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Abstract—Peer-to-peer (P2P) technology has emerged as a
promising scalable solution for live streaming to large group.
In this paper, we address the design of overlay which achieves
low source-to-peer delay, is robust to user churn, accommodates
of asymmetric and diverse uplink bandwidth, and continuously
improves based on existing user pool. A natural choice is the use
of mesh, where each peer is served by multiple parents. Since
the peer delay in a mesh depends on its longest path through its
parents, we study how to optimize such delay while meeting a
certain streaming rate requirement.

We first formulate the minimum delay mesh problem and
show that it is NP-hard. Then we propose a centralized heuristic
based on complete knowledge which serves as our benchmark
and optimal solution for all the other schemes under comparison.
Our heuristic makes use of the concept of power in network given
by the ratio of throughput and delay. By maximizing the network
power, our heuristic achieves very low delay. We then propose
a simple distributed algorithm where peers select their parents
based on the power concept. The algorithm makes continuous
improvement on delay until some minimum delay is reached.
Simulation results show that our distributed protocol performs
close to the centralized one, and substantially outperforms
traditional and state-of-the-art approaches.

I. INTRODUCTION

In order to provide live streaming services (such as IPTV)
to a group of users in the absence of IP multicast support,
traditionally client-server model is used where servers are used
to serve individual participants directly [1]. This model is not
scalable to large group. Peer-to-peer (P2P) live streaming has
been recently proposed to overcome the scalability problem.
In P2P streaming, a server only needs to stream to some
users, who in turn share their stream received with their
neighbors. Because the stream is distributed using users’
uplink bandwidth, the bandwidth requirement at the server
can be drastically reduced. Such P2P system has shown to
be effective in serving quite a large group[2], [3].

In P2P live streaming, peers join an overlay in a distributed
manner. In this research, our goals are to design an overlay
which achieves the following:

o Low delay: Live streaming applications are very sensitive
to delay. Therefore, an overlay offers low source-to-peer
delay is desirable. We would like to design such overlay
which minimizes the maximum delay of the peers.
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e Robust to user churn: Peer traffic in the network can be
highly dynamic. A peer may join, leave or fail at anytime.
The overlay structure has to accommodate this network
dynamic and be robust to user churn.

o Accommodation of asymmetric bandwidths: Peers in the
network may have diverse uplink bandwidth depending
on their access network (such as ADSL, broadband
Ethernet, Wireless LAN, cable, etc.). The overlay should
meet streaming rate requirement for each peer despite of
this bandwidth heterogeneity or asymmetry. For fairness
and incentive purposes, those peers who contribute more
to serve others (i.e., those with higher uplink bandwidth)
should enjoy relatively lower delay [4].

o Distributed, simple and adaptive: The protocol should
be distributed, and its performance should be scalable to
large number of users. The protocol should be adaptive
in the sense that it continuously improves the overlay
based on the existing heterogeneous user characteristics.
It should also be simple so that it can be implementable.

It has been proposed to use a tree structure to distribute
streams among peers, where all peers are arranged into a tree
rooted at the source [5]. The media is streamed down from
the source to every peer along the tree edges in a push-based
manner. Though the tree approach is simple and achieves low
delay, the failure of a node can seriously affect the streaming
quality of all its descendants due to tree re-construction.
Furthermore, the streaming rate cannot be guaranteed as it
is limited by the least uplink bandwidth of a node in the tree.
Therefore, tree cannot accommodate well network dynamics
and asymmetric bandwidth.

To address the above problems, streaming mesh [6] has been
proposed. In mesh, each peer maintains a list of neighbors that
it exchanges information with. A peer obtains its stream by
aggregating the flows from many parents using either pull-
based or push-based methods. Figure 1 shows an overlay
example of push-based streaming using mesh. .S is the stream-
ing source and A, B,C, D, I are five peers in the streaming
session. The number by the arrows is the overlay delay (in
units). S streams media to peers A and B, who in turn stream
to peers C, D, and E. Due to insufficient uplink bandwidth
between A and D, C' streams part of the stream to D. This
is the same for F, which has two parents. Clearly, because
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Fig. 1. Streaming with mesh with node delay.

of multiple parents, mesh is more robust than tree to user
churn. The asymmetric bandwidth problem is also overcomed
by aggregating the bandwidth of multiple parents to guarantee
a certain streaming rate.

