
Building A Monitoring Overlay
for Peer-to-Peer Streaming

Xing Jin Qiuyan Xia S.-H. Gary Chan
Department of Computer Science and Engineering

The Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong
{csvenus, xiaqy, gchan}@cse.ust.hk

Abstract— Current peer-to-peer (P2P) streaming systems often
assume that nodes are cooperative to upload and download data.
However, in the open environment of the Internet, this is not
true and there exist malicious nodes in the system. In this paper,
we study malicious actions that can be detected through peer-
based monitoring. We require each node to monitor the data
received and to periodically send out monitoring messages about
its neighbors to some trustworthy nodes. To efficiently store
and search the messages among multiple trustworthy nodes, we
organize the trustworthy nodes into a threaded binary tree. The
trustworthy nodes also dynamically redistribute the monitoring
messages among them to achieve load balancing. Our simulation
results show that this scheme can efficiently detect malicious
nodes with high accuracy, and that the dynamic redistribution
method can achieve good load balancing among the trustworthy
nodes.

I. INTRODUCTION

With the popularity of broadband Internet access, there has
been increasing interest in media streaming. Recently, P2P
streaming has emerged to overcome limitations in traditional
server-based streaming. In P2P streaming, cooperative peers
self-organize themselves into overlay networks via unicast
tunnels. They cache and relay data for each other, thereby
eliminating the need of powerful servers from the system.
Current P2P streaming tools have been shown to be able to
support up to thousands of peers with acceptable quality of
services [1], [2].

Most proposed P2P streaming systems focus on improving
streaming quality and assume that all nodes cooperate as
desired. However, this may not be true in the open environment
of the Internet. Some nodes in the system may be selfish and
unwilling to upload data to others. Some may have abnormal
actions such as frequent rebooting which adversely affect their
neighbors. More seriously, some nodes may cheat their neigh-
bors, launch attacks to disrupt the service or distribute viruses
in the overlay network. Following the notations in [3], we call
these uncooperative, abnormal or attacking behavior malicious
actions and the corresponding nodes malicious nodes.

In this paper, we focus on the malicious actions that can
be detected through nodes’ past performance and study a

This work was supported, in part, by Competitive Earmarked Research
Grant (HKUST6156/03E) of the Research Grant Council in Hong Kong,
and Innovation and Technology Commission of the Hong Kong Special
Administrative Region, China (GHP/045/05).

detecting scheme to identify malicious nodes in the system.
In our scheme, each node keeps monitoring its neighbors and
periodically generates monitoring messages. The monitoring
messages are collected somewhere to compute node’s reputa-
tion. Once a malicious action of a node is detected, the repu-
tation of the node is decreased. In this way, nodes frequently
conducting malicious actions are likely to have low reputation,
and a node whose reputation is lower than a certain threshold
can be identified as malicious. We consider two important
issues in the design. Firstly, we study where the monitoring
messages are stored. If the messages are stored at some normal
nodes, the nodes may modify or forge the data. Therefore, we
use a monitoring overlay formed by a set of trustworthy nodes
to manage the messages. These nodes are certificated by a
trusted third-party and are fully trustworthy (e.g., pre-deployed
proxies). In the following, we call a trustworthy node in the
monitoring overlay a monitoring node, and a normal node
in the streaming overlay a streaming node. The monitoring
nodes organize themselves into a threaded binary tree to ensure
that an update or query to a streaming node’s reputation
can be quickly accomplished. The monitoring nodes also
dynamically redistribute their management loads to achieve
load balancing among them. Secondly, a streaming node may
lie about the performance of its neighbors in the monitoring
messages. Such a node can affect the evaluation as it desires.
To detect node lying in the monitoring messages, we employ
a traditional approach of monitoring suspicious messages [4].
In detail, to evaluate the performance of a data sender in
a certain duration, both the sender and the corresponding
receiver generate monitoring messages. If there is an obvious
gap between the two messages, the messages are regarded
as suspicious. Each streaming node is then assigned a credit
value based on the number of suspicious messages it generates,
which indicates to what extend a later monitoring message
from the node can be trusted. We then integrate the credit
values of nodes into reputation computing to address the node
lying problem.

We have conducted simulations to evaluate our scheme. The
results show that it can detect malicious nodes with low false
positive and false negative rates, and the loads on monitoring
nodes can be efficiently balanced by the dynamic redistribution
method.

