
Calibration-Free Fusion of Step Counter and Wireless
Fingerprints for Indoor Localization

Suining He S.-H. Gary Chan
Dept. of Computer Science and Engineering,
The Hong Kong University of Science and

Technology, Hong Kong, China
{sheaa, gchan}@cse.ust.hk

Lei Yu Ning Liu
School of Software,

Sun Yat-sen University, Guangzhou, China
{yulei5@mail2, liuning2@mail}.sysu.edu.cn

ABSTRACT
In order to improve the accuracy of fingerprint-based localiza-
tion, one may fuse step counter measurement with location es-
timation. Previous works on this often require a pre-calibrating
the step counter with training sequence or explicit user input,
which is inconvenient for practical deployment. Some as-
sume conditional independence on successive sensor readings,
which achieves unsatisfactory accuracy in complex and noisy
environment. Some other works need a calibration process for
RSSI measurement consistency if different devices are used
for offline fingerprint collection and online location query.

We propose SLAC, a fingerprint positioning framework which
simultaneously localizes the target and calibrates the system.
SLAC is calibration-free, and works transparently for hetero-
geneous devices and users. It is based on a novel formulation
embedded with a specialized particle filter, where location
estimations, wireless signals and user motion are jointly opti-
mized with resultant consistent and correct model parameters.
Extensive experimental trials at HKUST campus and Hong
Kong International Airport further confirm that SLAC accom-
modates device heterogeneity, and achieves significantly lower
errors compared with other state-of-the-art algorithms.

ACM Classification Keywords
C.2.m. Computer Systems Organization:Computer Communi-
cation Network: Miscellaneous

Author Keywords
Indoor localization; joint optimization; device RSSI
dependency; step counter calibration; fingerprinting; fusion.

INTRODUCTION
Indoor Location-Based Service (LBS) has attracted wide at-
tention in recent years due to its social and commercial values,
with total revenue predicted to worth 10 billion US dollars by
2020 [1]. The service quality of indoor LBS largely depends
on the localization accuracy of users [25]. Among all the
current indoor localization techniques, Wi-Fi fingerprinting
emerges as a promising one, as it does not assume line-of-sight
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measurement and is adaptive to complex indoor environment
without deployment of extra infrastructure [24, 36].

Fingerprint-based indoor localization is usually conducted in t-
wo phases: offline phase (survey) and online phase (query) [16,
24, 34]. In the offline phase, a site survey is conducted to col-
lect the vectors of received signal strength indicator (RSSI)
from access points (APs) at reference points (RPs) with known
locations. In the offline phase, given a query with RSSI mea-
surement, a target (in this paper, we use “user”, “client” and
“target” interchangeably) obtains her or his location with the
closely-matched signals in the database.

With the advance in smartphone sensors of accelerometers and
gyroscopes [14], fusing motion with wireless fingerprint has
been recently studied to improve localization accuracy [27, 41,
47]. While fusing step counter and fingerprinting has shown
to be promising, many practical issues remain to be addressed.
Among them, a critical one is system calibration for both de-
vices and users. Device heterogeneity arises when different
devices are used to measure the same wireless signal [23]. As
their RSSI may not agree with each other, the RSSI difference
needs to be calibrated, traditionally by offline training. Us-
er heterogeneity arises when the motion sensors for different
users need to be calibrated with different parameters in system
operation. In step counter, user stride length is different for
different users, and is related to some stride frequency mod-
el [53]. Traditional localization techniques based on Wi-Fi
fingerprint and step counter fusion often require explicit in-
put of stride model parameters, or tedious intrusive training
offline.

We show in Figure 1(a) the traditional localization approach
fusing step counter measurement and Wi-Fi fingerprints. The
device first needs to be calibrated to align the RSSI measure-
ment with the fingerprint. The step counter measures the
change in user motion [14] with step frequency and count as
output. Based on a step length model, user displacement may
be estimated by summing the stride length over all the steps.
Through some probabilistic inference [9] between wireless sig-
nals and walking displacement [10, 33], the system estimates
the current user location. It is clear that external parameter
calibrations are needed in both device dependency model and
step length model.

Observe that when a user walks, her/his spatial location, wire-
less signals received (as measured by the device), and displace-
ment (as measured by the step counter as stride model) are
correlated. Specifically, distance between location estimations
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Figure 1. Comparison between traditional and proposed schemes: (a) tradi-
tional approach; (b) joint localization and calibration approach.

Figure 2. System work flow of the generic framework in SLAC.

should be consistent with the measured walking displacement.
Such correlation can be utilized to calculate the target location
given the stored fingerprint map, leading to higher accuracy.
Especially in indoor open space like spacious airports or s-
tations, it is also important to constrain the target estimation
using above correlations, as it is often difficult to characterize
the degree of freedom for user mobility there [18, 41]. The es-
timated target locations can be in turn used to calibrate model
parameters for both device and user heterogeneities.

Armed with the above observations, we consider simultaneous-
ly localizing the target and calibrating the localization system
transparently without user input, i.e., a calibration-free ap-
proach. As shown in Figure 1(b), the correlations between
signals and walking displacements are jointly considered in
our fusion algorithm. The consistency requirement between
spatial measures (namely RF signals received at the users) and
temporal measures (namely step frequency and counts report-
ed by the step counter) is used as constraint to self-calibrate
the parameters for the device dependency and step length mod-
els. Using such approach, signal noise from each sensor can
be mitigated, while the system can achieve high localization
accuracy and calibration without explicit user participation.