However, the robustness and bandwidth guarantee of mesh
comes with the cost of delay. Refer to Figure 1 again where we
show how overlay delay is accumulated by the square boxes.
Nodes A and B have a delay of 10 and 15, respectively, given
by their overlay paths from S. Because of the delay of A, C'
suffers a delay of 18. Because D receives its stream from two
parents A and C, its delay is the maximum of the two, i.e.,
max(10+ 16,18+ 12) = 30 (units). E gets its stream from B
and D, and hence its delay is obtained similarly as max(15+
13,30+ 12) = 42. As we can see, the delay accumulates quite
quickly as the number of peers increases.

In streaming using mesh, the total delay compse of two
componets: 1)Mesh delay, due to the longest path from
the node to the source out of all its parents. This is the
number indicated in the square boxes in Figure 1; and 2)
Packet scheduling delay, due to packet transmission time and
scheduling policy of a peer with its parents of heterogeneous
bandwidth. Designing a mesh jointly optimizing these delay
componets is very complex. Therefore much work has been
focus on only reducing packet scheduling delay. In this work
we focus on minimizing mesh delay of a node, as in a large
network, it is the major delay componet in the overall source-
to-node delay if not treated properly. This is because when the
user population grows large, streams have to go through many
hops and the mesh delay accumulates fast. The motivation is
to begin with a mesh with low delay. With the use of any
existing good scheduling algorithm on the mesh, we achieve
an overall low delay for live streaming.

To the best of our knowledge, this represents the first body
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of work addressing the optimization of mesh delay for P2P
streaming. We address the problem from the following three
directions:
1) Problem formulation and a centralized heuristic
We first formulate the minimum-delay mesh problem,
which is to form a mesh which minimizes the maximum
delay of the peers in the network while meeting a certain
streaming rate requirement. We show the problem is NP-
hard, and hence propose a centralized heuristic based on
complete knowledge. This serves as a benchmark for our
later comparison study.
Given the end-to-end delay of the peers, our centralized
heuristic makes use of the traditional power concept
in network design given by the ratio of throughput
with delay. The centralized heuristic achieves low delay
by first ranking the nodes according to their uplink
bandwidth followed by “maximizing” the power in the
mesh.
2) A distributed protocol for low-delay mesh
Given the good performance of our centralized heuristic,
we propose a novel distributed protocol to build a low-
delay mesh with random user joins and leaves. A new
arrival first selects some good set of parents based on
the power concept (as in the centralized heuristic). The
mesh continuously improves itself with the peers trying
to locate and connect to better parents to further reduce
their delay. This adaptation mechanism move the nodes
to appropriate positions in the mesh.
3) Performance study on the algorithms
We conduct simulation study on our centralized and
distributed algorithms, and compare them with tradi-
tional and state-of-the-art approaches (closest-parents
and Outreach). Our results show that our algorithms
achieves substantially lower delay by more than 50%,
with lower server workload and better fairness.

The rest of this paper is organized as follows. We first
review related works in Section II. Then we present the
formulation of the minimum delay mesh problem and the
centralized heuristic in Section III. In Section IV, we discuss
the distributed protocol to build a low-delay mesh. Illustrative
simulation results and comparison are presented in Section V.
We conclude in Section VI.

II. RELATED WORK

In this section, we briefly review previous work. Because a
peer in a mesh is served by many parents, a packet schedul-
ing mechanism is needed to schedule when parents should
send which packet. There has been much study on packet
scheduling algorithms to reduce packet reassembly delay or
to improve throughput (see, for examples, [7], [8], [9], [10]
and references therein). Our work is orthogonal to them, and
the mesh built may apply any of the scheduling algorithms to
achieve low-delay streaming.

There has been much work on how to construct trees for
overlay streaming. Centralized algorithms such as CoopNet,
ALMI build a tree rooted at the streaming source [11], [12].



Narada first constructs a overlay mesh, and then spanning trees
with multiple sources are generated on top of the mesh for data
delievery[13]. NICE and ZIGZAG are distributed protocols
which arrange the participating peers into clusters and layers
in a distributed manner to minimize delay and workload [14],
[15]. However the structures cannot be easily maintained. In
all these works, the streaming rate and robustness to network
dynamic cannot be easily guaranteed. We study mesh here as it
addresses the streaming and robustness issues in peer-to-peer
streaming.

