
Toward continuous push-based P2P live streaming
Dongni Ren Wangkit Wong S.-H. Gary Chan

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China

Email: {tonyren, jerrywong, gchan} @cse.ust.hk

Abstract—Due to unpredictable peer churns (joins, leaves and
failures), it is challenging to offer video continuity in peer-to-
peer (P2P) live streaming. In this paper, we study a push-based
P2P network formed by unreliable nodes (i.e., nodes which may
churn at any time). To achieve high stream continuity, the video is
encoded into k MDC (Multiple-Description Coded) streams and
t FEC (Forward Error Correction) streams. To achieve low delay
and reduce error correlation between streams, the k+ t streams
are pushed to the nodes in parent-disjoint spanning trees. The
issue is how to construct these trees minimizing the worst-case
node delay.

We address the optimization of the spanning trees through
problem analysis and algorithmic design. After presenting a
model capturing important system parameters and delay compo-
nents, we formulate the problem and prove that it is NP-hard. We
then propose SUN (Streaming with Unreliable Nodes), a simple,
adaptive and distributed algorithm which continuously reduces
delay through overlay adaptation. Through extensive simulation
on real Internet and Internet-like topologies, we show that stream
continuity can be achieved with push-based P2P streaming. SUN
is effective, achieving low delay and high continuity in the
presence of node churns for P2P live streaming.

I. INTRODUCTION

A peer-to-peer (P2P) live streaming network is often formed
by unreliable nodes, i.e., nodes which may churn (i.e., join,
leave or fail) at any time. Whenever there is a churn, the stream
of the descendant nodes is disrupted. In order to offer high
continuity, such disruption has to be mitigated. In this paper,
we study push-based P2P live streaming with unreliable nodes.
The challenge is to minimize overlay delay while achieving
high stream continuity and meeting a certain streaming rate
requirement (say, in excess of 1 Mbps).

Despite much work on P2P live streaming, there has not
been sufficient consideration on how to design push-based
live streaming to achieve stream QoS (in terms of continuity,
bitrate and delay) with unreliable nodes. To the best of our
knowledge, this is the first body of work addressing this.
Previous approach is based on a pull-based mesh, where
a node continuously searches for neighbors (using gossip)
and pulls content from them. This results in rather ad-hoc
connectivity, which adversely affects the end-to-end streaming
rate that can be supported in the network. Furthermore, as
the major objective of the pulling process is to aggregate a
full video, it seldom optimizes source-to-end delay, leading to
unsatisfactory delay performance.

This work was supported, in part, by the General Research Fund from the
Research Grant Council of the Hong Kong Special Administrative Region,
China (611209), and Google Mobile 2014 and Faculty Research Awards.

In this paper, we consider a push-based P2P network
achieving high stream quality, and study how to minimize
source-to-end delay meeting a streaming rate requirement in
the presence of node churns. We address the issue through
problem formulation and algorithmic optimization. Tree-push
systems have been shown to be effective in achieving low
delay [1], [2]. However, there has been insufficient work on
how to optimize trees under node unreliability. To address
node unreliability, the video in our network is encoded into
k MDC (Multiple Description Coding) streams of similar
bandwidth (k ≥ 1). To address node churns, t FEC (forward-
error correction) streams of the same bandwidth are generated
(t ≥ 0), so that full video can be recovered so long as k out
of these k + t streams are received. (Clearly, a cost of that is
bandwidth dilation due to the FEC streams.) Because of the
use of MDC, video quality will be only partially affected if
some of the k source streams are received.

To minimize delay, all the (k+ t) streams are pushed from
the source to nodes in spanning trees. To further reduce the
disruption on descendants due to node churns, we require
that each node is served by (k + t) distinct parents, each
of which corresponds to a spanning tree (i.e., parent-disjoint
spanning trees). Note that the use of MDC and FEC streams
of much lower bandwidth than the original source effectively
overcomes network bottlenecks to meet a certain streaming
rate requirement.