We propose SLAC, a calibration-free framework which con-
ducts simultaneous localization and calibration fusing step
counter and fingerprints. Figure 2 shows the work flow of S-
LAC. In the offline phase, SLAC is initiated with a site survey,
storing the Wi-Fi fingerprints of reference points (RPs) into the
database. In the online phase, the target (client) collects Wi-Fi
RSSI vectors and measures user walking steps. The server
then fuses a step length model and stride frequency with the
RSSI signal received, and solves a joint optimization problem
to localize the user with the simultaneous calibration of the
step length model. Given the estimated locations, the system
utilizes particle filter to calibrate the RSSI difference due to
device heterogeneity. It is clear that such self-calibration is
transparent to the user.

The unique and salient features of SLAC are as follows:

• Simultaneous Localization and Calibration: SLAC is a
novel framework which achieves indoor localization and
transparent system calibration simultaneously. SLAC learns

parameters in user step model, and meanwhile calibrates
RSSI measurements due to heterogeneous devices. To our
best knowledge, SLAC is the first generic framework which
can jointly and transparently achieve accurate location es-
timations, calibrate device dependency and adapt to user
motion heterogeneity without explicit user participation.

• Fusing Joint Optimization with Particle-Filter Learning:
We formulate a novel optimization problem fusing particle
filter. In such formulation, SLAC leverages the spatial-
temporal correlation between target locations, RSSI signals
and step counts. It jointly considers the correlation between
location estimations and different sensors in a single opti-
mization. By solving a convex optimization problem, we
accurately estimate the location of the walking target. The
temporal information of user position is meanwhile fed to
a specialized particle filter to check the consistency, as in-
spired in Figure 1(b), and infer the corresponding system
parameters.

• Consideration of Sensor Measurement Uncertainty: SLAC
advances from previous works by jointly considering mea-
surement uncertainty in wireless signals and distances. We
consider the randomness of fingerprints in our optimization
formulation to mitigate noise influence. Furthermore, we
consider distance estimation uncertainty of motion sensors.
Our particle filter utilizes the above uncertainty to check the
convergence of learning. Therefore, we can achieve high
estimation robustness under noisy environments.

We have implemented SLAC on the Android platform and con-
ducted large-scale testbed experiments in the Hong Kong In-
ternational Airport (HKIA) and The Hong Kong University of
Science and Technology (HKUST). Experimental results show
that our scheme outperforms other approaches in localization
accuracy, with transparent calibration of step counter (user het-
erogeneity) and RSSI signals (device heterogeneity). Note that
though our discussion is mainly on Wi-Fi fingerprints, SLAC
is general enough to be applicable to other survey-based or fin-
gerprint signals such as RFID [12], visible light [46], channel
state information (CSI) [42, 48] or magnetic field [45].

The rest of this paper is organized as follows. We first discuss
the preliminaries in SLAC system. Then we describe the core
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algorithm of SLAC. After that, we present its experimental
results in two sites. Finally, we summarize our work.

RELATED WORK
We briefly review related work as follows. Due to ease of
deployment [36], Wi-Fi fingerprinting techniques, including
RADAR [3], Horus [49], WiGEM [11], Sectjunction [15]
and Compressive Sensing [7], have been widely studied in
recent years. The above works are based on solely Wi-Fi
fingerprinting. We, on the other hand, fuse user motion into
fingerprints to achieve much better accuracy.

To fuse step counter measurement and Wi-Fi fingerprint, re-
cent works like Markov model [31, 33, 39], signal pattern
matching [32], conditional random field [43] and particle fil-
ter [10, 18, 35] have been studied for indoor localization [47].
Wi-Fi SLAM [8] also utilizes robot odometer to fuse accu-
rate distance with wireless signals. However, these works
usually rely on specific probabilistic assumption between d-
ifferent noisy sensors and may work the best under narrow
office environment. Our scheme, in contrast, jointly utilizes
wireless signals and motion sensors in a single optimization,
and thus can achieve higher accuracy and robustness under
noisy measurements. Furthermore, our framework, based on
joint location mapping and learning, is adaptive to different
environments, including large open space (like the airport) or
narrow corridors (like the office building).

In addition, the works based on step counter and Wi-Fi fusion
above often consider a pre-calibrated step counter for displace-
ment estimation [38]. Some offline stride calibration methods
on step counter have been proposed. However, they either
require offline calibration [18, 22], or deploy external sensor
infrastructures for walking distance estimation [37, 51]. Our
work, in contrast, adaptively fuses available wireless finger-
prints for online step counter calibration without explicit user
input, and hence can be integrated with existing smartphone-
based indoor localization systems [3, 13].

Device dependency in wireless signal measurement has been
studied in recent years [6, 21, 26]. The work in [21] considers
a linear model to calibrate the RSSI signals offline. Online
signal adaptation [11, 23, 26] has been recently studied to
facilitate the calibration. However, they are solely based on
the measured RSSI and have not fully taken advantage of
the correlation between fingerprint signals, locations and mo-
tion information. To our best knowledge, SLAC is the first
framework to utilize step counter fusion to jointly calibrate
the device RSSI, achieving much higher adaptability.

PRELIMINARIES OF SLAC
In this section, we present the preliminaries of SLAC. We first
discuss the RF signals in the context of Wi-Fi fingerprints and
the device dependency in RSSI. Then we briefly describe the
motion estimations and the heterogeneity in user step length
profile.