There has been work on using mesh for P2P streaming.
However, most of them do not optimize the mesh by ran-
domly connecting the participating peers to neighbors for data
exchange. Based on gossip, the peers gradually connect to
some closest parents for data exchange (the Closest Parents
approach in our simulation). Such approach leads to high
delay from the source to end hosts. Chainsaw is built based
on request-response data dissemination and gossip protocol
[16]. Peers request fresh data from neighbors in a BitTorrent-
like manner. Coolstsreaming is another work motivated by the
gossip concept, where peers pull data from multiple partners
using a scheduling algorithm to reduce packet redundancy
[17]. There are also other streaming protocols that adopt the
mesh structure, such as Bullet and GridMedia [18], [19]. As
compared to the above, our protocol achieves much lower de-
lay by optimizing the mesh structure through parent selection
and adaptations.

Asymmetric bandwidth problem has been studied in Out-
reach [20]. Outreach targets to minimize the source workload
by making full use of the peers’ uplink capacity. Every peer in
the network estimates a upstream and downstream bandwidth
difference of the whole network based on its knowledge. Every
new peer will connect to the peers with largest bandwdith
difference. Though Outreach is on the right track, the per-
formance is not far from the random schemes. Because the
newcomer randomly asks one of the source children to perform
the estimation, chances are we will miss the good estimation.
More importantly, Outreach has not proposed any continuous
adaptation to improve the streaming mesh; nor does it place
powerful peers in strategic locations, e.g. at positions where
they enjoy low delay.

III. PROBLEM FORMULATION AND CENTRALIZED
HEURISTICS

We present the formulation of the minimum delay mesh
problem in section III-A. Given the complete knowledge of
the overlay network, we present a centralized heuristic to solve
the problem in section III-B.

A. Problem Formulation

We model the overlay network as a complete directed graph
G = (V,E), where V is the set of vertices representing the
participating peers and E = V x V is the set of overlay edges.
For any edge (i,j) in G, the cost of the edge is the underlay
unicast path delay from node 7 to node j in the physical
network. We let d;; represent the delay of (i, j). Let T; be
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the set of parents of node i, we denote D; as the delay of
node ¢ along the overlay paths, which is the maximum of the
delays of node i’s parents plus the connection delay between
¢ and its parents, i.e.,

Di = max (Dj + dﬂ) (1)

JI€T;

To simplify notations, we further define D;(j) = D; +d;;,
which is the delay of node ¢ through its parent j. Therefore
D; can be written as D; = max;.jer, D;(j).

There is a single source node S in V' that streams data to all
nodes at a rate of s units/second, which we call the streaming
rate. For every node ¢ in V/, it has an uplink bandwidth of U;
unit/second. Note that U; may be differnt for diffrent peers
and may be lower than s. We define s;(j) as the rate that
parent j streams to node 4. For any node ¢ in G, if it gets an
aggregate incoming stream of s unit/second from its parents,
ie, D yier si(j) = s, we call node i fully served. A fully
served node can play back the video smoothly and is able to
stream to its children nodes. We define R; to be the residual
uplink bandwidth of node . It means the remaining uplink
bandwidth after it serves all of its children in the mesh. We
consider network core has enough capacity, and hence the
bottleneck lies on the network edge.

Minimum Delay Mesh Problem (MDM problem): The MDM
problem is to find a mesh which minimizes the maximum of
the peer delay, i.e., min max;cy D; subject to the streaming
requirement, i.e., 3 7. Si(j) = s.

We assume a streaming mesh exists, which requires the
total uplink bandwidth is larger than the total downstream
bandwidth, i.e.,

V]
DU ([V[-1) xs. @)
i=0

The MDM problem is NP-Hard.

Proof: First we show the problem is in NP. By running
breadth-first search on the mesh, we can go through all the
nodes, checking the streaming rate constraint and calcuating
their delay in polynomial time. We then verify whether the
mesh has the mimimum delay by comparing its maximum
delay with the given delay constraint. Next we show the
problem is NP-hard. Traveling Salesman Problem(TSP) can be
reduced to MDM problem [21][22]. Given a complete graph
G = (V, E), a TSP formulation is to find a path which starts
at the source S, visits all the nodes in V' exactly once and the
total cost D is minimized. Let’s have a MDM formulation on
the graph G’ = (V’, E’), which is identical to G. For all the
node in G’ including the source, we let their uplink bandwdiths
be the same as the streaming rate s, i.e., U; = s,Vi € V'. In
another word, every node will have just enough bandwidth to
serve one other node and in this case every node will have
exactly one parent and one child in the streaming mesh. The
resulting mesh becomes a chain and the maximum delay of
the mesh, i.e. max;cy D;, will be the delay of the last peer
in the chain. Therefore the maximum delay of the mesh in G’



will be the same as the total cost in G. The TSP in G will
have a path with minimum cost of D if and only if the same
path in G’ is the minimum delay mesh and the min-max delay
of MDM is D. We just showed TSP can be reduced to our
problem. Therefore the MDM problem is also NP-hard.