Figure 1 shows an example of the streaming network with
two MDC source streams and one FEC stream, i.e., k = 2 and
t = 1. All streams are distributed from the server to nodes
A, B, C, D and E. A, B and C are directly connected to
the streaming server and they receive all their streams from it.
Because node D and E are not served by the streaming source,
they should connect to distinct parents in their spanning trees
in order to achieve robustness against churns, i.e., D receives
two MDC streams from A, B, and FEC stream from C, E
receives source streams from A, C and FEC stream from D.

Because a node can decode the video only when any k out
of the (k+t) streams are received, its delay from the source is
the slowest path out of all its (k+ t) trees (i.e., the maximum-
delay path). Such delay increases quickly with the number of
nodes if the trees are not constructed properly. The challenge
is that how to construct the trees to achieve minimum delay.

In this paper we propose a novel and effective algorithm
called SUN (Streaming with Unreliable Nodes) to construct
highly efficient trees achieving low delay and high video
quality (i.e., high continuity while meeting a streaming rate

Globecom 2012 - Communications Software, Services and Multimedia Symposium

978-1-4673-0921-9/12/$31.00 ©2012 IEEE 1993



2

Fig. 1: An example of push-based P2P live streaming with
unreliable nodes and its constituent underlying spanning trees.

requirement). Our study consists of the following:
• Problem formulation and its complexity analysis: Given

k MDC streams and t FEC streams, we present a realistic
model which captures scheduling delay, edge bandwidth,
propagation delay, etc. We formulate the delay optimiza-
tion problem which is to design spanning trees that
minimize the diameter (i.e., worst-case delay) of the
overlay network. We prove that the problem is NP-hard.

• SUN: A distributed P2P streaming algorithm to achieve
high video quality: We propose SUN, a novel algorithm
for each node to search for (k + t) distinct parents
to achieve low delay. Our algorithm is simple, fully
distributed and efficient (i.e., low overhead), and is robust
to unreliable nodes (i.e., maintains high stream continuity
in the presence of node churns). It adapts to dynamic
network conditions with nodes continuously adjusting
their positions in the trees to reduce delay while meets
streaming rate requirement.

• Simulation studies: We conduct extensive simulation
study on topologies from real Internet and Internet gener-
ator. Our results show that SUN achieves low delay and
high continuity in the presence of unreliable nodes.

The organization of the paper is as follows. After discussing
related work in Section II, we present the optimization problem
and its complexity analysis in Sections III. The distributed
algorithm of SUN is discussed in Sections IV. Illustrative
simulation results are presented in Section V. We conclude
in Section VI.

II. RELATED WORK

Single tree structure was first proposed to distribute streams
among peers, where all peers are arranged into a tree rooted at
the source [3], [4]. Although these approaches are simple and
achieve low delay, the failure of a node will lead to stream

disruption of all its descendants. To address the weaknesses
of single tree structure, multiple trees (or forest) approach has
been proposed [5], [6]. Most of the work, however, has not
investigated the optimization of the forest structure and how to
achieve high continuity in the presence of peer churns. To the
best of our knowledge, this is the first body of work addressing
the design of push-based multi-tree P2P streaming to achieve
QoS (in continuity and bitrate). We formulate the construction
of multiple trees as an optimization problem. Our proposed
scheme leads to a highly optimized and adaptive structure with
high stream continuity. Another body of work on streaming
mesh uses pull-based approach for data exchange [7]. In this
approach, peers usually connect to their closest neighbours
using gossip to pull data. Despite its simplicity, this approach
often leads to high delay (due to its random connections and
buffermap) and high control overhead (due to messaging and
bitmap exchange). As compared to pull-based mesh, our push-
based network achieves much lower source-to-end delay.

Multiple description coding (MDC) has been widely used
in media streaming to address the bandwidth heterogeneity
issue. The video is encoded into multiple descriptions. At
the receiver end, the streaming quality is proportional to
the number of descriptions received [8]. In forward error
correction (FEC), the sender generates redundant data to its
messages. With the redundancy the receiver can recover all
the source packets if it receives a certain number of coded
packets [9]. In this work we use MDC to encode the video
stream so that they are delivered by unique spanning trees. We
also adopt the FEC method to generate repair streams against
churns.