Fingerprint RSSI Measurement
In the offline phase of fingerprint-based localization, a site
survey is conducted on overall Q reference points (RPs). Let
rq be the 2-D position of RP q, and R = [r1, r2, . . . , rQ] be a

Table 1. Major symbols used in SLAC.
Notation Definition

x̂p
m Estimated 2-D coordinate of the target user

δmn Distance between temporal targets m and n (m)

Sc Step length at step c (m)

fc Step frequency at step c (Hz)

rq 2-D coordinate of reference point (RP) q
Q Number of RPs in fingerprint database

ω
p
mq Weight of RP q in set p in estimating target m

L Number of APs

ψl
q RSSI received at RP q from AP l (dBm)

φl
m RSSI received at target m from AP l (dBm)

ψq RSSI vector received at RP q
φm RSSI vector received at target m
ψ̄l

q RSSI for AP l at RP q (dBm)

T l
q Number of RSSI measurements at q for AP l
σl

q RSSI standard deviation at RP q for AP l (dB)

θp Weight of particle p
[kp, bp] Parameters in linear RSSI model between stored

and online devices for particle p
[α, β] Parameters in linear step length model

P Number of particles for consistency check

2-by-Q matrix indicating the RP positions. Let L be the set of
L Wi-Fi access points (APs) that cover the site.

At each RP, multiple Wi-Fi RSSI samples are collected to
reduce measurement uncertainty. Denote the RSSI at RP q
from AP l at time t as ψl

q(t), 1 ≤ t ≤ T l
q

(
T l

q > 1
)
, with T l

q

being the total number of samples collected. Let ψ̄l
q be the

average RSS reading over time domain for AP l, l ∈ L, at RP

q, and
(
σl

q

)2
be the unbiased estimate of variance in RSS time

samples for AP l at RP q. Then for each RP, the mean RSSI is
computed as

ψ̄l
q =

1

T l
q

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
T l

q∑
t=1

ψl
q(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (1)

and the corresponding RSSI variance is given by

(
σl

q

)2
=

1

T l
q − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
T l

q∑
t=1

(
ψl

q(t) − ψ̄l
q

)2⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (2)

Then the Wi-Fi RSSI vector at RP q is

ψq =
[
ψ̄1

q, ψ̄
2
q, . . . , ψ̄

L
q

]
, q ∈ {1, 2, . . . ,Q}. (3)

In the online phase, the device continuously measures the Wi-
Fi RSSI vectors as the user walks. These vectors form the
temporal targets with locations to be estimated. We consider
a sliding window of M temporal targets for joint localization,
and the M-th one is the latest measurement. Let φl

m be the
RSSI value at target m (1 ≤ m ≤ M) from Wi-Fi AP l, l ∈ L.
Similar to RP RSSI vector, we define the sampled RSSI vector
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Figure 3. RSSI vectors collected from HTC One X and Lenovo A680.

at target point m as

φm =
[
φ1

m, φ
2
m, . . . , φ

L
m

]
. (4)

By definition, if an RP or target cannot detect signals from AP
l, ψ̄l

q = 0 and σl
q = 0 (or φl

m = 0).

Device Dependency in RSSI Measurement
Due to the difference in Wi-Fi network interfaces, for the same
RF signal, different types of smartphones may have different
measurement values [26]. To illustrate this, we conduct an
experiment and collect 1, 000 RSSI samples using HTC One
X and Lenovo A680, respectively. Figure 3 shows the linear
shift between the signals of the two smartphones.

In order to reduce such device dependency, there have been a
lot of models used for calibration [11, 23]. In this paper, for
concreteness we implement a linear signal model to adjust the
device heterogeneity. Given an RSSI φl

m (in dBm) at target
m, we find the corresponding device parameters, denoted as k
(k > 0) and b, i.e.,

φ̃l
m = kφl

m + b. (5)

The calibrated signal value φ̃l
m is then utilized for the signal

vector comparison. In our formulation, we are to find the tuple
[k, b] which fits the device difference. Though our paper uses
a linear model in device calibration for concreteness, SLAC
may be compatible to other more advanced models, e.g. [28].

Walk Detection and Step Counting
Besides RF signals, the client also measures walking infor-
mation through the inertial sensors on smartphones. A step
counter has two modules: walking detection and step count-
ing [5]. Walk detection classifies the current state of the target.
If a user is identified as moving, the step counting measures
her/his displacement with step counts and stride length [16].

Denote the magnitude of linear acceleration and rate of rota-
tion as at (m/s2) and ρt (rad/s) respectively. Given a sliding
window ofW measured values, we consider the average mag-
nitude of linear acceleration, denoted as ha, and the standard
deviation of angular velocity, denoted as hρ [5], for motion
detection:

ha =

∑W
t=1 at

W , hρ =
1

W
W∑
t=1

⎛⎜⎜⎜⎜⎜⎝ρt −
∑W

t=1 ρt

W

⎞⎟⎟⎟⎟⎟⎠
2

. (6)

If ha and hρ are below certain thresholds, then the user is
classified as static [5]. Otherwise, the user is identified as

moving and the step counter measures the walking steps. We
implement the step counting algorithm in [22, 30]. A repetitive
step pattern in the accelerometer is discovered through the
normalized autocorrelation [30].

