
Efficient Person Searching in a Peer-to-Peer
Network

Meng I Lei S.-H. Gary Chan
Department of Computer Science

The Hong Kong University of Science and Technology
Clear Water Bay, Kowloon

Hong Kong

Albert Kai-Sun Wong
Dept of Electrical and Electronic Engineering

The Hong Kong University of Science and Technology
Clear Water Bay, Kowloon

Hong Kong

Abstract— Internet applications such as Voice over IP and
Instant Messaging require the support of efficient person search.
In these applications, a user often has a list of people whom he/she
often calls, the so-called “hot list.” Traditional structured peer-to-
peer networks for file sharing, despite of their support of unique
item search, are not efficient for person search. This is mainly
because they do not take into account human communication
characteristics such as close social network, user-dependent hot
list, and high skewness in access popularity. We show in this paper
that person search can be much more efficient by taking into
consideration of our communication features. Based on Pastry,
our system make use of hot lists in the routing process and
clusters people of the same community together in the search
graph, thereof creating a “small-world” effect. Simulation results
show that our scheme achieves significantly lower search time
than Pastry (by as much as 50%).

I. INTRODUCTION

In recent years, there has been much research in peer-to-
peer (P2P) networks. As different from much of this previous
work on file searching, we address in this paper the problem
of locating a unique or specific item in a P2P network. In
particular, we are interested in finding a person in the network.

Indeed, many exciting applications, such as Voice over
IP (VoIP) and Instant Messaging (IM), would benefit from
the support of efficient person search. Nowadays, the search
mechanism of these applications still operate in a rather
centralized manner. Users are required to register with a central
server when they log into the system and query it for the
addresses of their target search people. This is not scalable
and the server introduces a single point of failure. We consider
in this paper a completely decentralized approach, leading to
a system scalable to large number of users.

In person-searching applications (as in VoIP and IM), a
person usually has a hot list which contains the people he/she
often calls,1 such as colleagues, family members and friends.
It has long been observed that human communication, and
hence the hot list, exhibits the following characteristics:

This work was supported, in part, by the Areas of Excellence (AoE) Scheme
on Information Technology funded by the University Grant Council in Hong
Kong (AoE/E-01/99), and by the Research Grant Council in Hong Kong
(HKUST6156/03E).

1We will use “call” to refer to a search command in this paper, due to the
obvious context our study is conducted under.

• Strong access skewness: Our hot list is often short (of
size around not more than ten), which means that our
contacts often skewed towards only a few people. Some
people also are popular and have a relatively dense social
connection. They are not only often called, but also
good candidates to be contacted when searching for an
unknown person.

• User-dependent: The calls and hot lists are very user-
dependent or user-specific, where a person popular in one
domain may not be so in another.

• Dense social network: Our social network has high
locality and is closely knit together. This is the so-called
“small world” effect in which the person we call is
likely known by our direct or non-distant friends [1], [2].
Furthermore, users in the same domain (say within the
same company or institute) or community (say alumni of
a university) often communicate with each other.

It is clear that in order to locate a person efficiently,
the search mechanism should take advantage of the above
communication patterns. Our work hence differs from the
traditional work on file searching in two major ways:

• Item uniqueness: While multiple copies of files or re-
sources exist in a file sharing system, the target item
we are locating is unique. Consequently, schemes taking
advantage of the popularity of items (such as random
walk and flooding) would not be efficient.

• Access pattern: As mentioned before, the access pattern
in person searching is very user-dependent and domain-
specific. This is in marked contrast with file searching
where the file popularity is generally assumed to be
the same for all users. This fundamentally changes the
underlying system assumption. If one naively applies
file-search mechanisms to person-searching, the search
therefore would not be effective.

Generally, P2P overlay networks can be categorized into
unstructured and structured. In an unstructured overlay (such
as Gnutella), peers are organized in a random graph and
use flooding or random walks to locate items. Clearly, it is
very resource-consuming to search for rare items on a large
network. A negative answer to a search may mean that either
the item does not exist or it is not found within a certain

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2005 proceedings.

0-7803-9415-1/05/$20.00 (C) 2005 IEEE

search scope. A structured overlay such as Pastry overcomes
the search inefficiency for rare items [3], [4]. It assigns keys to
items using a hash table and organizes the participating peers
into a graph based on their IDs (the so-called nodeID). The
graph is structured to facilitate the search for an item based
on its key, by routing the message to a responsible peer who
has nodeID numerically closest to the key.