III. PROBLEM FORMULATION AND
COMPLEXITY ANALYSIS

Consider a P2P network modeled as a directed graph
G = (V, E), where V is the set of vertices representing the
nodes in the overlay (including the server) with n = |V| and
E = V ×V the set of overlay edges between nodes. Let s ∈ V
represents the source. The edge cost of ⟨i, j⟩, denoted as dij ,
represents the underlay unicast path delay from node i to
node j, which is equal to the sum of the propagation delay
dpij and the scheduling delay dsij from node i to node j, i.e.,
dij = dpij + dsij .

The stream is split into k MDC source streams of similar
bandwidth. The k source streams also generates t FEC streams
for recovery purpose. To mitigate the adverse effect of node
churn, all the (k+t) streams are distributed in distinct delivery
trees in such a way that each peer is served by k + t distinct
parents. Note that peers directly connected to the source
receive all the streams from the source (as the source is
assumed to be reliable). A delivery tree is a spanning tree
for a stream containing all the nodes in V rooted at s. Denote
the set of k MDC trees consisting of source-stream parents as
K and the set of t FEC trees consisting of recovery parents as
T . Further let Pi be the set of all (k + t) parents of node i.

Let the streaming rate of the MDC-encoded video be B
kbps, and hence the bitrate of one MDC or FEC stream is b =

1994



3

B/k kbps. We refer b as the basic unit of network bandwidth,
which is the bandwidth reserved by the parent for a single
end-to-end connection (i.e., parents stream to each of their
children at rate b).

For every node i in V , it has an uplink bandwidth of ui

units, ui ∈ Z+, which represents the maximum total number
of children it can serve in all spanning trees. The end-to-end
throughput of the edge ⟨i, j⟩ is denoted as wij ∈ Z+, which is
the maximum number of substreams that can simultaneously
accommodate in edge ⟨i, j⟩. For any node in V , if it gets an
aggregate of k out of the k + t streams from its parents, we
call the node fully served. In other words, if node i receives
k streams from all k + t spanning trees, it is fully served and
can play back the video with continuity. Note that s has an
uplink bandwidth of us units and has no parent.

The worst-case scheduling delay from node j to node i,
denoted as dsji, is given by

dsji =
∑
k∈Pj

L

min(wjk, uj)b/tjk
, (1)

where L (bits) is the segment size used in streaming, and tjk is
the number of concurrent substreams on edge ⟨j, k⟩ (we have
make the usual assumption that bottleneck is at the edge).

The problem is to minimize the worst-case delay of the
network. Consider a packet transmitted from s at time 0 via
a delivery tree l, where l ∈ K ∪ T . Denote Dl

i the maximum
delay (including packet recovery from FEC parents) for the
packet to arrive at node i. By definition, Dl

s = 0. Node i
first gets its packet from its k + t parents. Consider the tree
l ∈ K ∪ T . Denote the delay of the packet to node i from its
parent j as dli, which is obviously given by

dli = Dl
j + dji (2)

The overall delay of node i, i.e. the time taken for a peer
to aggregate the entire stream before playback, is determined
by the slowest path, i.e.,

Di = max
l∈K∪T

Dl
i. (3)

Minimum Delay Robust Streaming Problem (MDRS): The
MDRS problem is to construct a multi-tree overlay out of
unreliable nodes with k+t spanning trees rooted at the source
and each node having k + t distinct parents (k MDC parents
and t FEC parents) so that the worst-case delay of the peers
is minimized, i.e.,

minmax
i∈V

Di. (4)

MDRS problem is NP-Hard. The Travelling salesman prob-
lem (TSP) is reducible to MDRS in polynomial time. The
proof of a similar problem can be found in [10].

