fi, we can extend Magil to include Wi-Fi RSSI signals to achieve
much better localization performance and overcome the requirement of user movement. We may
regard the magnetic field as a kind of global signal that lacks specific location indicator, while the
RF signal as a location-specific signal, because different areas would observe different RF signals
due to complex indoor structures. This inspires us to further refine Magil to fuse it with existing
RSSI fingerprints effectively.

Generally speaking, our key idea is to leverage RSSI fingerprints first to constrain the search
scope in a relatively small area and perform our sequence matching algorithm in such area after-
ward. In such way, we fully utilize both the global location information of RF signals and detailed
local position information of geomagnetic fields.

Specifically, we revise the criterion for determining whether a user observation Boi
matches a

magnetic field fingerprint data Bfj
(see Equation (4)). If there is a Wi-Fi sample with its timestamp

close to the that of Boi
, then we first leverage RSSI fingerprints to calculate a roughly estimated

physical location of Boi
. Specifically, we check the RSSI fingerprints similar to the user Wi-Fi

sample based on Euclidean distance and then apply the K-NN method (K = 5 in our case). We then
compare it with the physical location of Bfj

. If the distance between these two locations is too
far (larger than 5m in our implementation), then we consider these two samples as unmatched.
Otherwise, we leverage Equation (4) to calculate whether these two samples match each other.
This can effectively filter those matched substrings whose magnetic field fingerprints are quite
similar to user observations but the RSSI readings are different from user observations. Thus MagFi
improves the localization robustness and efficiency of Magil.

Besides, we note that when a user stands still, his/her magnetic field observation is almost fixed
and stable, and we cannot achieve localization without offline device magnetometer calibration.
To combat this weakness, in practice, if we detect that the variance of the user geomagnetic obser-
vations obtained within recent 5s is less than an empirical threshold 1μT2, then we directly apply
the above K-NN method to the latest user Wi-Fi sample and return the estimated physical location
to the user. This consideration can also improve the system performance of MagFi.

7 ILLUSTRATIVE EXPERIMENTAL RESULTS

In this section, we evaluate the accuracy and efficiency of Magil and MagFi through implementa-
tion and experiments. In Section 7.1, we introduce experimental settings and comparison schemes.
We present illustrative experimental results for Magil and MagFi in Section 7.2.

7.1 Experimental Settings and Comparison Schemes

We implement our system on different mobile phones, including Sony Xperia X2, Samsung Galaxy
S4, and LG Nexus 5. We use Sony Xperia X2 to perform site survey tasks. They all run Android
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Fig. 9. Survey paths (dashed lines) in the

university corridors.

Fig. 10. Survey paths (dashed lines) in a

whole floor.

operating systems of later than 4.0 version and are all equipped with magnetometers. We imple-
ment the server on a Dell PC with a 3.6GHz processor and 16G RAM, running Windows 8.1. Dur-
ing localization, the mobile client performs continuous background inertial sensor (magnetometer)
sampling. Sampling frequency is set to be 25Hz. From the experiment, we observe that just a few
steps of walking traces are sufficient to localize the user. Therefore, in practice we only need to
keep a small buffer for the walking trace and discard the earlier part. Unless otherwise stated,
we use the following thresholds: Threshold1 = 9, Threshold2 = 15, and Threshold3 = 10. Later, we
analyze the performance of our system under different thresholds.

In our experiments, we compare Magil with another two state-of-the-art magnetic field-based
localization algorithms, and the detailed algorithms and parameter settings refer to their works.

• MaLoc [34]: utilizes a particle filter together with INS to measure the user location. Can-
didate locations with the best magnetic field matching are selected, then the particle filter
further reduces the weights of incorrect locations and performs localization. Specifically,
we implement MaLoc by setting the initial number of particles to be 2,000.

• Magicol [20]: measures not only magnetic field values but also relative trends of magnetic
field changes when a user is walking through an indoor environment. By utilizing Dynamic
Time Warping (DTW) and particle filter, Magicol maps target to locations with the best
trend matching while filtering away incorrect locations. We implement Magicol by setting
the initial number of particles to be 3,000 as suggested in their work.

To evaluate Wi-Fi-geomagnetism fusion performance, we further set each device to its fastest
Wi-Fi sampling frequency (roughly 1Hz). We compare MagFi with (1) Magicol, which supports
fusion with Wi-Fi signals based on two-pass bidirectional particle filtering (TBPF) and (2) Radar [1],
which only uses RSSI readings and matches the incoming RSSI vector measurement against the
RSSI fingerprints. Note that we use the Euclidean distance as the similarity metric and the K-NN
method (K = 5) to estimate the location.