Obviously, a structured overlay is more efficient to search
for unique items and can be applied in our study. However,
since all items are treated equally in structured overlays, the
search time for popular people (such as the ones in the hot
list) cannot be fast based on Pastry. We therefore propose a
scheme which makes use of the user’s hot list to form the
routing table for the search phase, leading to faster search time
for the ones a user calls often. Furthermore, by intelligently
assigning nodeIDs to peers, peers of the same domain can
be close to each other in the overlay search graph. Due to
access locality within a domain, the search goes to a domain
first before the person is located. This greatly reduces search
time. Simulation shows that the search time for our approach
is much faster than the traditional Pastry (by as much as 50%).

This paper is organized as follows. We first discuss related
work in Section II. We briefly review Pastry in Section III,
which serves as a substrate of our structured overlay. We
present our scheme in Section IV, followed by illustrative
simulation results in Section V. We conclude in Section VI.

II. RELATED WORKS

There has been much work on how to improve the lookup
latency of structured P2P networks, such as Pastry [3] and
Chord [4]. These techniques can be generally categorized into
topology-aware and interest-based [5], [6].

Pastry is a topology-aware approach. To reduce search time,
the routing table of a joining peer is initialized by using
the routing tables of nearby peers in the nodeID space. The
intention is to have the entries of the routing table pointing
to some peers of close location in the search graph. Lookup-
parasitic random sampling (LPRS) [7], a variation of Pastry,
initializes the routing table without considering entry locality,
it discovers nodes in close location by random sampling during
the lookup process. Our approach extends the idea by making
use of the hot list to fill the routing table with nodes of high
access frequency. Consequently, our search is more efficient
because most of the searches can be completed in one hop.
Other topology-aware approaches include expressway [8]. In
expressway, resource heterogeneity of hosts is considered. The
network is partitioned into regions, with the most resourceful
peers of a region promoted as express-way neighbors and
short-cuts made to them. Each express-way neighbor is a rep-
resentative serving all other peers in that region. Our scheme
clusters peers and provides short-cuts to the clusters. However,
our scheme does not have any fixed cluster representative,
hence avoiding representative overloading. In order to reduce
search time, we group those likely to communicate with each
other together.

Associative overlays is an interest-based approach based on
unstructured P2P overlay to locate rare items [9]. A peer is
connected to other peers which possess the same item. The
intuition is that peers sharing the same item may share the
same interest. It is hence more likely to locate the target item
from the peers of the same interest, even the target may be
a rare one. However, the more items a peer has, the more
neighbors it needs to keep. Moreover, it shares the same
weakness of unstructured overlay in that its answers to a query
is non-deterministic. Our scheme runs on a structured P2P
network and hence deterministic answers can be provided. In
addition, with the size of routing table fixed, our overhead of
maintaing routing table is low.

III. PASTRY OVERVIEW

Pastry is a scalable, decentralized and self-organizing P2P
object location and routing substrate. It automatically adapts
to node arrivals, departures and failures.

Each peer in Pastry is assigned randomly a 128-bit node
identifier (nodeID) when a node joins the system. The nodeID
is used to indicate a node’s position in a circular nodeID space
(a logical ring), which ranges from 0 to 2128 − 1.

An item2 in the network is given an unique key, whose key
space is the same as that of the nodeID. An item is handled
by a “responsible” node, whose nodeID is numerically closest
to the item key. All search queries for a resource should be
sent to the responsible node.

Every Pasty node maintains a routing table and a leaf set for
message routing. The routing table is organized into log2b N
rows and 2b − 1 columns, where N is the maximum number
of nodes in the overlay and b is a parameter determining the
size of the routing table (normally chosen to be 4). The entries
in row n refer to nodes whose nodeIDs share exactly the first
n prefix digits with the current node. Entries of the routing
table are (nodeID, IP-address) pair. It is a node with known IP-
address and whose nodeID corresponds to the shared prefix.
The node is chosen to be near the current node according
to some proximity metric, such as the number of hops in IP
routing or geographic distance. If no such node is known, the
entry is left empty. The leaf set contains L numerically close
nodes with the current node in the logical ring.

In Pastry, messages are routed according to the longest
prefix-matching principle. If the target item key is found in the
leaf set, then the message is routed directly to the destination
node in the next hop (the destination node is with nodeID
numerically closest to the key). If the key is not in the leaf
set, the current node looks up its routing table a node whose
nodeID shares the longest prefix with its own nodeID and
routes the message to this node. If there is no such node, the
message is routed to a node that shares the same prefix length
with the present node but is numerically closer to the target
item key.