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

We briefly review previous work on P2P reputation as
follows. Trust-Aware Multicast (TAM) computes a level of
trust for each node according to their past performance
and builds a multicast tree based on the trustworthiness of
nodes [5]. However, the trustworthiness, or reputation of nodes
is maintained at the root, which limits the system scalability.
Our scheme considers a set of trustworthy nodes instead of a
single one. We accordingly design the cooperation and load
balancing mechanisms among the trustworthy nodes. In NICE
trust model, each node holds the reputation of its transaction
partners according to the quality of transactions [6]. All the
nodes further form a trust graph according to the reputation
values. Later on, an overlay path between two nodes is selected
as the most trustworthy path between them in the trust graph.
P-Grid trust model and EigenTrust use DHT-like (Distributed
Hash Table) systems to store and search node reputation [7],
[8]. However, none of these approaches have considered secure
reputation computing. A message with reputation/trust values
may be intercepted, modified or discarded in transmission.
A malicious node may lie to others or forge messages to
affect the reputation computing as it desires. Our scheme
uses a set of trustworthy nodes to manage reputation. These
nodes are fully trustworthy and never cheat in reputation
computing. Furthermore, we organize the trustworthy nodes
into a threaded binary tree instead of a DHT network. This
is because DHT has large setup and maintenance costs, and
the management loads on DHT nodes are often unevenly
distributed. Instead, a binary tree is much easier to maintain,
and we can use a dynamic load redistribution method to
balance the loads on nodes.

The rest of the paper is organized as follows: In Section II
we discuss the design of the system. In Section III we present
the simulation results. Finally, we conclude in Section IV.

II. SYSTEM DESIGN

A. Design Overview

As discussed above, we are interested in the malicious
actions that can be detected by monitoring nodes’ past perfor-
mance. Examples include Eclipse attack, resource-consuming
attack and distributing corrupt data [3]. To detect such actions
in a streaming system, we build a reputation system among
streaming nodes based on their history performance. The
more malicious actions a streaming node conducts, the less
reputation it gets. Note that there are many ways to use
the reputation results. In one case, if node A wants to set
up a connection with another node B, A first queries B’s
reputation. If B has low reputation (i.e., a potential malicious
node), A blacklists B and does not connect to it for a while.
In another case, if some node is identified as malicious, this
information is broadcasted to other nodes so that they may
block it. In the following, we assume that most streaming
nodes in the system are well-behaved, and that node behavior
is consistent for a considerably long time.

We consider a set of trustworthy nodes in the system. A
trustworthy node always behaves as desired and never modifies

or forges data. The trustworthy nodes form a monitoring over-
lay to store and maintain monitoring messages from streaming
nodes. Each trustworthy node holds a certificate issued by
a trusted certification authority (CA). With the certificates,
two trustworthy nodes can authenticate each other and set
up a secure connection as in SSL (Secure Socket Layer) [9].
Similar to SSL, data transmission between two trustworthy
nodes is secure and cannot be attacked by end systems. In
fact, a trustworthy node can be a pre-deployed proxy or an
authenticated end system. The selection of trustworthy nodes
has been out of the scope of this paper. Interested readers can
refer to [10].

Each streaming node S is associated with a monitoring
node TS . All the messages about the performance of S are
forwarded to TS . A streaming node can send two types of
messages to the monitoring overlay:

• UPDATE message: A streaming node keeps checking
the data it receives. It periodically sends an UPDATE
message to report the performance of its parent. An
UPDATE message contains the data sender’s IP address,
the data receiver’s IP address, information about the data
sender’s performance (e.g., the amount of corrupt data
detected) and a timestamp. Here we assume a streaming
node can be uniquely represented by its IP address.

• QUERY message: A streaming node can send a QUERY
message to query the reputation of any other streaming
node.

On the other hand, a monitoring node A is responsible for
a certain IP range [Al, Ar). A streaming node with IP address
within this range will be associated with A. Clearly, the IP
ranges of the monitoring nodes should not overlap. We further
define L(A) as the load on a monitoring node A, i.e., the
number of IP addresses that have been associated with A.

