
LP-based Optimization of Storage and Retrieval
for Distributed Video-on-Demand

Zhuolin Xu S.-H. Gary Chan
Department of Computer Science and Engineering

The Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

{fanniexu,gchan}@cse.ust.hk

Abstract—In a distributed large-scale video-on-demand (VoD),
a content provider often deploys local servers close to their users.
A movie is partitioned into k segments which the servers collab-
oratively store and retrieve (k ≥ 1). A critical but challenging
problem is how to minimize overall system deployment cost due
to server bandwidth, server storage, and network traffic among
servers. In this paper, we address this problem through jointly
optimizing movie storage and retrieval in the server network.

We first formulate the optimization problem to an integer
program. To address its tractability, we propose a novel, effective
and implementable heuristic. The heuristic, termed LP-SR,
decomposes the problem into two computationally efficient linear
programs (LPs) for segment storage and retrieval, respectively.
The strength of LP-SR is that it is asymptotically optimal in terms
of k, and k does not need to be high to achieve near optimality
(around 5 to 10 in our study). Through extensive simulation study,
LP-SR is shown to perform significantly the best as compared
with other state-of-the-art and traditional schemes, reducing the
deployment cost by a wide margin (by multiple times in many
cases). It attains performance very close to the global minimum
cost.

Index Terms—Distributed video-on-demand; optimization; seg-
ment storage and retrieval; linear programming

I. INTRODUCTION

In order to provide cost-effective video-on-demand (VoD)
service scalable to large number of users, a content provider
often deploys distributed servers placed close to user pools.
These servers cooperatively replicate and retrieve movies given
movie popularity. Such architecture is able to greatly reduce
network load and scale up the streaming and storage capacity
of the network. In this paper, we consider the critical and
challenging problem of minimizing the system deployment
cost through optimizing movie storage and retrieval in the
servers. The cost model we use is general and comprehensive,
capturing server storage, server bandwidth utilization and
network traffic among the servers.

A typical distributed and cooperative VoD network consists
of a central server (or repository) storing all the movies and
proxy servers placed close to user pools.1 While the central
server stores all the movies, the proxy servers are of possibly

This work was supported, in part, by an HKUST grant (FSGRF12EG05),
and the General Research Fund from the Research Grant Council of the Hong
Kong Special Administrative Region, China (611209).

1In this paper, we use “client” and “user” interchangeably. We also use
“movie,” “video” and “content” interchangeably.

heterogeneous storage which may be able to replicate only
a fraction of the movies. Each user has a home (or local)
server to serve his request. If the request is a hit, the home
server directly streams to the users. Otherwise (a miss), the
home server pulls the content from a remote server (either
a proxy server or the central server) to serve the request. In
other words, the bandwidth of the servers2 are used to stream
not only its own home users (if any), but also remote servers
requesting their contents.

The deployment cost of such a VoD network mainly consists
of two major components, server cost due to the storage
and bandwidth usage of the servers, and network cost due
to streaming among servers to serve the misses [1], [2]. A
challenging problem is hence which movies to store/replicate
and where to access them in order to minimize the deployment
cost.

For efficient server storage and retrieval, each movie is
considered to be partitioned into k segments (k ≥ 1). We
formulate the cost-minimization problem of optimizing movie
storage and retrieval. To make it tractable, we propose a novel
and efficient heuristic termed LP-SR which decomposes the
problem into two linear programs (LPs) for segment storage
and retrieval, respectively. The salient feature of LP-SR is
that it is asymptotically optimal in k, i.e., as k increases,
its performance approaches global optimum. Furthermore, our
results show that k does not need to be large (say 5 − −10)
for the system to be closely optimal (within 6.5% deviation).

Our contributions are three-folds:
• Comprehensive consideration of system deployment cost:

We consider a realistic, general and comprehensive model
on the deployment cost of VoD, which includes server
bandwidth utilization, storage and network transmission
cost. (Previous work in VoD seldom considers all these
factors together.) We formulate the joint optimization
problem in movie storage and retrieval.

• LP-SR: Achieving asymptotic optimality for video-on-
demand: We propose LP-SR which decomposes the orig-
inal problem into two linear programming (LP) problems
for segment storage and retrieval, respectively. These

2In this paper, we use the term “servers” to collectively refer to the central
and proxy servers.