We have conducted extensive experiments to validate our localization algorithm in four dif-
ferent typical indoor environments: a small indoor environment containing three short corridors
(1,091m2, see Figure 9), a larger indoor environment (a whole floor) containing several long cor-
ridors (5,909m2, see Figure 10), a large indoor environment containing open space and several
corridors (4,133m2, see Figure 11) and a large indoor environment with many connected corri-
dors (3,296m2, see Figure 12). In these figures, we also show the survey paths. Note that in a large
open space, survey paths should cover various walking directions to achieve better localization
accuracy. In addition, we also show the 53 Wi-Fi reference points as dots in Figure 12.
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Fig. 11. Survey paths (dashed lines) in a

large indoor environment.

Fig. 12. Survey paths (dashed lines) and

reference points (dots) in the environment

with many connected corridors.

Fig. 13. The estimated walking trajectory of

Magil in the corridors. The red dotted line is

the ground truth and the blue line is the esti-

mated trajectory.

Fig. 14. The estimated walking trajectory of

Magil throughout the whole floor. The red dot-

ted line is the ground truth and the blue line is

the estimated trajectory.

The performance metrics are presented as below. To obtain the ground truth of walking trajec-
tories, we set many landmarks (say, the doors and pillars) and measure their locations in advance.
During the experiment, users record the time they pass by those landmarks to evaluate the real-
time location estimation. Localization error is calculated as the Euclidean distance between ground
truths and estimated locations in historical trajectories, while the real-time localization error is cal-
culated as localization error at each step. The mean localization error is calculated as the mean of
all the estimation errors along a trace.

7.2 Illustrative Results

Geomagnetism-only (Magil) Localization Performance: Figures 13, 14, 15, 16, and 17 show
the estimated walking traces compared with ground truths in corridors, a whole floor, a large
indoor environment, and an environment with many connected corridors, respectively. We can
see that estimations highly match ground truths.

We also compare Magil with other magnetic field-based localization systems such as Magicol
and MaLoc. From Figures 18, 19, 20, and 21, we can clearly see that our system works well in both
narrow spaces (such as corridors) and large open spaces (as shown in Figure 15) and outperforms
other state-of-the-art systems with lower error and smaller deviation.
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Fig. 15. Two estimated walking trajectories of Magil in the large indoor environment. The red dotted lines

are the ground truths and the blue lines are the estimated trajectories.

Fig. 16. The estimated walking trajectory of MagFi in the environment with many connected corridors.

The left figure shows the results using only magnetic field while the right figure shows the localization

performance of fusing both Wi-Fi and magnetic field. The red dotted lines are the ground truths and the

blue lines are the estimated trajectories.

Localization Performance of RF-Geomagnetism Fusion (MagFi): For fusion with RSSI fin-
gerprints, we demonstrate the localization accuracy among different systems such as Magicol and
Radar in Figures 22, 23, 24, and 25. Specifically, in Figures 22 and 24 we compare MagFi using only
geomagnetism with state-of-the-art Magicol and MaLoc. In Figures 23 and 25, we compare our
geomagnetism-Wi-Fi fusion version with Wi-Fi-enabled Magicol and Radar. We can see that while
Magil achieves comparable performances to Radar (Wi-Fi-based localization system) on its own
without fusion, the combination of signals leads to a more accurate performance improvement
than using any individual method. Specifically, MagFi with signal fusion further cuts the local-
ization error by at least 15% compared with the previous one without fusion [30]. Furthermore,
when compared with Wi-Fi-enabled Magicol, our system yields more robust and stable results with
smaller deviation. As Magil with Wi-Fi fusion (MagFi) generally outperforms other state-of-the-
art systems, in the following evaluations we focus on Magil without fusing Wi-Fi signals (hence
does not require RSSI fingerprints).

System Performance under Different Settings: In the experiment, we also ask another eight
subjects in addition to user 1 to walk along the ground-truth trajectory as shown in Figure 13 to
validate Magil’s performance. In sum, there are seven males and two females, and their heights and
weights vary from 1.68m to 1.87m, and from 45kg to 80kg, respectively. Figure 26 shows the mean
error and standard deviation for each user. We can observe that Magil achieves high accuracy in
localization among different users.
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Fig. 17. Another estimated walking trajectory of MagFi in the environment with many connected corridors.