B. Construction of the Monitoring Overlay

To efficiently process the messages from streaming nodes,
we organize the monitoring nodes into a threaded binary
tree. A threaded binary tree is a binary search tree in which
each node maintains a Pred link pointing to the node’s in-
order predecessor and a Succ link pointing to its in-order
successor [11]. Figure 1 shows an example of a threaded
binary tree. Each quadrangle is a monitoring node, and the
numbers in a quadrangle indicate the IP range maintained
by the node. Here we use numerical values to represent IP
addresses. Suppose that a node K is responsible for range
[Kl,Kr). The ranges maintained by nodes in the left subtree
of K are all smaller than Kl, and the ranges maintained by
nodes in the right subtree of K are larger than or equal to
Kr. The directed dash lines in the figure indicate the in-order
successors of nodes. Starting from the leftmost leaf node of
the tree (the node responsible for [0, 10) in the figure) and
following the dash lines, all the nodes can be traversed in an
ascending order according to their ranges. The Pred links are
not shown in the figure, since they can be tracked through the
reverse of the Succ links. In other words, if node A is node
B’s successor, B is A’s predecessor.

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

[55, 80)

[20, 40)

[50, 55)

[40, 50)

[10, 16)

[0, 10) [16, 20)

[95,99)

[80, 95) [99 1000]

Parent-Child link
Succ link

Fig. 1. An example of a threaded binary search tree.

Nodes in the tree periodically exchange KeepAlive mes-
sages with their parents and children. With node joining or
leaving, the tree needs to be accordingly updated. We do
not discuss the operations upon node joining or leaving here.
Interested readers can refer to [11].

C. Access and Maintenance of Reputation

A message is processed in the monitoring overlay as Fig. 2
shows. Suppose that streaming node B is streaming node A’s
child in the streaming overlay, and B prepares to submit an
UPDATE message to report A’s performance. If B has not
sent an UPDATE message about A before, B first sends A’s
IP address to R, the root of the threaded tree. R then searches
in the threaded tree to identify the monitoring node whose
range covers A’s IP address (node T in this case). T then
sends a response message to B as well as its certificate of
trustworthiness. After B confirms the trustworthiness of T , it
sends its UPDATE message about A to T . In the following
periods, B will directly send the UPDATE messages about A
to T .

The IP ranges maintained by the monitoring nodes should
be carefully computed so that the loads on the nodes are
balanced. Initially, the root of the tree maintains the whole
IP range while all the others maintain an empty range. A
monitoring node A periodically compares its own load with
the loads of its predecessor A− and successor A+ (if any). If
the gap between L(A) and L(A−) or the gap between L(A)
and L(A+) is larger than a certain threshold δ, the three nodes
redistribute their loads and IP ranges to equally share the loads.
If a monitoring node leaves the tree, its load is distributed to
its predecessor and successor before it leaves. To prevent data
loss due to unexpected node failure, each node sends a copy
of its data to its predecessor and successor, and periodically
updates them.

Figure 3 shows an example of load redistribution among
nodes. Initially, all the IP addresses are maintained by the
root R, and all the other nodes have empty ranges. With the
insertion of new IPs, when R finds that its loads L(R) is larger
than its successor R+’s load L(R+) (or its predecessor R−’s
load L(R−)) by δ, R moves one third of its load to R− and
another one third to R+. R further accordingly redistributes
the ranges among the three nodes as Fig. 3(b) shows.

[55, 80)

[20, 40)

[40, 55)[0, 20)

[95, 1000]

[80, 95)

B

A

R

T

Step 1

Step 2

Step 3

Step 4

Monitoring
Overlay

Streaming
Overlay

Step 2

Fig. 2. The process of submitting an UPDATE message about a streaming
node A by its child B for the first time.
Step 1) B sends A’s IP address to R. Suppose that A’s IP address is
represented by a numerical value 88; Step 2) R searches in the threaded
binary tree to identify the monitoring node that manages the value 88 (node
T in this case); Step 3) T responses to B with its certificate; Step 4) After
confirming the trustworthiness of T , B sends its UPDATE message about A
to T .

[0, 1000]
R

R_ R+

Pred
link

Succ
link

[200, 700)
R

R_ R+

Pred
link

Succ
link

[0, 200) [700, 1000]

(a) Initially, root R maintains the
whole IP range;

(b) R redistributes its load and range
to the predecessor R− and the suc-
cessor R+.

Fig. 3. Load and range redistribution among monitoring nodes.