Globecom 2012 - Communications Software, Services and Multimedia Symposium

978-1-4673-0921-9/12/$31.00 ©2012 Crown 2161

2

LPs can be efficiently solved in polynomial time. LP-
SR is asymptotically optimal in k, i.e., the system cost
approaches the exact minimum as k increases. With LP-
SR, the network is able to make the best use of limited
server storage, efficiently utilize server bandwidth, and
substantially save network traffic cost due to server ac-
cess.

• Extensive performance study: We conduct extensive sim-
ulation and comparison study of LP-SR with both state-
of-the-art and traditional schemes. Our results show that
LP-SR achieves substantially the lowest system cost,
outperforming them by a wide margin (by multiple times
in many cases). The results show that many existing
heuristics are still far from the optimum, and LP-SR can
achieve performance very close to such optimum.

We briefly review previous work as follows. Many heuristics
have been proposed to address movie storage and retrieval
problem (e.g., [3]–[7]). It is often not clear how well they
perform as compared with the optimum, while the proposed
LP-SR is asymptotically optimal in k. In contrast with some
previous algorithms based on iterations [5], [8], LP-SR is
based on LP formulations and hence guarantees to converge
to a solution even for a large network. The work in [9], [10]
considers how to support user interactivity through efficiently
searching for movie segments. While the heuristics are strong
and impressive, they have not considered cost optimization
issue. For the works studying the cost issue for VoD [3],
[11], [12], many of them have not sufficiently considered
the general case with network access cost, storage constraint
and bandwidth utilization of the servers. Our model captures
all these elements, leading to a more complete, realistic and
practical formulation.

This work is organized as follows. In Section II, we for-
mulate the joint optimization problem for VoD. We present
LP-SR in Section III. In Section IV, we present illustrative
simulation results on the performance of LP-SR. We conclude
in Section V.

II. PROBLEM FORMULATION

In this section, we present the joint cost-optimization prob-
lem of movie storage and retrieval to minimize deployment
cost.

We show the important symbols used in Table I.
The overlay network is modeled as an undirected graph G =

(V,E), where V is the set of servers and repository and E =
V × V is the set of overlay edges connecting nodes in V
(the extension to directed graph is straightforward given our
current formulation). Let M be the set of movies and L(m) be
the movie length (in seconds). Let p(m) be the popularity of
movie m, which is the probability that a user requests movie
m, where 0 ≤ p(m) ≤ 1 and

∑
m∈M p(m) = 1.

A server v has a certain storage space Bv (in seconds). Let

I(m)
v ∈ {0, 1},∀v ∈ V,m ∈M, (1)

indicating whether server v stores movie m. Note that for the

TABLE I
MAJOR SYMBOLS USED IN THIS PAPER.

Notation Definition
V The set of servers (repository and distributed

proxy servers)
M The set of movies
L(m) The movie length (in seconds)
p(m) Access probability of movie m
I
(m)
v 0 or 1 variable indicating whether server v stores

movie m
Bv Storage space of server v (in seconds)
r
(m)
uv 0 or 1 variable indicating whether whether the

requests for movie m at server v are streamed
from server u.

λv Request arrival rate at server v (requests per
second)

αmL
(m) Average holding (viewing) time of movie m

α(m) ≥ 0
Γuv Network transmission bandwidth from server u

to v (bits/s)
b Movie streaming rate (bits/s)
Rv Uploading bandwidth of server v for streaming

to remote servers (bits/s)
CS

v Cost for server v (per second)
CN

uv Network cost due to traffic from server u to v
(per second)

C Total deployment cost (per second)

repository, I(m)
v = 1,∀m ∈M . We obviously must have∑
m∈M

I(m)
v L(m) ≤ Bv, ∀v ∈ V. (2)

Let

r(m)
uv ∈ {0, 1}, ∀u, v ∈ V,m ∈M, (3)

indicating whether the requests for movie m at server v are
“pulled” from server u. As the server cannot supply more than
that it stores, we must have

r(m)
uv ≤ I(m)

u , ∀u, v ∈ V,m ∈M, (4)

and, by definition, r(m)
vv = I

(m)
v .