2An item is any resource we are searching for. Examples are music files
or a person in our context.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2005 proceedings.

TABLE I

HASHING OF USER IDENTIFIER

Hashing

Alice 11 ust.hk 210
Bob 20 umac.mo 110

Cary 22

NodeID

Alice@ust.hk 21011
Bob@umac.mo 11020
Cary@ust.hk 21022

IV. SCHEME DESCRIPTION

Pastry is adopted as the basis of our system. Our goal
is to minimize hop counts for a person search. We address
this in two aspects, nodeID assignment and routing table
construction.

A. NodeID Assignment

Note that in Pastry, nodeID and item key are assigned
independently, thought they share the same key space. In our
system, a person is represented by an unique username in the
form of somebody@somedomain; the person key is generated
from the username by a hash table. A machine is represented
by a nodeID. Since we assume a person is accessed via a
machine, we may regard the nodeID the same as the person
key, and a search for the person corresponds to a search for
the nodeID.

Note that if two nodes are close to each other in the logical
ring, the number of hops required to route a query is small.
Clearly, it is important to assign nodeID in such a way that
people who are likely to look for each other share longer prefix
of nodeID so that they are placed close in the logical ring. The
challenge here is that we do not know in advance a person’s
hot list. Moreover, it is infeasible to assign nodeID to a person
based on its hot list. A reason is that hot list may change over
time, but a person’s nodeID should represent his/her identity
and should not be changed frequently. Given that people from
the same domain are more likely to know, and hence call,
each other, we propose a two-step hash function to generate
the nodeID shown in Table I. We hash the username of the
identifier and get a string of length m (which is 2 in the table),
and the domain name of the identifier and get a string of length
n (which is 3 in our example). We concatenate these two
strings, with the domain name as the prefix. Our assumption
is due to the fact that people of the same domain belong to
an organization, company, or service provider, and are more
likely to call each other due to locality.

B. Routing Table

All nodes participate in message routing. When a new node
joins the network, it starts populating its routing table. A new
node X knows about another nearby node Y by contacting
the bootstrap server. X then asks Y to route a JOIN message
back to X . The message is then forwarded to the node Z who

Alice@ust.hk

H
ot

 L
is

t Bob@umac.mo

11020

Cary@ust.hk

21022

10121

21011

21011

22121

01200

21102

21011 21022

21011

21011

NodeId 21011

Fig. 1. Alice’s hot list and initial routing table.

11020

11020

210221

12110

011202

11011 11020

11020

1102211020

NodeId 11020

110201

21022

21022011203

20120

211022

210101 21022

21022

21000

21022

NodeId 21022

Bob@umac.mo Cary@ust.hk

Fig. 2. Routing Tables of Bob and Cary.

is numerically closest to X . In response to receiving the JOIN
message, nodes Y , Z, and all other nodes on the path send
to X their routing tables, using which X initializes its own
routing table. Figure 1 shows the hot list and the initial routing
table of Alice.

After that, table exchange takes place. The aim is to
populate a node’s routing table with entries of high access rate.
We define buddies in a person’s hot list as first-hop buddies,
and first-hop buddies’ buddies as second-hop buddies, etc. We
call such hop social hop which indicates a distance in a social
network. Due to social network, a person accesses his/her first-
hop buddies with the highest access rate, and the second-hop
buddies with lower access rate and so on. Furthermore, since
the hot list of a person and his/her buddies may be correlated,
routing a message to one’s buddies may increase the success
probability. The following are the steps of table exchange to
create a social network:

1) The new node first searches for all its buddies in its
hot list and replaces entries of its routing table by its
buddies. The entries are marked to indicate they are first-
hop buddies.

2) The node randomly selects a buddy from its hot list, and
acquires routing table from it.

3) The node looks for and replaces its routing table with
entries of the acquired table, which are of fewer social
hops.

4) Repeat Steps 2 & 3 until the routing table stabilized.

As an example, Fig. 2 shows the routing tables of Alice’s
first-hop buddies, Bob and Cary. Note that Alice and Cary are
of the same domain, so their keys share the same prefix 210.
Figure 3 shows the routing table of Alice after Step 1 of table
exchange (Fig. 3 a), and the final routing table of Alices after
acquiring and replacing entries with Alice’s first-hop buddies
(Fig. 3 b). Note that the table exchange procedure also fills

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2005 proceedings.