User Heterogeneity in Step Length Measurement
Based on step counting, we estimate the walking distance
by multiplying number of steps with stride length. The step
length is estimated based on the following model. Denote the
step length at the c-th step as Sc (m) and the corresponding
step frequency as fc (Hz). The linear relationship between
them is given by

Sc = α fc + β, (7)

where the step parameters, α (α > 0) and β, are user dependen-
t [37]. Then given Cmn steps between two locations (temporal
targets) m and n with Wi-Fi measurements, the walking dis-

tance is given by δmn =
∑Cmn

c=1
Sc.

For ease of prototyping, we implement the linear model for
step length estimation. Note that our calibration is independent
of step length model and can be generic enough to apply in
more sophisticated ones [29, 50]. To summarize, our goal in
SLAC is to locate the target user given sets of signals, {ψq}
and {φm}, while calibrating [k, b] in RSSI and

[
α, β
]

in user
profile transparently without explicit user input.

SIMULTANEOUS LOCALIZATION & SELF-CALIBRATION
Given the above preliminaries, we present in this section how
we formulate a novel joint optimization and specialized par-
ticle filter in SLAC. Candidate parameters in device RSSI
mapping are first generated. Then the closeness between tar-
get signals and fingerprints are calculated. Given distance
measurements, a proposed joint optimization finds the target
locations and consistent parameters in step length model. Par-
ticle filter simultaneously adjusts RSSI model parameters to
mitigate the influence of device dependency.

Wireless Signal Difference
To retrieve the correct parameters in Equation (5), we for-
mulate a specialized particle filter [2] for device calibration.
Potential model parameters are generated and filtered during
the joint optimization. As we are to use the calibrated sig-
nals for localization at the same time, we first present in the
following how to compare the signal vectors to represent the
closeness with the fingerprint map.

In the initialization stage, we generate P sets of device pa-
rameter tuples, denoted as {[kp, bp]}, which are later used to
generate P candidate locations for each temporal target. A uni-
form initial sampling is first conducted in the potential interval
of

kmin ≤ k0
p ≤ kmax, bmin ≤ b0

p ≤ bmax, (8)

where the initial interval can be obtained through empirical
studies [53]. Above parameter candidates are used for signal
comparison and joint location estimation. SLAC will then
estimate the most suitable [kp, bp] for the device calibration.

In comparing the signal vectors, we jointly consider device
heterogeneity in Equation (5) and measurement uncertainty

900

UBICOMP '15, SEPTEMBER 7–11, 2015, OSAKA, JAPAN



in Equation (2) [17]. Let Smq be the shared APs between the
temporal target m and RP q (0 < |Smq| ≤ L). Given a target’s

Wi-Fi RSSI φl
m (constant) from AP l ∈ Smq and parameter

candidate [kp, bp], the expected signal difference between RP
q and the target RSSI in AP l is defined as:

Δl
p(φm,ψq) � E

((
φ̃l

m − ψl
q

)2)

= E
((
φ̃l

m

)2 − 2φl
mψ

l
q +
(
ψl

q

)2)

=
(
φ̃l

m

)2 − 2φl
mE
(
ψl

q

)
+ E
((
ψl

q

)2)

=
(
φ̃l

m

)2 − 2φl
mE
(
ψl

q

)
+ E2

(
ψl

q

)
+
(
σl

q

)2
=
(
kpφ

l
m + bp − ψ̄l

q

)2
+
(
σl

q

)2
, (9)

where, by definition, Δl
p(φm,ψq) = 0, if AP l is not detected

at either or both sides. Thus, the overall expected signal
difference between φm and ψq for candidate (particle) p is
given by

Γp(φm,ψq) �
1

|Smq|
|Smq |∑
l=1

Δl
p(φm,ψq). (10)

If |Smq| = 0, RP q is not considered in estimating target m.

Location Estimation Problem and Walking Distance Con-
straint
For each candidate [kp, bp], we estimate the target’s poten-
tial location using Equation (10) and the measured distance
constraints from motion sensors in Equation (7).

Given a tuple [kp, bp], let Vp = {1, 2, . . . ,M} be the time index

of each temporal target in the sliding window, and x̂p
m,m ∈ Vp

be the location for each of them to be estimated. RPs in R
are used to locate these target positions. For a candidate p, let
ω

p
mq be the weight assigned to RP q when locating target m,

and we have

x̂p
m =

Q∑
q=1

ω
p
mqrq, (11)

where the weights ω
p
mq,∀m, are constrained by

Q∑
q=1

ω
p
mq = 1, ω

p
mq ≥ 0, ∀q ∈ {1, 2, . . . ,Q}. (12)

As the target is more likely be between the RPs, we assign
additional constraint over ω

p
mq as

ω
p
mq ≤ λp. (13)

Here constraint λp is given by

λp =
max Γp(φm,ψq)∑N

q=1 Γp(φm,ψq)
, (14)

where N is the number of signal differences used for averaging
(N = 10 in our experiment).

Localization & Self-calibration Using Joint Optimization
In such localization process, we would like to basically search
against the fingerprint map to find the RPs which both mini-
mize the signal differences and satisfy the sequential distance
measurements. In order to efficiently solve this problem, we
formulate a joint optimization. Based on Equations (10) and
(15), we first present as follows the objective function of S-
LAC.