Each user retrieves data from the servers (including his
home server), we hence must have∑

u∈V
r(m)
uv = 1,∀v ∈ V,m ∈M. (5)

Let λv be the total movie request rate at server v (requests
per second); the request rate for movie m at server v is
hence p(m)λv . Further let α(m)L(m) be the average holding
(or viewing) time for movie m, where α(m) ≥ 0. Then the
average data streamed is α(m)r

(m)
uv L(m), as the actual amount

of streamed data is assumed to be directly proportional to the
viewing time.

Let b be the movie streaming bitrate (bits/s). Hence, the

2162

3

data rate the server v “pulls” from server u for movie m is
p(m)λvα

(m)r
(m)
uv L(m)b. Therefore, the total network transmis-

sion bandwidth (bits/s) from server u to v is

Γuv =
∑
m∈M

p(m)λvα
(m)r(m)

uv L(m)b,∀u, v ∈ V, (6)

for u 6= v, and, by definition, Γuu = 0.
Let CN

uv be a monotonically non-decreasing piece-wise
linear function for network cost due to the traffic from server
u to v, i.e.,

CN
uv = CN

uv(Γuv),∀u, v ∈ V, (7)

with CN
uu = 0. The total network cost CN is hence

CN =
∑

u,v∈V
CN

uv. (8)

The bandwidth used in a server to serve the other remote
servers depends on where to store and how to retrieve a movie.
For any server v ∈ V , the total rate (bits/s) that it serves other
servers is given by

Rv =
∑

u∈V,u 6=v

Γvu,∀v ∈ V. (9)

The servers help each other using “cache and stream”
model, i.e., a remote server streams to a user through his
home server. Therefore, the total bandwidth of server v to
serve its local users is given by

∑
m∈M p(m)λvα

(m)L(m)b.
This is a fixed quantity given local traffic, and hence will not
be considered in our cost optimization.

Let CS
v be the cost of operating server v, which is a

monotonically non-decreasing piece-wise linear function in Bv

and Rv , i.e.,

CS
v = CS

v(Bv, Rv),∀v ∈ V. (10)

In another words, the server cost is a function of its storage
and streaming bandwidth. The aggregated server cost CS is
hence

CS =
∑
v∈V

CS
v . (11)

Therefore, the total system deployment cost C is

C = CN + CS . (12)

We state our joint cost-optimization problem as follows:
JOSR: Joint Optimization on Movie Storage and Retrieval
Problem to Minimize Deployment Cost: Given topology G,
user demand {λv}, storage capacity {Bv}, movie popularity
{p(m)}, and cost functions {CN

uv} and {CS
v}, we seek to

minimize the total cost given by Equation (12), subject to
Equations (1) to (5). The output is movie storage in each
server (i.e., {I(m)

v }) and movie retrieval between servers (i.e.,
{r(m)

uv }).

III. LP-BASED SEGMENT STORAGE AND RETRIEVAL

Note that JOSR is an integer program (IP), which is
intractable to solve. In this section, we present our novel

and efficient heuristic called LP-SR, which decomposes the
optimization problem into two LPs for segment storage (LP-
S) and retrieval (LP-R). LP-SR works as follows: we first
relax the problem stated above to an LP which yields optimal
segment storage (Section III-A). Our discretization process is
asymptotically optimal (Section III-B). Given the storage, we
solve the optimal segment retrieval problem by another LP
(Section III-C).

A. LP-S: Relaxation to a Linear Program for Segment Storage

In order to address the tractability, we relax the constraint
in Equation (1) as

0 ≤ I(m)
v ≤ 1,∀v ∈ V,m ∈M, (13)

and Equation (3) as

0 ≤ r(m)
uv ≤ 1,∀u, v ∈ V,m ∈M. (14)

After such relaxations, our problem becomes an LP, where
I
(m)
v refers to the fraction of movie m that server v stores, and
r
(m)
uv refers to the proportion of requests for movie m streamed

from server u to server v for a homed user.
Note that for any arbitrary linear functions of CN

uv (Equa-
tion (10)) and CS

v (Equation (7)) the relaxed problem becomes
a linear programming (LP) problem which can be solved
efficiently. Due to variable relaxations (I(m)

v and r(m)
uv above),

our LP solution is expected to obtain lower cost solution
than its original IP formulation, i.e., CLP∗ ≤ CIP∗

. We call
CLP∗

the super-optimum solution which is no worse than
the IP solution. We will see later in Section IV that LP-SR
asymptotically approaches the super-optimum, meaning that
both the IP solution and LP-SR are very close.