IV. SUN: A DISTRIBUTED TREE CONSTRUCTION
ALGORITHM TO ACHIEVE STREAM QOS

In this section, we present SUN, a simple and fully dis-
tributed algorithm scalable to large group to reduce peer delay.

SUN acheives high stream QoS in terms of continuity and
bandwidth. There are four operations of the algorithm:

A. Peer Arrival

A new arrival, say peer i, has to have k + t parents to
assemble a full stream in a dynamic network environment. To
achieve that, it contacts a rendezvous point (RP) which returns
a number of peers in the overlay as the pool of candidate
parents. It may enlarge the pool by requesting neighbors from
these nodes.

Peer i then checks the delay dji with each candidate j. In
addition to network distance, peer i also asks j for source-to-
end delay Dl

j in each spanning tree l and the amount of its
available bandwidth (which is simply uj minus the number of
children that j has). In other words, the nodes in the overlay
compute their delays according to Equation 3. Given a delivery
tree l, peer i selects the node with the minimum delay among
the candidates (i.e., minj(D

l
j + dji)) and connects to it to

retrieve the substream. The selected parent is removed from the
pool and peer i repeats the process for the remaining delivery
trees. According to the above, it joins all k delivery trees to
fulfill the streaming rate requirement.

B. Peer Departure and Failure

Each peer in the network periodically sends its “heartbeat”
to its parents and children. Upon detecting that a parent of tree
l has left, the child node contacts RP to retrieve a new list of
peers, and tries to rejoin tree l by selecting a new parent from
the peer list. During the rejoin process, In the mean time if
the lost parent serves one of the k MDC streams, the affected
nodes use the FEC streams to recovery the lost data.

C. Adaptation

In a distributed environment, there is no specific a priori
joining and leaving order of peers. As a result, a peer may
need to adapt to the dynamic network condition to move to a
better position in the overlay to reduce delay. This is especially
important when a high-bandwidth node joins the network at
a later time. Node movement to better position is the design
objective of adaptation.

The adaptation consists of three steps:
• Request: A child i periodically inspects its residual

bandwidth. If this is greater than the streaming rate,
i sends its parents a REQUEST for adaptation. The
REQUEST message contains its available bandwidth and
a time-to-live field (TTL) indicating the scope of the
REQUEST is to be flooded. When a node receives a
REQUEST message, if the TTL field is greater than zero,
it decrements TTL and forwards the REQUEST message
to its neighbors including parents and children (except
the one from which the message comes from).

• Grant: Upon receiving a REQUEST message, the candi-
date checks whether its uplink bandwidth is less than
the residual bandwidth of the requester i, the request
originator. If this is the case, the candidate sends the
requester i a GRANT response which contains its delays

1995



4

(which may be in hops) in each delivery tree. The
GRANT message indicates that the adaptation between
the requester and the candidate is permitted.

• Accept: Child i then chooses the slowest tree l from all
k + t spanning trees to adapt. At this stage, child i may
have received a number of GRANT messages from dif-
ferent ancestors. Among the ancestors (upstream nodes)
who have sent GRANT messages to it, child i accepts
the ancestor j that satisfies the following conditions: i)
Dl

j < Dl
h + dhi < Dl

i, where h is the parent of j in
tree l (i.e., i can improve its delay by changing parent
to h); and ii) available uplink bandwidth of peer j is
less than i. Obviously, h-i-j does not form any parent-
child relationship in the original tree. After such j is
found, i replaces its existing parent in the tree with h.
In addition, j connects to i to get the substream l. This
is possible because the conditions guarantee both i and j
still retains the property of distinct parents. Moreover, the
second condition makes sure that we are moving high-
bandwidth peers to a position above the low bandwidth
ones. In summary, child i takes up the position of the
ancestor j in tree l and in turn provides the substream
l to j. It is clear that after the process, the delay of the
slowest tree is reduced.