Recall that the measured distance between x̂p
m and x̂p

n as δmn
for each two sequential targets m,n. To jointly localize all the
temporal targets in Vp, we would like to find a set of locations
x̂p

1
, x̂p

2
, . . . , x̂p

M ∈ R2 in the survey site in order to minimize

M∑
m=2

(
‖̂xp

m − x̂p
n‖2 − δmn

)2
, n = m − 1, (15)

All the temporal targets under different device RSSI parameter-
s {[kp, bp]} are jointly considered in the objective function. Let
[αmin, αmax] and [βmin, βmax] be the range for step parameter
calibration. For simultaneous calibration, we are to find the
weights and [α, β], which jointly minimize difference between
measured distances and relative positions of all estimated tar-
gets, i.e.,

arg min
{ωp

mq},[α,β]

P∑
p=1

M∑
m=2

(
‖̂xp

m − x̂p
n‖2 − δmn

)2
, (16)

where n = m − 1. In other words, this objective function
requires the location estimations to consistently satisfy their
sequentially measured distances. Step parameters in Equa-
tion (7) are therefore retrieved through the above consistency.

Due to changes in heading direction, holding gestures and
other factors [44], readings from motion sensors often car-
ry noise. In order to be robust towards such measurement
fluctuation, we further implement the Berhu loss function [4]
to replace the squared errors. Berhu loss function has been
widely implemented for robust fitting [4], and is defined as
follows:

DEFINITION 1. Given the difference z, the corresponding
Berhu loss, denoted as B(z), is

B (z) �

⎧⎪⎨⎪⎩|z| |z| ≤ T,
z2+T 2

2T |z| > T.
(17)

T is a tunable parameter which determines the penalty range.

Berhu loss function means that when the difference between
‖̂xp

m − x̂p
n‖2 and δmn is small, the penalty grows slowly so it

can tolerate small measurement fluctuation. If the difference
is large, Berhu loss assigns more penalty. Then the objective
function can be rewritten as

arg min
{ωp

mq},[α,β]

P∑
p=1

M∑
m=2

B
(
‖̂xp

m − x̂p
n‖2 − δmn

)
, (18)

where ∀n = m − 1.

In order to simultaneously minimize the signal difference for
location estimations, we utilize an upper bound constraint to

901

SESSION: INDOOR LOCALIZATION



reduce the difference between target RSSI signals and fin-
gerprints [4]. In other words, in the joint optimization, RPs
with larger signal difference are assigned with lower weights
ω

p
mq. Denote the upper bound constraint for estimation using

parameter set q as γp, which is given by

M∑
m=1

⎛⎜⎜⎜⎜⎜⎜⎝
Q∑

q=1

Γp(φm,ψq)ω
p
mq

⎞⎟⎟⎟⎟⎟⎟⎠ ≤ γp, (19)

where γp = g
∑M

m=1 minΓp(φm,ψq) and g is a tunable param-
eter. In this way, the correlation of mapping between the
measured RSSIs and stored fingerprints is fused into our for-
mulation to provide absolute target positions.

To summarize, we are to find P candidate locations x̂p
m and

[α, β] such that the overall walking distance differences are
jointly minimized given signal difference constraints, i.e.,

Objective: Equation (18),

subject to: Equations (11), (12), (13) and (19).
(20)

Particle Filter for Calibration Consistency
The above formulation have generated [α, β], candidates
{[kp, bp]} and corresponding locations {̂xp

m}. Given above, we
propose below a specialized particle filter for parameter cali-
bration, i.e., to find the most suitable [kp, bp] which are consis-
tent with estimated locations. Different from previous works
using particle filter for localization fusion [40], our work u-
tilizes it only for parameter learning with smaller degree of
freedom and cost of computation.

We calculate the distance between neighboring {̂xp
m} and eval-

uate their consistency with mutual distances obtained from
step counter. More specifically, given [kp, bp],∀p, denote the

distance between x̂p
m and x̂p

n as

dp
mn = ‖̂xp

m − x̂p
n‖, n = m − 1,∀m ∈ {2, . . . ,M}. (21)

Then, given measured walking distance δmn from step counter,
we calculate the weight θp of each particle based on the con-

sistency between δmn and dp
mn as

θp =
1√

2πσw
exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−
(∑M

m=2 δmn −∑M
m=2 dp

mn

)2
2σ2

w

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (22)

where σw is the sensitivity of the weight. Hence θp represents

the consistency between δmn and dp
mn. In other words, those

parameters which match the measured distance δmn get large
weights. Each weight will then be normalized, i.e.,

θp ← θp∑P
p=1 θp

. (23)

Then the particles get resampled according to θp [2, 45]. As
the user collects multiple Wi-Fi measurements during walking,
[kp, bp] get calibrated. The weights of resampled parameters

will be normalized, and the final [k̂, b̂] are given by

k̂ =
P∑

p=1

θpkp, b̂ =
P∑

p=1

θpbp. (24)

Through resampling, the parameters with low consistency will
be filtered due to the low weights. The estimated location
of the M-th target (i.e., the current position) is given by the
weighted average of the locations generated from particles,

x̂M =

P∑
p=1

θpx̂p
M . (25)

Convergence Criterion and Complexity Analysis
If the estimations using the above parameters [kp, bp] con-

verge, we can simply use [k̂, b̂] (Equation (24)) for localiza-
tion. Therefore, we measure the uncertainty of walking dis-
placement as the convergence criterion for SLAC. Specifically,
given fc, variance of estimated step length at time c is

Var (S c) = Var (α fc + β)

= α2Var ( fc) + β2,
(26)

where Var ( fc) is the variance of step frequency in the slid-
ing window (M temporal targets). For the two sequentially
estimated locations m and n (n = m − 1), given Cmn values of
measured step frequency, variance of δmn is given by