The left figure shows the results using only magnetic field while the right figure shows the localization

performance of fusing both Wi-Fi and magnetic field. The red dotted lines are the ground truths and the

blue lines are the estimated trajectories.

Fig. 18. CDF of indoor localization error in

the corridors.

Fig. 19. CDF of indoor localization error

throughout the whole floor.

Fig. 20. CDF of indoor localization error in

the large indoor environment (the left tra-

jectory in Figure 15).

Fig. 21. CDF of indoor localization error in

the large indoor environment (the right tra-

jectory in Figure 15).
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Fig. 22. CDF of indoor localization error in

the environment with many connected cor-

ridors (the left trajectory in Figure 16).

Fig. 23. CDF of fusion indoor localization

error in the environment with many con-

nected corridors (the right trajectory in

Figure 16).

Fig. 24. CDF of indoor localization error in

the environment with many connected cor-

ridors (the left trajectory in Figure 17).

Fig. 25. CDF of fusion indoor localization

error in the environment with many con-

nected corridors (the right trajectory in

Figure 17).

Fig. 26. Mean localization error (with error

bars) among users.

Fig. 27. Real-time localization error versus

user walking distances.
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Fig. 28. Particle filter-based magnetic

field localization results in the large indoor

environment. The red dotted line is the

ground truth and the blue line is the es-

timation. The black lines intersecting the

ground truth indicate the accessibility de-

sign of the building, showing accessible

paths for mobility/visual impaired people.

Fig. 29. CDFs of the localization error

versus user walking speeds.

Figure 27 shows the average real-time localization error among different systems. For particle
filter-based systems, we repeat the followings 10 times and show their average. In each experiment,
we manually choose a random initial position near the accurate initial position and walk on the
same trajectories afterward. We can see that our system converges more quickly and yields sta-
bler localization results, while other particle filter-based systems cannot converge well. Note that
traditional particle filter requires an explicit or accurate initial position of the target and relies
heavily on accurate estimation of user movement such as steps, walking distances, and directions.
Otherwise, given a coarse initial position, it can work with large localization error, as shown in
Figure 28. Since particle filter tries to capture all possible step length and direction error informa-
tion by means of particles, it cannot converge quickly in large open spaces or complex environ-
ments [8], which still applies in magnetic field fusion. As the number of dimensions of magnetic
field observations is less than Wi-Fi or Bluetooth, the dispersion of particles can be severe in large
open spaces. Magil elegantly avoids this dilemma by matching magnetic field observations instead
of estimating actual user movements, which is error-prone [2]. Moreover, our system models user
movements as transitions between several possible trajectories, which is computationally cheap.

We are also interested in the system performance under different user moving speeds. In this
experiment a user walks along the trajectory shown in Figure 13 at three different speeds: walking
at fast (roughly 1.8m/s), normal (roughly 1.4m/s), and slow (roughly 1.0m/s) speeds. Figure 29 illus-
trates that the overall performance is not influenced much under different speeds. This is because
our modified Smith-Waterman algorithm (Algorithm 1) can align the shapes of magnetic field ob-
servations, which do not alter under different walking speeds along the same trajectory. Different
walking speeds can only affect the length but not the shape of the magnetic field observation
sequence, which indicates the effectiveness of Magil.

Note that we use several empirical thresholds in our system settings. However, different thresh-
olds may also influence the system performance. Figures 30, 31, and 32 show the mean localiza-
tion error and corresponding standard deviations versus different thresholds. In this experiment,
the user walks along the trajectory shown in Figure 13. We can see that a too-large Threshold1 or
Threshold2 will incur a large error, since it will skip more potentially useful substrings. Meanwhile,
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Fig. 30. Mean localization error versus

Threshold1.

Fig. 31. Mean localization error versus

Threshold2.

Fig. 32. Mean localization error versus

Threshold3.

Fig. 33. CDF of localization error among dif-

ferent smartphones.

small Threshold1 or Threshold2 can introduce more substrings that have too-low matching scores
or are too short, respectively, under which the system performance degrades. A large Threshold3

will allow more insertions and deletions during matching, which can lead to more wrong match-
ings. However, a small Threshold3 can also make the localization accuracy lower due to the stricter
matching process. By setting those empirical thresholds mentioned above, we can maintain both
accuracy and robustness of Magil.