B. A Centralized Heuristic

Given the NP-hard nature of our problem, in this section we
propose a centralized heuristic based on complete knowledge
(i.e. knowledge of the user pool at the beginning and pairwise
distance between them). The algorithm serves as a benchmark
for the evaluation of our proposed distributed protocol.

Clearly, to achieve low delay, a good heuristic should
construct a “shallow” streaming mesh where peers are close
to the source with low hop count. Therefore we should try
to put the nodes with high uplink bandwidth close to the
source to increase the fanout of the mesh towards the uplink.
Since nodes of heterogenous uplink bandwidths are randomly
distributed in the network, we make use of the concept of
“power” to achieve a balance between the delay and uplink
bandwidth. Traditionally in networking, power is defined as
the throuhput divided by delay. In this paper the concept of
“power” is a little bit different. We Let P;(j) be the power
between a peer ¢ and its parent j, defined as the rate that node
J is serving node ¢ divided by the delay of ¢ via parent j, i.e.,
min(R(j), s)

Di(j)

Our algorithm runs as follows. First we rank all the nodes
according to their uplink capacities divided by their delay to
the source, i.e., gl . After that we push them into the mesh
in descending order. It is because we want to put the nodes
with large bandwidth and small delay as close to the streaming
source as possible so that they can have a low source to end
delay. In this way their children can in turn achieve a low
source to end delay. When a node i is pushed into the mesh,
we calculate the power P;(j) for all the nodes already in the
mesh and connect node i to node j with the largest P;(j) value.
If node ¢ is not fully served by node j, we will connect to node
i to one more parent with the second largest P;(j) value. We
kept connecting node ¢ to parents in the mesh according to
P;(j) until it is fully served, which means the total uplink
bandwidths it consume from all of its parents equal to the
streaming rate s. And then we begin to push the next node
into the mesh. The algorithm ends when all the nodes are
pushed into the mesh.

Pi(j) = 3)

IV. POWER-BASED DISTRIBUTED ALGORITHM

Given the complete knowledge of the network topology and
user pool, the centralized algorithm works well to minimize
delays. However in practice, we do not have such global
information. A joining peer does not know all the other current
users. Besides we cannot afford to have central planners
to keep tracks of thousands of peers with dynamic internet
condition. Our centralized heuristic serves as an benchmark
for comparison. We also propose a distributed protocol, which
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Input:

G = (V,B)

Source node: S

edge delay: d;; fori,j € V

streaming rate: s
Output:

M with the minimum source to end delay
Algorithm:

I: foreachi € V

2: S; = 0

3: Rl = Ul

4: push S into M

5:sort all ¢ in V' according to U; in descending order
6: foreachi € V

7 for each j € M

8: Calculate P;(35)

9: sort j according to P;(j) in descending order
10: j=0

11: while s; < s

12: if Rj > s— s

13: Rj = Rj - (S - Si)
14: S; =8

15: push ¢ into M

16: else

17: S; = S; — Rj

18: Rj =0

19: j=j+1

20: return M

Fig. 2. Pseudocode for the centralized algorithm.

is scalable and follows the same guiding principles as the
centralized algorithm.

In this section, we will first introduce our parent selection
algorithm for new joining peers. By selecting the right parents
to uplink to them, newcomers are able to have a low source
to end delay and good streaming quality. We will then discuss
about the mesh adaptation mechanism, which is used to further
adapt the existing mesh to achieve a more optimal mesh than
the current one. At the end we will explain the operations for
a node leave request.

A. Node Join and Parents Selection

In order to receive the streaming content, a newly arrived
peer has to look for parents with good quality. Ideally the
parents should timely deliver the contents so that the delay
perceived by the child is as small as possible. Yet the parents
should have sufficient residual uplink capacity. Small latency
does not guarantee sufficient bandwidth. To this end, we make
use of the power defined previously.