D. Reputation Computing

We now discuss how to compute the reputation of a stream-
ing node A, REP (A). For ease of illustration and brevity, we
take one of the malicious actions, i.e., distributing corrupt data,
as an example. That is, a node may send out corrupt data that
do not conform to the stream format.

Although the monitoring overlay is secure, a dishonest
streaming node may submit forged UPDATE messages to
affect the reputation computing. To address this problem,
we monitor suspicious messages as in [4]. When a data
receiver submits an UPDATE message, the corresponding data
sender also sends its own version of the message to the
monitoring overlay. If there is an obvious gap between these
two messages, the messages are regarded as suspicious.

Define Ns(A) and Nn(A) as the number of suspicious
messages and non-suspicious messages generated by A. We
further define Credit(A) = Nn(A)

Ns(A)+Nn(A) as the credibility
level of A, which indicates to what extend we should believe

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

the messages generated by A. Since dishonest nodes often have
low credit values, their opinion on the evaluation of others
should be accordingly reduced. We hence compute REP (A)
as

REP (A) = Average

{
Credit(X) ×

(
1 − Corrupt(A, X, t)

Total(A, X, t)

)
,

∀ t ∈ valid periods;

}

where Corrupt(A,X, t) and Total(A,X, t) are the
amounts of corrupt data and total data received by X from A
in period t as reported by X , respectively. The valid periods
exclude outdated messages.

III. ILLUSTRATIVE NUMERICAL RESULTS

In this section we present simulation results on our detection
scheme. We randomly put a group of (1000−9000) streaming
nodes into the network. Nodes form a streaming overlay as
follows: Each node randomly selects multiple nodes as its
parents, and a node can have at most 10 children. A node
may also dynamically change some of its parents. The average
duration of a streaming connection is 25 updating periods.

We simulate the example of distributing corrupt data. A
non-malicious streaming node distributes a negligible amount
of corrupt data, while a malicious streaming node distributes
corrupt data with a probability uniformly distributed between
[0.4, 1]. We define malice ratio (α) as the number of malicious
streaming nodes divided by the total number of streaming
nodes. Furthermore, a node may lie in its UPDATE messages.
We define three types of lies in our simulation: (I) The node
monitored is not malicious, but its dishonest neighbor reports
its action as malicious; (II) The node monitored is malicious,
but its dishonest neighbor reports its action as non-malicious
(i.e., conspiracy); (III) A dishonest and malicious node reports
its own action as non-malicious. In the system, a streaming
node is either honest or dishonest. An honest node never lies
in its messages. For dishonest nodes, the type-I and type-III
lies occur with a probability uniformly distributed in [0.4, 1],
and the type-II lies occur with probability 0.05. We define lie
ratio (β) as the number of dishonest streaming nodes divided
by the total number of streaming nodes. Note that the behavior
of malice and lying are independent.

A node is evaluated as malicious if its reputation is smaller
than the average reputation value of all the non-leaf nodes and
a given threshold 0.85.

We further define the following metrics for evaluation:

• False positive rate (FPR): defined as the number of non-
malicious nodes evaluated as malicious divided by the
total number of non-malicious nodes.

• False negative rate (FNR): defined as the number of
malicious nodes evaluated as non-malicious divided by
the total number of malicious nodes.

Figure 4 shows the FPR and FNR values after 30 updating
periods with different lie ratios and malice ratios. The larger

(a) FPR;

(b) FNR.

Fig. 4. Performance with different malice ratios and lie ratios (after 30
updating periods, with group size 5000).

the lie ratio, the larger FPR and FNR. In Fig. 4(a) FPR is kept
below 2.1%, even with 50% dishonest nodes. In the best case
of β = 0, FPR is always 0. We note that the scheme achieves
large FPR when malice ratio α is small. When α = 0, the
FPR value is almost the largest. This is because our judgment
is based on the average reputation value. With small malice
ratios, a large portion of nodes are non-malicious and have
similar reputation values, which are also close to the average.
In this case, a small perturbation to the evaluation may lead to
incorrect judgment. While in the case of large malice ratios,
the gap between the average reputation and the reputation of
a non-malicious node is large, therefore non-malicious nodes
are unlikely to be evaluated as malicious. As compared to the
FPR values, we achieve much larger FNR values as shown in
Fig. 4(b). This is partially due to the small evaluation threshold
we set, because it is more important to protect non-malicious
nodes than to detect malicious ones.