B. Asymptotically Optimal Segment Storage

The LP solution above is used for segment storage (and
hence LP-S). We propose an asymptotically optimal segment
storage algorithm here. Each movie is partitioned into k
segments (k ≥ 1). In order to sufficiently utilize the fractional
solution derived from LP-S, we place some of the k segments
to match as closely as possible the optimal movie storage I(m)

v .
The major issues are how many segments of a movie should
be locally stored (i.e. segment space allocation) and which
segments should be stored (i.e. segment placement).

1) Segment space allocation: The number of segments of
movie m that server v stores is

n(m)
v = I(m)

v k, ∀v ∈ V,m ∈M. (15)

For finite k, {n(m)
v } needs to be discretized to integral

values. We present below a simple discretization approach
where each server tries to match the optimal LP solution
as much as possible through integer rounding.
We first round down the result {n(m)

v } as obtained in
Equation (15) to its closest integers. For each server v,
it first allocate segment space according to these integers
for each movie. This clearly does not violate its storage
constraint (given in Equation (2)). For the residual storage

2163

4

the server then allocates space in decreasing order of the
unmatched portion, i.e., according to n(m)

v −bn(m)
v c, until

its total storage is exhausted. It is clear from above that
the new n

(m)
v are of integral values.

Note that our segment storage asymptotically approaches
the optimal solution as k increases. It is because the
rounding effect decreases with increasing k.

2) Segment placement: With the knowledge of integral n(m)
v ,

each server then selects its n(m)
v out of k segments to

store.
The guiding principle of our placement algorithm is that
all the segments of a movie should has similar number
of replicates in the whole network. Accordingly, we use
rarest first in segment placement. Specifically, when a
server makes a segment placement, it selects the segment
which is the least stored until the n(m)

v segment budget
is fully consumed.

C. LP-R: Optimal Segment Retrieval as a Linear Program

The optimal solution of {r(m)
uv } given by LP-S is no longer

appropriate due to our segment storage. We hence need to
formulate another LP (called LP-R) to derive optimal segment
retrieval given segment storage above.

Let S = {1, 2, ..., k} be the set of segment indices of any
movie. Let I(ms)

v ∈ {0, 1} indicates whether server v stores
segment s of movie m, which has been derived the solution
given in Section III-A. We further let r(ms)

uv be the probability
of requesting server u from server v segment s of movie m.
The segment retrieval problem can then be stated as follows:

• Arrival rate: A request for a movie leads to streaming of
all its k segments. Therefore, the request rate for segments
at server v, given movie request rate λv , is

λ′v = kλv, ∀v ∈ V. (16)

• Length: A movie is equally divided into k segments;
hence we have

L(ms) = L(m)

k , ∀m ∈M, s ∈ S. (17)

• Popularity: The popularity of the segments of the same
movie is given by

p(ms) = p(m)

k , ∀m ∈M, s ∈ S. (18)

Using the above, we can formulate optimal segment retrieval
problem as an LP (LP-R), i.e.

min

 ∑
u,v∈V

CN
uv(Γuv) +

∑
v∈V

CS
v(Bv, Rv)

subject to

0 ≤ r(ms)
uv ≤ I(ms)

v ,∀u, v ∈ V,m ∈M, s ∈ S,∑
u∈V

r(ms)
uv = 1,∀v ∈ V,m ∈M, s ∈ S.

IV. ILLUSTRATIVE NUMERICAL RESULTS

In this section, we first present our simulation environment
and performance metrics to study the performance of LP-SR,
followed by illustrative results at steady state.

A. Setup and Performance Metrics
Movie popularity follows the Zipf distribution with skew-

ness parameter s, i.e., the request probability of the ith movie
is proportional to 1/is. For our baseline parameters of s = 0.6
and m = 100 movies, the top 30% of the movies account for
close to 60% (56.72%) of the traffic.