Since the user may use different devices other than the one used for magnetic field fingerprint
collection, we also evaluate Magil’s efficiency by using different smartphones. Figure 33 shows
the CDFs of localization error among different smartphones. We can see that our system’s per-
formance is good and stable, since we use Equations (5) and (6) to calculate similarity between
observations instead of using the magnetic field fingerprint itself directly to avoid calibrating dif-
ferent magnetometers.

Next we investigate the cost of Magil on a mobile phone (Sony Xperia Z2). For a responsive
and user-friendly pedestrian tracking system, the typical processing time for each step during
localization should be less than 600ms. Any application with requirements exceeding this limit
can result in an unpleasant user experience. Table 2 shows the execution time of various systems
on the corridor’s trajectory as shown in Figure 13. Time is calculated as the average time it takes
to process a single step over the trajectory. We can see that Magil outperforms other systems
in online execution time, whilst obtaining the lowest localization error. Note that by using the
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Table 2. Computation Time Comparison between

Different Magnetic Field Localization Algorithms

System MagFi Magil Magicol MaLoc
Time (ms) 196.2 215.0 1,781.4 700.7

Fig. 34. Comparison of power consumption

among different magnetic field localization al-

gorithms.

speedup procedures introduced in Section 5.4, we achieve a 2.3× speedup over the preliminary
version of Magil [30] (roughly 498.1ms). It is mainly because we reduce the amortized complexity
significantly. Note that MagFi runs faster than Magil, because the matching complexity is reduced
due to constrained search scope of MagFi compared with Magil, and their computation time is
much less than other schemes.

Finally, we compare energy consumption of different systems in terms of electric current. We
run each algorithm for 2 hours on the same device (LG Nexus 5) and use Emmagee [17], an
open-source Android-based system performance monitoring tool, to record the real-time current.
Figure 34 presents the average current of each application over time. The average current is
412.81mA, 335.41mA, 321.43mA, and 224.25mA for MaLoc, MagFi, Magil, and screen energy con-
sumption, respectively. We can observe that both MagFi and Magil have much lower energy con-
sumption than MaLoc. The reason is that they get rid of two major power-hungry components,
i.e., pedometer (which uses accelerometer and gyroscope dramatically) and particle filter (which
requires more computations). However, MagFi does not consume too much extra energy compared
with Magil (∼4.3%). This is because Wi-Fi scanning frequency in MagFi is usually low (roughly
1Hz), which does not introduce much burden.

8 CONCLUSION AND FUTURE WORKS

In this article, we have proposed and studied Magil, a novel indoor localization scheme based on
geomagnetic field without a pedometer. Magil models the localization as two optimization prob-
lems. It first finds several path segments in its database whose fingerprint variations best match
the target observations (the so-called sequence matching problem). Given these segments, Magil
employs a modified shortest path algorithm to select and order those matched parts to obtain the
target locations (the so-called path construction problem). To further enhance its accuracy, compu-
tational efficiency, and deployability, we propose MagFi, an extension that fuses Magil with Wi-Fi
RSSI fingerprints.

Our schemes do not require any pedometer or user walking model. Compared with the tradi-
tional particle filter approach, Magil and MagFi are much more implementable, computationally
efficient, and robust against user random behaviors when deployed on smartphones. They achieve
significantly better localization accuracy. Extensive experimental studies at our university cam-
pus have shown that Magil and MagFi outperform the state-of-the-art schemes by a large margin
(often cutting localization error by more than 30%).

We discuss future works for Magil as follows:
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• Necessity of User Walking: One limitation is that user needs to walk a distance before Magil
can obtain enough magnetic field data to analyze the pattern and localize the user. This is
because if a user stands still, then his/her magnetic field observation is almost fixed and
stable, and we cannot achieve localization without offline device magnetometer calibration.
While this problem has been overcome with MagFi, we are currently investigating how to
infer location without the help of other signals.

• Survey Path Planning: Note that we require survey paths in large open space to cover various
directions, as shown in Figure 11. This is because Magil performs pattern matching on geo-
magnetic fingerprints, which also limits our localization results to several predefined survey
paths. Since the magnetic field is omnipresent in the whole space, our ongoing work is to
study effective methods to localize users based on the entire geomagnetic fields of the site,
including crowdsourced labeling [38] or other low-cost sensor fusion.
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