V. SIMULATION ENVIRONMENT AND
ILLUSTRATIVE RESULTS

We carry out simulations to evaluate the performance of the
proposed algorithm. For comparison purpose, we also simulate
two traditional scheme, namely, closest parent and random
parent. The closest parent scheme is distance-based, in which
peers look for the closest parents for streaming. Since this
scheme captures locality among peers, it (or its variant) is
widely adopted for P2P streaming with satisfactory perfor-
mance [3], [11]. While the random parent scheme randomly
chooses parents for newly-arrived nodes, which is used in
many state-of-art commercial applications [12]. This scheme
does not capture the locality of the nodes, thus streaming
network constructed in this way is often of high delay.

A. Simulation Setup and Metrics

In simulations, peers arrive according to a Poisson process
at rate λ (requests/second) and then remains in the overlay for
an exponential length of time (seconds). During their life-time,
peers follow the proposed algorithms to search for parents. The
user holding time is according to an exponential distribution
with mean 1/µ (seconds). We have used other distribution and
the results are qualitatively the same. To be fair in comparison,
peers in all the schemes look for the same number of parent
to achieve the same streaming quality.

Our simulation is carried out on a real Internet topology
provided by CAIDA, which was collected on June 12th, 2011
and contains 1,747 routers and 3,732 links. The round trip
times (RTTs) between inter-connected routers are also given
in the topology. We use Distance-vector routing to compute
the latencies between any two router nodes in the network.

1 2 3 4 5 6
1

1.2

1.4

1.6

1.8

2

2.2

2.4

k

D
e
la

y
 (

s
e
c
o
n
d
s
)

Max delay

Avg delay

Fig. 2: Delay of SUN versus k.

Peers are randomly attached to the routers. Unless otherwise
stated, we use k = 2, t = 1, λ = 1 req/s and 1/µ = 480
seconds as our baseline parameters. Note that ui is normally
distributed with mean 2 Mbps and standard deviation 1 Mbps
(We only take the positive values). The streaming rate B is
1Mbps. The packet size C is 100 kbits. The search time for
a new parent is uniformly distributed from 1 second to 15
seconds. Our target worst-case loss rate of all peers is 5%
The performance metrics of interest are:

• Delay: The primary concern of our protocol is the source-
to-end delay of peers. It is measured by summing all the
link delays on the overlay path from the source to the
peer. Because there are multiple paths to reach a peer, the
maximum delay of all the paths is taken as the measure.
Delay is measured according to Equations (2)-(3). We
are interested in the average, maximum and distribution
of the source-to-end delay in the overlay.

• Loss rate: When ancestors of a node leave the network,
the peer may experience data loss. In our scheme, k MDC
stream and t FEC stream are pushed to all nodes in the
streaming overlay, so long as k out of these k+t streams
are received by the node, it is able to recovered full video
and will not be affected by the peer leave. If a node
receives less than k stream in total, its video quality will
be partially affected. Its residual video quality equals to
number of MDC streams received after recovery divided
by k; and the loss rate equals to one minus residual video
quality. The overall loss rate of a node is equal to its
average loss rate over time.

B. Illustrative Simulation Results

Figure 2 shows the performance of SUN versus the number
of MDC streams k. To keep the total streaming rate consistent,
each MDC stream has a lower rate when k increases. Both
maximum delay and average delay increase with k. The reason
is that each node in the overlay needs to obtain streams from
more parents. This leads to a higher scheduling delay. The
overall delay is also increased because we calculate it as the
maximum delay in all trees.

1996



5

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Arrival rate (request/second)

M
a
x
 d

e
la

y
 (

s
e
c
o
n
d
s
)

Closest

Random

SUN

Fig. 3: Maximum delay versus arrival rate.