Var (δmn) = Var

⎛⎜⎜⎜⎜⎜⎜⎝
Cmn∑
c=1

S c

⎞⎟⎟⎟⎟⎟⎟⎠ =
Cmn∑
c=1

Var (S c) . (27)

SLAC checks the convergence after each time of joint calibra-
tion. Specifically, for the M-th temporal target, we define the
dispersiveness of candidate locations as the average distance
between estimated particles x̂p

M and their mean x̂M , i.e.,

ξ �
1

P

P∑
p=1

‖̂xp
M − x̂M‖. (28)

Given the calculated δmn (distance between current and previ-
ous positions), if ξ is smaller than a certain threshold, i.e.,

ξ ≤ η√Var (δmn), (29)

where η indicates the confidence interval, we can conclude that
the self calibration converges. The later indoor localization is

conducted based on [k̂, b̂] and calibrated [α, β] (i.e., P = 1 and
[α, β] in the joint optimization becomes constant).

We briefly describe the computational complexity here. Given
Q RPs and L APs, the complexity of signal difference calcula-
tion is O(QL). Usually the number of temporal targets M (size
of sliding window) is small. Then the complexity of solving
convex optimization for each single user is O(PQ3M3) [4] on
the server side. Further computation reduction can be conduct-
ed by AP filtering and RP cluster mapping [7] to reduce the
number of APs and RPs. By filtering those APs which do not
differentiate the RPs well (reducing L), we can reduce the time
in signal difference calculation [7, 15]. The target location can
be first mapped to a small region (like RP cluster [7]) of the
floor plan. Then Q is significantly reduced and computation of
SLAC decreases. After calibration converges, P = 1, [α, β] are
fixed and the online localization complexity is small. In future
work, further increasing scalability for large-scale deployment
will be investigated.
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Algorithm 1: SLAC: Simultaneous Localization & Calibra-
tion.
Input: F: set of step frequency in the sliding window.

P: number of particles for consistency check.
{φm} and {ψq}: measured RSSIs at target and RPs.

Output: Ω: set of parameters for walking model.
{̂x}: estimated locations of the target.

1 Ω← { }./* Initialization */
2 if NoParticles then
3 for p← 1 to P do
4 [kp, bp]← RandSam([kmin, kmax], [bmin, bmax]);
5 Add [kp, bp] into Ω;

6 end
7 end
/* Joint localization and calibration */

8 Localization based on Formulation (20).
9 for m← 2 to M do

10 n← m − 1; δ
p
mn ← 0;

11 for each fc ∈ F do
12 δ

p
mn ← δp

mn + (α fc + β) ;
13 end
14 end
15 δp =

∑M
m=2 δ

p
mn;/* Measured walking dist */

16 for p← 1 to P do
17 dp ← 0;

/* Dist between estimated locations */
18 for m← 2 to M do
19 dp ← dp + ‖̂xp

m − x̂p
m−1
‖2;

20 end
21 θp ← exp

(
− (dp − δp)2 /

(
2σ2

w

))
/
(√

2πσw

)
;

/* Particle weight recalculation */
22 end

/* Resampling of particles */
23 for p← 1 to P do
24 {[kp, bp], θp} ← Resample (Ω);
25 end
26 NormalizeWeight({θp});/* Normalization */
27 x̂M ← ∑P

p=1 θpx̂p
M; /* Final estimation */

To summarize, the flow of SLAC is presented in Algorithm 1.
Through initial random sampling, we generate multiple sets of
parameters as input in the RSSI model in Equation (5) (Lines 2
to 6). Based on these parameters, we conduct the localization
with Formulation (20) (Lines 8 to 15). As each parameter set
corresponds to a location estimation, we filter the inconsistent
parameters and resample the others using the difference in
their mutual distances of Equation (22) (Lines 16 to 24).

ILLUSTRATIVE EXPERIMENTAL RESULTS
We evaluate the SLAC framework prototype in part of the
Hong Kong International Airport (HKIA) (Figure 4) and our
university atrium at HKUST (Figure 5). As shown in the pho-
tos, these survey sites include wall partitions and large open
space. Figure 6 and Figure 7 show their survey floor plans,
respectively. In the following, we will present the experimen-

Figure 4. Survey site of airport
boarding area at HKIA.

Figure 5. Survey site of campus
atrium at HKUST.

tal settings and comparison schemes, followed by illustrative
results in these two sites.

Experimental Settings and Comparison Schemes
We have implemented SLAC on Android platforms. In HKIA,
we collect 350 RPs in overall 10, 000 m2 area. Similarly, in
our HKUST campus, we collect 200 RPs in overall 4, 000
m2 area. The site survey is conducted in each site for over a
day. At each RP, we take totally 80 Wi-Fi RSSI vectors using
HTC One X (each sample takes 1 second). A quarter of these
samples are collected when we are facing north, south, west
and east, respectively. The grid size of site survey is 5 m.

During testing phase, the users collect the testing data (RSSI
and INS) during walking, and explicitly record the ground
truth when they pass by landmarks (like pillars, windows
or doors). Time stamps of the readings are also recorded
during testing. Smartphones are held in front of the users (like
internet browsing and map reading) during walking, as it is the
traditional gesture for indoor navigation service. (Note that
other holding gestures, including being in pockets or shaking,
can be easily filtered through some classification [20, 44, 52],
as they may correspond to conditions when users may not need
real-time user navigation service in real system deployment.
Further classification will be considered in the future work. )

We compare the performance of SLAC with the following
state-of-the-art localization and fusion schemes:

• Fingerprint-based Localization (FL), the classical algorith-
m [3, 13] which evaluates Euclidean distance of each target
RSSI vector with the fingerprints at RPs and finds the top
K nearest neighbors in signal space for location estimation.