Requests arrive at each proxy server according to a Poisson
process with total rate λ (req./second). The central server has
no home users. The proxy servers have heterogeneous storage
space and bandwidth following a Zipf distribution (indepen-
dent of each other). The repository stores all the movies with
a streaming capacity twice of the average streaming capacity
of the proxy servers.

Unless otherwise stated, we use the default values as follows
for our system parameters (the baseline case): k = 5; 10
proxy servers; 100 movies; average server storage is 10
movies; skewness of server storage is 0.4; average proxy
server bandwidth capacity is 160 Mbits/s; skewness of server
bandwidth is 0 (i.e., same bandwidth); skewness of movie
popularity is 0.6; movie length is 90 minutes; average movie
holding time is Movie length (i.e., α(m) = 1); movie streaming
rate is 1 Mbits/s; total request rate in the network is 0.3 req./s
(equally distributed to the proxies); cuv between central and
proxy server is 0.01 unit/s; cuv between proxies is Zipf with
skewness 0.6 and mean 0.005 unit/s.

In the simulation, we consider the network cost function
from server u to server v to be proportional to the bandwidth
between them, i.e.,

CN
uv(Γuv) = cuvΓuv, ∀u, v ∈ V. (19)

where cuv is some constant (by definition, cvv = 0). The server
cost is a function of its storage and its total bandwidth used
to serve the remote servers, modelled as

CS
v = σBBv + Cv(Rv), ∀v ∈ V, (20)

where σB is a constant (σB = 0.02 in our simulation),
and Cv(Rv) is a piece-wise linear function monotonically
increasing in Rv . We show in Figure 1 streaming cost
Cv(Rv) versus Rv/Uv in our simulation, where Uv is the
streaming capacity of the server and hence Rv/Uv is the
bandwidth utilization of the server. The cost increases with
the bandwidth utilization at the server. There are three linear
segments formed by points (0, 0), (0.8, 0.125), (0.93, 0.4375)
and (0.99, 1.925) (these coordinates are obtained from the
queuing model σS/(Uv − Rv), where σS is some constant).
As the consumed bandwidth Rv approaches the bandwidth
capacity Uv , the server cost increases sharply.

The performance metrics we are interested in are:
• Total cost (unit/s), which is the sum of server cost and

network cost according to Equation (12). This is the total
deployment cost of the network.

2164

5

 0 0.8 0.93 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
v
 / U

v

S
te

a
m

in
g

 c
o

s
t

Fig. 1. Streaming cost model at a proxy server.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
10

15

20

25

30

35

40

45

50

55

Total request rate (# req. per second)

T
o

ta
l
c
o

s
t

LP−SR (k=1)

LP−SR (k=2)

LP−SR (k=3)

LP−SR (k=4)

LP−SR (k=5)

LP−SR (k=10)

Super−optimal

Fig. 2. Total cost versus request rate given k.

0 2 4 6 8 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

50

Average storage size for proxy servers

C
o
s
t

Total cost

Storage cost

Network cost

Streaming cost

Fig. 3. Cost versus average proxy storage.

• Server cost (unit/s), which is the sum of its storage and
streaming defined in Equations (11) and (20). We further
examine the following cost components:

– Storage cost, which is the total cost due to server
storage; and

– Streaming cost, which is the server bandwidth cost
to support other servers.

• Network cost (unit/s), which is network transmission cost
defined by Equations (8) and (19).

• Cost of each movie (unit/s), which is the average cost to
access movie m by any user.

We compare LP-SR with the following traditional and state-
of-the-art movie replication schemes:
• Random, where each server randomly stores movies with-

out considering their popularity. This is a simple storage
strategy.

• MPF (Most Popular First), where each server stores the
most popular movies. This is a greedy strategy, but does
not take advantage of cooperative replication.

• Local Greedy [3], which divides the movies into three
categories, those popular ones which all servers store (full
replication), those medium popular ones which only one
proxy server store (single copy), and those unpopular
ones which only the repository stores (no copy). By
formulating a LP problem, it seeks to minimize network
cost. As Local Greedy assumes homogenous access cost,
we set its access cost to be equal to the average access
cost between servers in our network.

In all the comparison schemes, upon a miss request, the
home server v chooses an available server u which has the
requested content with a probability proportional to 1/cuv .
It is a reasonable, simple and effective strategy because the
server with lower access cost has higher chance to be chosen.
With this probabilistic approach, a server with low access cost
is not always selected so as to avoid congestion, and hence
high network cost, at the server.