We compare SUN with other schemes by plotting the
maximum delays versus peer arrival rate λ in Figure 3. In
general, the delay increases with the arrival rate. This is be-
cause the system population increases with arrival rate, which
leads to longer overlay diameter and hence delay. Clearly,
SUN performs significantly better than the traditional Closest
parents scheme and random parents scheme. It can position the
peers effectively and achieves much better delay, which stays
low even when the number of peers increases. The Closest
parent scheme, despite of its forming close-neighbor groups
among peers, performs the worst. There are two reasons for
this. First, it has not considered source-to-peer delay. Each peer
only greedily selects parents with shortest RTT to it. On the
other hand, SUN achieves low delay by putting peers closer
to the source. Second, Closet neighbor does not consider how
many children a node is serving, thus often leads to a parent
node overwhelmed and with high scheduling delay. Random
parents scheme does not have good delay performance either
because it has not considered the locality of the nodes.

In Figure 4 we show the comparison of delay distribution
between SUN and other schemes. Clearly, SUN outperforms
other schemes with more low-delay nodes. The performance
of SUN is very well when most peers achieve low delay (0.9
to 1.5s). The worst-case delay is not much larger than the other
peers. It demonstrates that SUN is able to arrange the overlay
in a way that most of the nodes in the overlay share rather
similar delays, and the worst-case delay is optimized.

To illustrate the benefit of FEC stream, we show in Figure
5 the worst-case loss rate against the number of FEC stream t.
Clearly, adding one FEC stream can significantly reduce the
loss rate. As the number of FEC streams increases, we can
achieve lower loss rate. This is because more FEC streams
means that there are more redundancy against node churns.
The decrease of loss rate, however, diminishes as t increases.
Therefore we use one FEC stream as benchmark to provide
robustness to nodes against network dynamics and peer churns.

We show in Figure 6 the loss rate distribution of SUN-
Distributed. We observe that there are more peers with higher
loss rate when FEC recovery is not used (More than 60% of the

<0.6 0.6~0.9 0.9~1.2 1.2~1.5 1.5~1.8 >1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay (seconds)

F
ra

c
ti
o
n
 o

f 
n
o
d
e
s

SUN

Random

Closest

Fig. 4: Delay distribution for different schemes.

0 1 2
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

t

W
o
rs

t−
c
a
s
e
 l
o
s
s
 r

a
te

Fig. 5: Worst-case loss rate vesus t.

peers have a loss rate larger than 2%). With one FEC stream,
the loss rate of the peers is significantly improved when most
of the peers suffer from nearly no loss (less than 2%). It also
shows that the number of FEC streams does not need to be
large. One redundant stream is enough to efficiently reduce
the loss rate in streaming.

From Figure 7, we observe that the loss rate varies with k
given a specific number of FEC stream (t=1). The loss rate first

<0.02 0.02~0.03 0.03~0.04 0.04~0.05 >0.05
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Loss rate

F
ra

c
ti
o
n
 o

f 
n
o
d
e
s

t=0

t=1

Fig. 6: Loss rate distribution.

1997



6

1 2 3 4 5 6
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

k

W
o
rs

t−
c
a
s
e
 l
o
s
s
 r

a
te

Fig. 7: Worst-case loss rate vesus k.

300 360 420 480 540 600 660
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

User holding time (seconds)

W
o
rs

t−
c
a
s
e
 l
o
s
s
 r

a
te

Fig. 8: Worst-case loss rate versus user holding time.

decreases, and then flattens off as k increases. This is because
in Multiple Description Coding, each received MDC stream
can be decoded independently. More MDC streams provides
robustness to node churns. However, if the number of MDC
streams is too large, the nodes have to connect to more distinct
parents and they are more likely to suffer from an ancestor
failure. Therefore k does not need to be very large since more
MDC streams does not necessarily lead to low loss rate. This is
also the reason we choose k = 2 as our baseline in simulation.

Figure 8 shows the worst-case loss rate versus average hold-
ing time. The loss rate decreases as the holding time increases.
This is because when the holding time is larger, nodes stay
connected to their parents longer and hence experience less
interruption, and loss rate therefore improves. However when
the holding time is greater than some value (550 seconds),
there is no obvious improvement in loss rate. This is because
the number of peers in the streaming network increases with
holding time and thus the tree depth also gets higher. Each
peer will have a larger hop count to the source and hence
much easier to be affected by the churns of its ancestors.