Upon the arrival of a new peer ¢, it contacts a Rendezvous
Point which caches a list of recently arrived peers. The
Rendezovus Point returns a few of them to the newcomer.
These peers are the potential parents. Peer ¢ checks its delay
with respect to each of potential parents j. Next, peer i



requests the residual bandwidth of j and evaluates its power by
Equation(3). As mentioned before, power is in fact the amount
of data sent from the peer in unit time. By choosing the parents
with large power, it prevents the newcomer from connecting to
biased parents, such as parents with large bandwidth but high
delay or parents with low delay but insufficient bandwidth.

After computing the powers, the newcomer selects parents
in greedy manner. More precisely, peer ¢ first connects to the
parent with largest power. If this parent does not have enough
residual bandwidth to fully serve it, peer ¢ then connects to
second most powerful parent. This process repeats until it is
fully served.

If the peers returned by the Rendezvous Point cannot fully
serve the newcomer, the newcomer request the neighbor of
those peers. Then the above process is applied again to these
newly retrieved nodes.

B. Adaptation

In the distributed environment, there is no specific joining
order of peers. The powerful peers may come late and as
a result are far from the source. As recent studies have
suggested, most participants in live streaming peer-to-peer sys-
tems have low and even zero uplink bandwidth[23]. With high
probability, there are some low-bandwidth peers occupying
the areas in between the source and the powerful ones. The
intuition behind our adaptation algorithm is to figure out the
proper positions where we should promote the high-bandwidth
peers to.

The adaptation consists of three steps:

1) Request Step: A child initiates the process by inspecting
its residual bandwidth. If this is greater than the streaming
rate, the child sends its parents the REQUEST message which
contains its uplink bandwidth and a time-to-live field (TTL).

2) Grant Step: There are two things for a parent to process
REQUEST messages which have come from different succes-
sors. First, if the TTL field is greater than zero, the parent
decrements it and forward the REQUEST message to its own
parents. Next, the parent checks whether its uplink bandwidth
is greater than that of the sender. If this is the case, the parent
makes an response to the sender with an GRANT message
which contains its distance from the source.

3) Accept Step: The successor may receive a number of
GRANT messages. Among these the ancestor with shortest
distance from the source is picked. More specifically, the
successor replaces all its existing parents with that ancestor’s
parents. After that, the ancestor disconnects from the existing
parents and then takes the successor as its parent. In this
process, the successor should also check whether the new
parents have higher power than the existing ones before
making the change.

We would like to discuss more about the distance mentioned
in the Grant step. The distance of a peer from the source can
be its delay time, that is the time taken by packets to arrive
at the peer after the source has streamed out. Alternatively,
we can measure the distance as the number of intermediate
peers involved in the streaming path. The invariant is that the
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ancestors must have a smaller distance than the successors so
that in the Accept step we are moving the successor closer to
the source. As long as this invariant is maintained, any other
measure can serve the purpose of distance. But some peers
have multiple parents, data will be streamed from different
paths. In this case, the distance of the peers is the longest
path.

The key parameter in the adaptation protocol is the TTL
value which means how far away the REQUEST messages
should travel from the peers. On one hand, if the REQUEST
messages can travel farther away, more ancestors will send out
GRANT messages thus the successors can potentially obtain
higher positions; on the other, too many REQUEST messages
result in flooding the streaming network, wasting network
resources for data transmission. So it may seem rational to
set the TTL field to small values, in the extreme case, it
will be 1. But as we will show in simulation results, this
encourages unnecessary adaptation changes as each time the
successors only move up by one step at most. In the real
world environment, frequent tearing down old connections and
establishing new ones will affect the mesh stability and so it
may not be able to smoothly stream out the movie. In the
simulation section followed, we will try with different TTL to
figure out a reasonable value.

C. Node Leave

When a peer is about to leave, it will initiate a leaving
message which is to send to its parents, noticing them to
release the uplink bandwidth that they have used to uplink
to the leaving peer. Afterwards another message will be sent
to all of its children the peer currently streams to. The children
peers are asked to look for new parents in the mesh in order
to maintain the streaming rate. There are two levels of nodes
affected upon a single node leave, its parent nodes and children
nodes.