• Maximum-Likelihood-based Localization (MLL), a recent
scheme which considers sequential probability along the
walking trajectory [31]. Assuming conditional indepen-
dence between sequential sensor measurements, it calcu-
lates the product of probability obtained through Wi-Fi and
motion estimation [31, 33]. Then it finds the location with
the maximum likelihood [43] as the target position.

• Particle-Filter-based Localization (PFL), a typical fusion
algorithm [10, 18, 30] based on particle filter, which fuses
walking distance and Wi-Fi fingerprints. The weights of
particles are updated according to Wi-Fi location estimation
and walking path [10]. Then these particles are resampled
according to their weights and map constraints [30].
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Figure 6. Floor plan of the boarding area in HKIA. The site survey density is 5 m. Figure 7. Floor plan of HKUST atrium.
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Figure 8. Performance of SLAC after calibra-
tion convergence (airport).
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bors through joint optimization (airport).
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Figure 13. Convergence of location estimation
dispersiveness during self calibration (airport).

For approaching RSSI device dependency, we also compare
SLAC with two typical online calibration schemes, signal
strength difference (SSD) [26] and signal strength ratio (SS-
R) [19]. SSD and SSR focus on using the pairwise deduc-
tion [26] and ratio [19] between AP signals to reduce the
effect of device dependency. We also conduct offline RSSI
calibration (using linear fitting) [21] to compare with SLAC.

Unless otherwise stated, we use the following parameter-
s as baseline: size of sliding window M = 7; number of
particles P = 60; σw = 1 m for particle weight calcula-
tion; η is set to 1.0 in Equation (29); T = 2 m in Equa-
tion (17). Initially, [αmin, αmax, βmin, βmax] = [0.1, 1,−0.5, 0],
[kmin, kmax, bmin, bmax] = [0.1, 6,−10, 0]. K = 15 for FL. For
FL, MLL and PFL which may be device and user dependent,
we utilize the offline calibration [21, 22] to mitigate hetero-
geneity effects.

We conduct trials on 5 users with different heights and weights.
In experimental trial of airport, we use HTC One X during our
site survey and Lenovo A680 as our target devices. In the trial

at the campus atrium, we utilize the HTC One X as survey
devices. Then in the target estimation, we use Google Nexus
5 and Lenovo A680.

We evaluate performance of SLAC using following metrics.
Let xi be target i’s true position and x̂i be the estimated location.
The mean error (unit:m) of target set U is given by μe =

1
|U|
∑|U|

i=1
‖xi − x̂i‖. We also evaluate the learning process of

SLAC based on dispersiveness (Equation (28)) and the mean
localization error.

Illustrative Experimental Results
Figure 8 shows the overall performance of SLAC at baseline
parameters in HKIA. Under large signal noise in airport, tar-
get RSSI may show similar values with RPs that are distant
apart. FL is hence severely influenced by the dispersed near-
est neighbors during the fingerprint matching. PFL has not
jointly considered the relationship between RSSI and motion
information. As the airport contains large indoor open space,
particles become too sparse without map constraints, thereof
converging slow under large sensor noise. Similarly, MLL
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assumes probabilistic independence between different sensor
measurements (RF signals and step counter) and also degrades
in performance under noisy environment.

Compared with the above state-of-the-art algorithms, SLAC
significantly reduces the estimation errors in the indoor large
open space. SLAC considers the statistical analysis over wire-
less RSSI and sensor uncertainty (Equations (2), (6) and (27)).
Therefore, SLAC mitigates the influence of uncertainty and
thus the localization error decreases. With the joint optimiza-
tion, SLAC is more robust to signal uncertainty and reduces
large localization errors.

Figure 9 shows the weights of RPs in target location estima-
tions. Without joint consideration, the signal noise may lead
to a dispersed set of nearest neighbors in signal space. There-
fore, the true weight of the physically near RP is diluted and
large estimation errors may happen. SLAC, however, jointly
considers distance constraints and reduces disperse nearest
neighbors, thereof achieving higher localization accuracy.

Figure 10 shows the overtime performance of different algo-
rithms. Under the large signal noise in HKIA, PFL and MLL
both degrade in the localization performance. It is because
the noisy measurements increase the uncertainty in particle
transition and probability distribution, thereof leading to large
estimation fluctuation. In contrast, SLAC achieves much s-
maller localization fluctuation as it considers the correlation
among sensors in a joint optimization. It can hence accurately
map the target location against the fingerprint map.

Figure 11(a) shows the step counter readings based on repeti-
tive patterns in the accelerometer. Based on the measurement
in step counter, SLAC obtains step frequency and walking
distance of the user. Figure 11(b) shows the measurement
error with respect to the walking distance. T can also be ob-
tained through statistical analysis of above errors (T is set to 2
m in our experiment). Through the calibration in SLAC, we
obtain different users’ walking parameters and achieve higher
accuracy in displacement than uncalibrated step counters.