VI. CONCLUSION

We have studied how to design a P2P streaming network
achieving high video quality (in continuity and bitrate) and
low delay with unreliable nodes. To mitigate peer churns,

we consider that the stream is divided into k MDC source
streams and t FEC recovery streams. Each peer has k + t
distinct streaming parents delivering the streams. We have
formulated the overlay design problem as Minimum Delay
Robust Streaming (MDRS) problem, which is to form a
minimum-delay overlay given k and t. We prove the problem
is NP-hard, and propose a simple, adaptive and distributed
algorithm called SUN that constructs a low-delay network in
the presence of node churns to achieve low delay and high
video continuity.

We have conducted extensive simulation on real Internet
topologies to study the performance of our algorithm. The
results show that SUN achieves much lower source-to-peer
delay as compared with the representative closest parent and
random schemes. It also achieves high stream continuity
(above 95%) despite the dynamic behavior of the network.

REFERENCES

[1] N. Magharei, R. Rejaie, and Y. Guo, “Mesh or multiple-tree, A com-
parative study of live P2P streaming approaches,” in IEEE INFOCOM,
Anchorage, Alaska, USA, May 2007, IEEE, pp. 1424–1432.

[2] Wenjie Jiang, S.-H. Gary Chan, Mung Chiang, Jennifer Rexford, K.-
F. Simon Wong, and C.-H. Philip Yuen, “Proxy-P2P streaming under
the microscope: Fine-grain measurement of a configurable platform,”
in Proceedings of the 19th International Conference on Computer
Communications and Networks (ICCCN) (Invited paper), 2-5 Aug. 2010.

[3] Vidhyashankar Venkatraman, Kaoru Yoshida, and Paul Francis,
“Chunkyspread: Heterogeneous unstructured end system multicast,” in
The 14th IEEE International Conference on Network Protocols, Nov.
2006.

[4] Hao Yin, Xuening Liu, and Zhan, “Livesky: Enhancing CDN with
P2P,” ACM Trans. Multimedia Comput. Commun. Appl., vol. 6, pp.
16:1–16:19, Aug. 2010.

[5] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and
A. Singh, “SplitStream: High-bandwidth multicast in cooperative envi-
ronments,” in Proceedings of the 19th ACM Symposium on Operating
Systems Principles, The Sagamore, Bolton Landing (Lake George), New
York, Oct. 2003, pp. 298–313.

[6] Jiancong Chen, S.-H. Gary Chan, and Victor O. K. Li, “Multipath
routing for video delivery over bandwidth-limited networks,” IEEE
Journal on Selected Areas in Communications Special Issue on Design,
Implementation and Analysis of Communication Protocols, vol. 22, no.
10, pp. 1920–1932, Dec. 2004.

[7] Nazanin Magharei and Reza Rejaie, “PRIME: peer-to-peer receiver-
driven mesh-based streaming,” IEEE/ACM Trans. Netw., vol. 17, pp.
1052–1065, Aug. 2009.

[8] Chia-Wei Hsiao and Wen-Jiin Tsai, “Hybrid multiple description coding
based on H.264,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 20, Jan. 2010.

[9] D. Jurca, P. Frossard, and A. Jovanovic, “Forward error correction for
multipath media streaming,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 19, Sept. 2009.

[10] Dongni Ren, Y.-T. Hillman Li, and S.-H. Gary Chan, “On reducing mesh
delay for peer-to-peer live streaming,” in IEEE INFOCOM, Phoenix,
Arizona, Apr. 2008, IEEE.

[11] Xiaofei Liao, Hai Jin, Yunhao Liu, Lionel M. Ni, and Dafu Deng,
“Anysee: Peer-to-peer live streaming,” in Proc. IEEE Infocom, 2006,
pp. 2411–20.

[12] Xiaojun Hei and Chao Liang, “A measurement study of a large-scale
P2P IPTV system,” IEEE Transactions on Multimedia, vol. 9, no. 8,
2007.

1998