V. ILLUSTRATIVE SIMULATION RESULTS

We carried out simulation to evaluate the performance of our
schemes with two others, namely closest parent and Outreach.
In the closest parent scheme, newly arrived peers choose
parents which are closest to them. This scheme is slightly
better than picking parents randomly as it can capture locality
of the peers. The nice thing is that it is simple and this is why
quite a number of streaming systems adopt it. The details of
Outreach can be found in [20]. Also, the centralized scheme
was included to serve as the ideal case for comparison purpose.

A. Simulation Setup and Metrics

In the simulation, we use Brite [24] to generate 10 different
two levels top-down hierearchical topologies. Each topology
consists of 8 autonomous systems each of which has 625
routers. This gives us a total of 5000 routers and about 20000
links in each topology. Brite also provides us latency with each
link and we can interpret it as millisecond.

Peers are attached to the routers randomly and their access
links bandwidth distribution follows the data suggested by



Uplink Bandwidth (unit) | Number of Peers (percentage)
0 30%
1—-10 58%
20 —90 5%
100 7%
TABLE I

UPLINK BANDWIDTH DISTRIBUTION OF PEERS.

[23]. One thing we want to emphasize here is that peers’
bandwidths are neither constant nor uniformly distributed as
one may have assumed. Instead, rich diversity [25],[26] has
often been found in the Internet and this is true for end-hosts
bandwidths too. In our case, as shown in Table I, the access
links bandwidths distribution follows an extensive bandwidth
measurement from a large scale real-world streaming event in
[23]. (For the sake of clearness, we measure the bandwidth in
streaming unit.) The streaming rate in simulations is 10 units
and the number of peers used is 500 if not specified.

We also ran the simulations which bandwidths are more
abundant and uniformly distritubted among peers. The results
of those simulations follow the same trend as that presented
here.

We define the following evaluation metrics that we would
use in the analysis:

e Delay: The prime concern of our protocol is the source
to end delay perceived by peers. It is the time taken for
data to travel from the streaming server to the peers We
measure both the average source to end delay among all
peers and the maximum source to end delay of the mesh.

e Hop Count: We refer hop count to the number of in-
termediate peers involved on the overlay path from the
source to a peer. Intuitively, hop count gives us an idea
of the depth of the overlay. Small hop count does not
necessary guarantee small delay, though, we can infer
from the depth how the algorithms position peers. Putting
high bandwidths peer near the source allows branching
to occur earlier, thus giving a flatter toplology.

o Source Workload: Theoretically speaking, peer-to-peer
system is scalable because the reliance on the streaming
server is mostly eliminated. Nonetheless, the source is
needed if parents with sufficient uplink capacity cannot be
located, especially in the case of asymmetric bandwidth
environment. A certain degree of source involvment can
help keep the streaming mesh robust and efficient. The
question is how much the source need to afford. Source
Workload is defined as the amount of bandwidth that
the source uses to upload data to the peers that directly
connect to it. It measures the resource consumption level
of the streaming server in the amount of streaming units
used at its outgoing link.

B. Simulation Results

Before comparing with other schemes, we would like to
argue for the merit of adaptation. Some may ponder that in
our adaptation protocol the ancestors in fact gives way to the
successors and they may be worse off as a result. It is true
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Fig. 3. Delay of peers with different bandwidths, TTL=3.

that this may happen to a few peers but in general most of
them can gain in performance. Figure. 3 shows the average
delay of peers against their bandwidth in a typical run of the
simulation. Not only has the average delay been reduced by
using adaptation, but the variance has also narrowed down.
This means that by putting high bandwidth peers closer
to the source, most peers, if not all, can receive the data
streams sooner. In the following results, our scheme has always
performed the adaptation with TTL value equal to 3.

It should be noticed that adaptation does not guarantee
bandwidth to vary inversely with delay, though, the peers with
high bandwidth are moved upwards aggressively. There are
two reasons for that. First, the ancestors of high-bandwidth
peer may possess high bandwidth too, so adaptation does not
happen between them. Moreover, those ancestors may have
some other children (i.e. siblings to the successor) with lower
bandwidth but the adaptation message never get to them. These
peers, therefore, stay in the upper level of the mesh and enjoy
relatively low delay.

The average and maximum delay of the four schemes
we study are shown in Figure. 4. When there are not so
many peers, the difference in performance of the schemes
is nearly negligible. Nevertheless, we are interested in the
performance with a large number of concurrent users. As the
simulation shows, Power scheme outperforms the other two
as the number of peers grows. The growth is also slower too.
Having a small delay with low growth rate means the Power
scheme is scalable to huge amount of peers. This illustrates the
effectiveness of the Power scheme combined with adaptation
in achieving low delay streaming mesh.