We also conduct experiment on inexplicit calibration process
in SLAC. Figure 12 shows the localization error with respect to
time for a target. PFL and MLL do not consider simultaneous
localization and calibration. Therefore, if the measured Wi-Fi
signals get no pre-calibration, their performance degrades sig-
nificantly. The localization error of SLAC is high at the first
few target samples due to the randomness in RSSI model pa-
rameters. Then as the incorrect parameters are filtered, SLAC
effectively adapts itself to the device heterogeneity and the
error decreases. Therefore, SLAC can learn the heterogeneous
model parameters transparently and quickly converge to high
localization accuracy.

Figure 13 shows the dispersiveness ξ (Equation (28)) in the
learning process under different particle numbers. At the be-
ginning, there are multiple particles at different locations and
therefore ξ is large. With particles filtered and RSSI model
calibrated, SLAC learns the device parameters and the tar-
get estimations converge. Through consistency check, SLAC
filters the inconsistent candidates among model parameter-
s and adapts to the device heterogeneity. Clearly, the more
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Figure 14. Comparison of step counter calibration performance between
SLAC and offline training (airport).

particles, the better learning performance and the slower the
convergence as a tradeoff. When ξ is smaller than the de-
fined threshold (as in Equation (29)), fusion is conducted over
average parameters (particle number P is set to 1).

Figure 14 shows the step length calibration of SLAC of four
different users. We also conduct the offline training using map
information to calibrate the step length [18] as comparison.
Different from these works using offline training, SLAC learns
the parameters using online readings of Wi-Fi and step counter.
With simultaneous calibration and localization, SLAC obtains
close parameters in step length model with those from offline
training. It confirms that SLAC can effectively learn the user
parameters through transparent calibration.

Figure 15 shows the localization accuracy between different
approaches over device dependency. Both SSD and SSR uti-
lize the online measured RSSI vectors for online calibration.
However, under large signal noise, the deduction and ratio
between pairwise signals is vulnerable to noise fluctuation. D-
ifferent from the above approaches, SLAC utilizes the motion
information to jointly find the calibration parameters. There-
fore, it reduces the influence of noise while achieving higher
accuracy and robustness.

Figure 16 illustrates an example of the RSSI calibration. As
comparison, offline signal calibration (linear fitting) is also
conducted between Lenovo A680 and HTC One X using 60
signal vectors. We can observe that SLAC can achieve close
calibration results as the accurate but tedious offline calibra-
tion. Therefore, SLAC is capable of online calibration without
explicit user participation and tedious offline training.

Figure 17 shows localization error versus number of Wi-Fi
temporal targets (i.e., window size M) for SLAC under dif-
ferent particle numbers. As more Wi-Fi samples are jointly
considered, the sliding window extends and localization accu-
racy increases. It is because a larger sliding window reduces
uncertainty of overall signal difference with fingerprint map,
and the target is more likely to be mapped to an accurate
location. The improvement converges after reaching a few
temporal targets. Localization accuracy also benefits from
more particles due to more accurate parameter estimation.
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Figure 18 shows the mean time for convergence in parameter
learning (time between system start and final convergence) and
localization (time for target position estimation) of SLAC with
respect to number of particles. Clearly, as the particle num-
ber increases, the longer time SLAC needs for convergence
of self-calibration. During the self-calibration, preliminary
localization results are simultaneously provided as the user
walks. After the convergence, the corresponding profiles can
be stored in the database and therefore the self-calibration does
not need to be conducted again. To achieve balance between
localization accuracy and computational efficiency, we choose
M = 7 and 60 particles in our experimental settings.

Figure 19 shows the signal noise (σl
n in Equation (2)) in the

corresponding survey sites. Due to the crowds of people and
larger indoor open space, the signals in HKIA show much
more fluctuations than in the campus. As shown in Figure 19,
the signal noise in the sites can be up to 5 dB in the airport,
which may introduce large measurement errors for traditional
fingerprint localization. Under such noisy environment, SLAC
can still achieve higher accuracy and self-calibration.

We have also conducted the experimental trials in our univer-
sity atrium at HKUST. Recall that as shown in Figure 4, our
atrium has more wall partitions than HKIA. Under wall parti-
tion, the fingerprints show more differentiation. In Figure 19,
we have also observed smaller signal noise on campus. Thus,
we can observe in Figure 20 that SLAC achieves much better
performance than in HKIA. Note the marked resemblance be-
tween Figure 20 and Figure 8. As the results are qualitatively
similar, we do not replicate others for brevity.

CONCLUSION
Step counter has been used to obtain user step frequency and
counts, which serves as input to a user-based model to estimate
user displacement. The model parameters need to be calibrat-
ed for different users due to their different stride length, the
so-called user heterogeneity. Given a signal, different devices
may report different RSSI readings. These heterogeneous de-
vices hence need to be calibrated to align RSSI measurements.
To address user and device heterogeneities when fusing step
counter with fingerprints for indoor localization, the tradition-
al approach is to pre-calibrate explicitly the user model and
device reading, which is tedious and inconvenient.

We propose SLAC, a novel calibration-free localization frame-
work which simultaneously localizes the target and calibrates
the system. SLAC formulates an optimization problem em-
bedded with a specially designed particle filter. The problem
jointly considers RSSI calibration and step counter measure-
ment to localize a target with high accuracy. It utilizes the
correlation in location estimations, RSSI readings and step
information to transparently calibrate devices and user models.
We have conducted extensive experimental trials in the Hong
Kong International Airport and HKUST atrium. Our results
show that SLAC can significantly improve localization accu-
racy while learning the models for counter and device RSSI.
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