110201

21011

21011

22121

01120

21102

21011 210221

21011

21011

NodeId 21011

110201

21011

21011

220221

01200

20120

211023

21011 210221

21011

21000

21011210102

NodeId 21011

(a) Alice's routing table after
filling with buddies.

(b) Alice's final routing table.

Fig. 3. First, Alice’s routing table is filled with members of her hot list.
Second, the routing table is populated with entries of high access rate. The
entries are marked to indicate the ranking of access rate. By acquiring tables,
more entries are filled.

Alice’s routing table with more entries.
When a query is routed to a node, the node first checks if

this is a lookup message for itself. If so, the node processes the
query accordingly. If not, the node checks the target against its
hot list. Failure to find the target in the hot list leads to normal
routing procedure of Pastry: the node checks if the target can
be found in leaf set followed by entries in the routing table.
This reduces access time to one’s first-hop buddies to one
search hop, and ensures that accesses to other nodes are not
worse than Pastry.

V. ILLUSTRATIVE SIMULATION RESULTS

Simulations are performed to compare the performance of
our scheme with that of Pastry. The performance metric we
are interested is the average hop counts, which is defined by
the average number of routing hops for a search to reach its
destination. We study the enhancements made by clustering
the nodes, and the improvements contributed by exchanging
routing tables with buddies.

A. Simulation Setup

Simulations are run on the simulator, J-Sim, and a network
topology is generated by GT-ITM with 1024 routers. Various
number of nodes are attached to the routers randomly. The
relations among nodes should be comparable to social relations
among people. We use a multi-component static model [10]
to simulate the social relation.

1) Generation of Hot List: The model supposes there are
q groups and N people in the social network. m and f are
two other system parameters determining how a person make
acquaintances with others. m is related to the number, whereas
f is related to the pattern.
The model is constructed as follows. Initially, there are N
people in the society. Each person i is represented as a vertex
and is assigned a q-component weight (w(1)

i , w
(2)
i , . . . , w

(q)
i).

The weight represents the ranking of that person in that group.
Edges are connected between two vertices if the two people
know each other. First, we choose a group µ among the q
groups. Then, two vertices (i, j) are chosen with probabilities
equal to normalized weights, pi ≡ wµ

i /
∑

k w
(µ)
k and pj ≡

wµ
j /

∑
k w

(µ)
k . Edges are attached to the two vertices unless

they are already connected in the same group. The process is

0.6 0.8 1.0 1.2 1.4 1.6 1.8
1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

Skewness

H
op

 C
ou

nt
s

Pastry
Cluster
tableExchange

Fig. 4. Average hop counts against skewness (a).

repeated until (1 − f)mN edges are added to the system. To
mimic social relations, people should know people from other
groups. This social relationships are formed following the
maximum weights among the q components each individual
has. The normalized maximum weight of vertex i is defined
as wi = max(p(1)

i , . . . , p
(q)
i). Then two distinct vertices i and

j are chosen with probabilities, wi/
∑

k wk and wj/
∑

k wk,
respectively. The process is continued until fmN edges are
formed.
In our simulation, we set m to 3 so that on average each person
knows 5 others. f is chosen to be 0.2, which is shown to be
optimal in other study [10].

2) Generation of nodeID: nodeID for each node is
generated with parameters b set to 2, l set to 10 (prefix bit
number lp to be 6 and the suffix bit number ls to be 4), and
L set to 4. These parameters affect the size of routing tables
and leaf sets. With these parameters set to a smaller value, the
overhead size decreases. However, as Pastry route a message
in �log2bN� steps, a small value of b may increase the hop
counts. Our scheme, which augments a node with hot list,
can compensate the increase while keeping the overhead small.

3) Generation of Search Queries: We assume the call
pattern of a person follows Zipf distribution. For each person,
we generate a call rank list that contains all others in the
system. The person’s direct buddies rank the highest in the
list, second hop buddies the next, and so on. Each individual
searches another person with probability p ∼ 1/ia, where i is
the ranking and a is set to 1.4, unless state otherwise.

B. Results

We first study how the skewness of search queries related to
the average hop counts. We choose a network with N = 1024,
q = 4 as the baseline. In Fig. 4, we see that the average
hop counts generally drops with increasing skewness. Pastry is
insensitive to the skewness, which is expected, since it does not
consider search pattern. Clustering the user gives improvement
to the original Pastry, the average hop counts drops with
increasing skewness. The improvement is contributed by both

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2005 proceedings.