B. Illustrative Results

We plot in Figure 2 the total cost versus request rate
given k. The total cost increases with the request rate mainly

because of the increase in network load. As k increases,
the network approaches the super-optimal case (given by
relaxing the integer constraints on movie storage {Imv } and
retrieval {rmuv}). However, for humble value of k (say 5), the
performance is already very close to the optimum (less than
6.5% deviation in our default setting). This shows that our
network is highly efficient, with closely optimal performance
even for the practical finite value of k.

We show in Figure 3 the cost components and total cost
versus the average storage space for servers. The total cost
falls off initially but rises up again, showing a minimum. At
the beginning when the proxy servers have little storage, all the
traffic concentrates on the repository, leading to high overall
streaming cost. As proxy storage increases, the repository load
is reduced and hence the streaming and network transmission
cost. As storage further increases, storage cost becomes a
major component. It is clear that LP-SR can balance the cost
between storage and bandwidth and achieve its optimality by
provisioning optimal network resources.

We plot in Figure 4 the total cost versus the skewness
of movie popularity given different schemes. The total cost
in general decreases with the popularity skewness. This is
because skewed popularity means that more requests are
concentrated on fewer popular movies. Consequently, there
is lower miss rate, leading to lower streaming and network
cost. LP-SR achieves substantially the lowest cost, even for
low skewness (i.e. when the popularity is quite uniform).
This shows that LP-SR makes good movie placement and
retrieval decisions. Local Greedy performs better than MPF
because it takes network cost into consideration. The cost
of Random increases with skewness because it is popularity-
blind. As a result, the popular movies, because of their copies
not increasing with their popularity, suffer from high streaming
and network cost.

We compare in Figure 5 the server cost for different
schemes. We sort the proxy servers according to their storage
in ascending order (as their streaming capacity is the same
in our baseline), and the last server is the repository. It is
clear that LP-SR utilizes very well the storage and bandwidth
resources of proxy servers, leading to low repository streaming
cost. All the other schemes suffer from high repository cost

2165

6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
0

20

40

60

80

100

120

140

160

180

200

Movie popularity skewness

T
o
ta

l
c
o
s
t

MPF

Random

Local Greedy

LP−SR

Fig. 4. Total cost versus the skewness of movie
popularity given different schemes.

1 2 3 4 5 6 7 8 9 10 11
0.37

0.61

1

1.65

2.72

4.48

7.39

12.18

20.09

33.12

54.6

90.02

148.41

Server index

S
e

rv
e

r
c
o

s
t

MPF

Random

Local Greedy

LP−SR

Fig. 5. Server cost distribution given different
schemes.

1 10 20 30 40 50 60 70 80 90 100
 0.04

 0.37

 2.71

 20.1

 148

Movie index

C
o

s
t

1.1 × 103

8.1 × 103

6.0 × 104

4.4 × 105

3.3 × 106

MPF

Random

Local Greedy

LP−SR

Fig. 6. Movie cost for different schemes.

(note that log scale) due to misses in the proxies. The figure
shows that LP-SR has strong server cooperation to achieve
near-optimal performance. As MPF only stores the most
popular movies at the proxy servers, it has lower proxy server
cost but much higher repository cost (due to miss traffic).
In MPF, the proxies barely contribute their bandwidth and
storage to help each others. Local Greedy, with network cost
optimization, outperforms Random in both proxy server cost
and repository cost.

We compare in Figure 6 the cost to access a movie for
different schemes. The movies are sorted according to their
descending popularity. The popularity-based schemes (i.e.,
LP-SR, Local Greedy and MPF) tend to locally store the
popular movies, and hence those movies enjoy lower cost.
LP-SR makes much better decision by cooperatively storing
the movies. LP-SR accomplishes much better optimality of a
rather uniform movie cost, with the cost of unpopular movies
strikingly much lower by orders of magnitude than the other
schemes. For MPF, the cost of popular movies are negligible at
much sacrifice of less popular ones. Random treats each movie
equally and thus has the most uniform cost distribution. The
figure shows that LP-SR makes intelligent decisions on movie
segment and retrieval to achieve low deployment cost.