Figure 5 shows the FPR and FNR values with different
group sizes. The FPR and FNR values are almost independent
of the group size. This is because a node’s reputation is
determined by its neighbors, and the selection of neighbors in
our simulation does not depend on the group size. In Fig. 5(a)
the FPR value is large when the malice ratio is small. The

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

(a) FPR;

(b) FNR.

Fig. 5. Performance with different group sizes (after 30 updating periods,
β = 0.25).

reason has been explained before. Similar to Fig. 4, the scheme
achieves much larger FNR than FPR as shown in Fig. 5(b) .

Figure 6 shows the management loads on the monitoring
nodes. We set the number of streaming nodes and the number
of monitoring nodes to 9000 and 50, respectively. The IP
addresses of streaming nodes are uniformly distributed within
a given range. The redistribution threshold δ is 8. Note that
the monitoring nodes have been sorted in an ascending order
according to their ranges by following the Succ links in the
threaded binary tree. They are further assigned node IDs in
that order. As shown in the figure, the maximum load is only
26.5% larger than the minimum load. The loads are well
balanced among the monitoring nodes. Note that the loads
on nodes first increase and then decrease with the increase of
node IDs. This is because the load redistribution is propagated
along the tree in a top-down manner. The root and its close
neighbors (with IDs from 20 to 35) hence have the heaviest
loads. After the ranges have been redistributed among all the
nodes, we believe the load distribution is more related to the
IP distribution instead of the distance to the root.

IV. CONCLUSION

Most proposed P2P streaming systems assume that nodes
are cooperative to cache and relay data. However, this may

Fig. 6. Load distribution on monitoring nodes.

not be true in the open Internet. In this paper, we study
how to detect malicious nodes in a P2P streaming system.
We require each node to keep monitoring its neighbors and
to periodically generate monitoring messages. The messages
are collected and analyzed at some trustworthy nodes in a
monitoring overlay. We study several key components in this
framework, including efficient structure of the monitoring
overlay, load balancing among the trustworthy nodes and
reputation computing in the presence of node lying in the
monitoring messages. Our simulation results show that this
scheme can efficiently detect malicious nodes with low error,
and that our load redistribution method can achieve good load
balancing among the trustworthy nodes.

ACKNOWLEDGEMENT

The authors would like to thank Yongqiang Xiong from
MSRA, Qian Zhang, Yajun Wang and Zhen Zhou from
HKUST for their helpful discussions.

REFERENCES

[1] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “CoolStreaming/DONet: A
data-driven overlay network for efficient live media streaming,” in Proc.
IEEE INFOCOM’05, March 2005.

[2] X. Liao, H. Jin, Y. Liu, L. M. Ni, and D. Deng, “Anysee: Inter-
overlay optimization based p2p live streaming system,” in Proc. IEEE
INFOCOM’06, April 2006.

[3] X. Jin, S.-H. G. Chan, W.-P. K. Yiu, Y. Xiong, and Q. Zhang, “Detecting
malicious hosts in the presence of lying hosts in peer-to-peer streaming,”
in Proc. IEEE ICME’06, July 2006.

[4] L. Mekouar, Y. Iraqi, and R. Boutaba, “Detecting malicious peers in a
reputation-based peer-to-peer system,” in Proc. IEEE CCNC’05, 2005.

[5] S. Jun, M. Ahamad, and J. Xu, “Robust information dissemination in
uncooperative environments,” in Proc. IEEE ICDCS’05, 2005.

[6] S. Lee, R. Sherwood, and B. Bhattacharjee, “Cooperative peer groups
in NICE,” in Proc. IEEE INFOCOM’03, 2003.

[7] K. Aberer and Z. Despotovic, “Managing trust in a peer-2-peer infor-
mation system,” in Proc. ACM CIKM’01, 2001.

[8] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The Eigen-
Trust algorithm for reputation management in P2P networks,” in Proc.
WWW’03, 2003.

[9] “Introduction to SSL.” http://docs.sun.com/source/816-6156-10/con
tents.htm.

[10] R. Chen and B. Yeager, “Poblano: A distributed trust model for peer-
to-peer networks.” http://www.jxta.org/docs/trust.pdf.

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. MIT Press, 2001.

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