0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Hop Counts

P
er

ce
nt

ag
e

Pastry
Cluster
TableExchange

Fig. 5. Hop Distribution of Pastry, Cluster and Table Exchange. N = 1024,
q = 4, h = 5 and a = 1.4.

1024 2048 4096 8192 16384
1.5

2

2.5

3

3.5

4

4.5

5

Network Size (N)

H
op

 C
ou

nt
s

Pastry

Cluster

tableExchange

Fig. 6. Average hop counts against network size.

the use of hot lists and the shortcuts to various groups. There is
further enhancement made by exchanging routing tables with
buddies. In our experiments, we tested different numbers for
the table exchange, and found 100 gives a steady system. For
each exchange, a node randomly choose a buddy from its hot
list, request its routing table and replace entries. After the
process of exchange, a node’s routing table is now populated
with entries of high access rate.

Figure 5 shows the hop disturbution of the three scheme,
Pastry, Cluster and Table Exchange. We see that most of the
searches in Pastry are completed in several hops, (mostly four),
whereas most of the searches in Table Exchange are done in
one hop (with over 40%). Hot lists allow searches for the
most frequently accessed people to be completed in one hop,
and this contributes to the increase of percentage of one hop
of Cluster compared to Pastry. Table Exchange puts peers of
short social hops in the routing table so the percentage of one
hop increases much.

We study how our scheme is related to large network size.
In Fig. 6, it is shown that clustering is not affected much by
increase in network size. This is because the number of groups

increases with the network size, and the improvement made by
shortcuts to various groups increases as well. Improvements
made by exchanging routing tables decreases with larger
network size. This is due to the fact that the size of routing
table remains the same for all network size, and the entries it
can hold remain the same.

VI. CONCLUSION

Previous studies made for file sharing applications are not
applicable to person searching applications. To build a peer-
to-peer network with efficient search performance for person
searching applications, structured overlay should be used, user
access pattern should be taken into account. Simulation results
confirm that clustering users of same domain and populating
routing table with entries of high access rate give decrease in
routing hops. Our scheme has relatively the same overhead
with Pastry in terms of storage of information, since the hot
list kept by each node is small in size and other information
is the same size.

REFERENCES

[1] J. Kleinberg, “Navigation in a small world,” in Nature, Aug. 2000.
[2] J. Guare, “Six degrees of separation: A play.” in Vintage Books, New

York, 2000.
[3] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object

location, and routing for large-scale peer-to-peer systems,” in IFIP/ACM
International Conference on Distributed Systems Platforms (Middle-
ware), Heidelberg, Germany, Nov. 2001, pp. 329–350.

[4] D. K. F. K. I. Stoica, R. Morris and H. Balakrishnan, “Chord: A
scalable peer-to-peer lookup service for internet applications,” in ACM
SIGCOMM, Aug. 2000, pp. 149–160.

[5] D. Karger and M. Ruhl, “Diminished chord: A protocol for heteroge-
neous subgroup formation in peer-to-peer networks,” in International
Workshop on Peer-to-Peer Systems (IPTPS ’04), San Diego, Feb. 2004,
pp. 288–297.

[6] M. N. Gurmeet Singh Manku and U. Wieder, “Know thy neighbor’s
neighbor: the power of lookahead in randomized p2p networks,” in
Proceedings of the thirty-sixth annual ACM symposium on Theory of
computing, Chicago, IL, USA, 2004, pp. 54–63.

[7] R. G. H. Zhang, A. Goel, “Incrementally improving lookup latency in
distributed hash table systems,” in ACM SIGMETRICS Performance
Evaluation Review , Proceedings of the 2003 ACM SIGMETRICS
international conference on Measurement and modeling of computer
systems, vol. 31, San Diego, CA, USA, June 2003, pp. 114–125.

[8] M. M. Z. Xu and M. Karlsson, “Turning heterogeneity into an advantage
in overlay routing,” in INFOCOM 2003, vol. 2, San Francisco, CA, USA,
Apr. 2003, pp. 1499–1509.

[9] A. F. E. Cohen and I. Kaplan, “A case for associative peer to peer over-
lays,” in ACM SIGCOMM Computer Communication Review, vol. 33,
Jan. 2003, pp. 95–100.

[10] B. K. D.-H. Kim and D. Kim, “Multi-component static model for social
networks,” in The European Physical Journal B, Feb. 2004, pp. 305–309.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2005 proceedings.

	Select a link below
	Return to Main Menu
	Return to Previous View