V. CONCLUSION

In this work, we have studied optimal segment storage and
retrieval to minimize VoD deployment cost with distributed
proxy servers. The deployment cost captures the costs of server
streaming, server storage and network transmission cost.

For efficient server storage and retrieval, each movie is
partitioned into k segments (k ≥ 1). We first formulate the
joint problem to an integer program. To address its tractability,
we propose LP-SR, a novel and efficient heuristic which
decomposes the problem into two linear programs (LPs) for
segment storage (LP-S) and retrieval (LP-R), respectively. In
stark contrast with much of the previous work where heuristics
are often proposed without knowing how they perform with
respect to the optimum, our solution is asymptotically optimal
in k, and k does not need to be large to achieve near optimality
(k is around 5 achieving less than 6.5% deviation in our study).

We have conducted extensive simulation to compare its per-
formance with other traditional and state-of-the-art schemes.
The results show that our scheme substantially outperforms
the other schemes by a wide margin (multiple times in many
cases). LP-SR achieves very close to optimality with much
lower deployment cost.

REFERENCES

[1] C. Huang, J. Li, and K. W. Ross, “Can internet video-on-demand be
profitable?” in SIGCOMM ’07: Proceedings of the 2007 conference
on Applications, technologies, architectures, and protocols for computer
communications. New York, NY, USA: ACM, 2007, pp. 133–144.

[2] S.-H. G. Chan and F. Tobagi, “Distributed servers architecture for
networked video services,” IEEE/ACM Transactions on Networking,
vol. 9, no. 2, pp. 125–136, Apr. 2001.

[3] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in Proceedings of IEEE INFOCOM, Mar.
2010, pp. 1–9.

[4] S. Zaman and D. Grosu, “A distributed algorithm for the replica
placement problem,” IEEE Transactions on Parallel and Distributed
Systems, vol. 22, no. 9, pp. 1455–1468, Sep. 2011.

[5] J. Kangasharju, K. W. Ross, and D. A. Turner, “Optimizing file avail-
ability in peer-to-peer content distribution,” in 26th IEEE International
Conference on Computer Communications (INFOCOM), May 2007, pp.
1973–1981.

[6] S. Annapureddy, S. Guha, C. Gkantsidis, D. Gunawardena, and P. R.
Rodriguez, “Is high-quality VoD feasible using P2P swarming?” in
WWW ’07: Proceedings of the 16th international conference on World
Wide Web. New York, NY, USA: ACM, 2007, pp. 903–912.

[7] P. R. R. S. Annapureddy, C. Gkantsidis and L. Massoulie, “Providing
video-on-demand using peer-to-peer networks,” in Microsoft Research
Technical Report, MSR-TR-2005-147, Oct. 2005.

[8] J. Dai, Z. Hu, B. Li, J. Liu, and B. Li, “Collaborative hierarchical
caching with dynamic request routing for massive content distribution,”
in Proceedings of IEEE INFOCOM 2012, Mar. 2012, pp. 2444 –2452.

[9] W.-P. K. Yiu, X. Jin, and S.-H. G. Chan, “VMesh: Distributed segment
storage for peer-to-peer interactive video streaming,” IEEE Journal on
Selected Areas in Communications Special Issue on Advances in Peer-
to-Peer Streaming Systems, vol. 25, no. 9, pp. 1717–31, Dec. 2007.

[10] Y. He, G. Shen, Y. Xiong, and L. Guan, “Optimal prefetching scheme
in P2P VoD applications with guided seeks,” IEEE Transactions on
Multimedia, vol. 11, no. 1, pp. 138–151, Jan. 2009.

[11] Y. R. Choe, D. L. Schuff, J. M. Dyaberi, and V. S. Pai, “Improving VoD
server efficiency with bittorrent,” in MULTIMEDIA ’07: Proceedings of
the 15th international conference on Multimedia. New York, NY, USA:
ACM, 2007, pp. 117–126.

[12] C. Dana, D. Li, D. Harrison, and C. N. Chuah, “BASS: Bittorrent
assisted streaming system for video-on-demand,” in Multimedia Signal
Processing, 2005 IEEE 7th Workshop on, Nov. 2006, pp. 1–4.

2166