Figure. 5 shows the average and maximum hop count of
the schemes under study. If we do not look at the bandwidth
of the parents, it is likely we end up with a large mesh, as
in the case of closest parents scheme. The Power scheme
gives a more compact mesh than Outreach. This can be
attributed to the nature of Outreach which picks bandwidth
estimation randomly. High bandwidth peers in Power scheme
are aggresively promoted upwards and thus more branchings
occur near the source.



50

—3— Outreach

Min Parent Delay
——+— Power

—3¥— Centralized

Aovg Drelay (ms)

* * * * * "
f * * *

Peern

(a) Average

350

T T
200 - Min Parent Delay / ""'/-
¥ OQutreach —
—4— Power —
—¥— Centralized -

|
%

.
100 200 300 400 500 600 Fo0 800 |00 1000
Peer gt
(b) Max

Fig. 4. Delay from Source to Peers.

Figure. 6 suggests the amount of bandwidth consumed at
the source. We find that Ourtreach actively places peers under
source and thus its reliance on the source is relatively larger.
In Power and closest parent scheme, the source has roughly
contributed the same amount of resources in order to keep
the streaming mesh performing. In fact both of these schemes
will try to utilize the peers bandwidth as much as possible.
Sometimes after a considerable number of trial of searching
good parents, still a newcomer cannot find out satisfactory
parents. The best thing it can do is to connect to the streaming
source. Although the source workload of these schemes are
larger than the centralized scheme, in the lack of global
knowledge these values are acceptable.

We define Number of Adaptaion Change as the number of
existing connections that are broken in the adaptaion phase
before the mesh reaches a static state.

We will evaluate the effect of different TTL values in the
adaptation protocol. Figure. 7 shows the number of adaptation
changes against the value of TTL. The more the adaptation
happens, the more often connections are re-established. We
can therefore think of the cost of adpatation proportional to
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the number of adaptation happened. As expected, small TTL
values result in more adaptation. But increasing TTL does not
reduce much adaptation changes. We found that actually most
adaptation, even for large TTL values, only advance peers for a
few levels. This indicates even a small change in peers position
can give a considerable improvement over delay.

Beside comparing the number of adaptaion occurs, we
would like to know how much the delay is reduced with
different TTL. To this end, we define

o Average Delay Reduction: ratio of average delay reduced

by adaption to average delay without adaptation;

e Maximum Delay Reduction: ratio of maximum delay re-

duced by adaption to maximum delay without adaptation;
If these values are positive, there is a reduction in delay time;
otherwise the delay has in fact got longer.

Figure. 8 plots the average and maximum delay reduction.
For clarity reason we only show the extreme cases of TTL=1
and TTL=7. We have tried with other TTL values and found
that the graphs of other TTL values lie in between these two.
Most of the time the adaptation can reduce average delay by
as much as 30% and the maximum delay by 25%. This is
important to delay sensitive streaming application because it
allows shorter delivery time to transmit data from the source
to end-hosts. In this way, the peers will be less likely to miss
the playing deadline when it receives the data. Also, having
large TTL value, only gives slightly better benefit. In other
words, delay reduction is not proportional to the TTL. But
increasing TTL will bring us the risk of flooding the overlay.
Considering both the cost and benefits of different TTL values,
we conclude that medium values, say 3, should be used.

VI. CONCLUSION AND FUTURE WORK

In this paper, we study the problem of minimizing delay
in live streaming mesh, formed by peers with asymmetric
bandwidths. We have formulated the Minimum Delay Mesh
Problem and derived a heuristics solution for it. Moreover,
the heuristics is extended to a distributed protocol. Simulation
results have shown our scheme achieving much lower delays
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than techniques commonly used. Despite our focus only on
live streaming in this paper, we are confident that the protocol
can play a critical role in other applications, e.g., video-on-
demand. After all, it is always desirable to shorten time needed
for data delivery.

Field experience [27] tells us that flash crowds are common
in live streaming. Thousands of users appear suddenly when
a popular program is about to broadcast. After the program
has finished, vast amount of users leave simultaenoutly. In the
future we would like to investigate how flash crowds impact
our protocol and find out ways to deal with this problem.
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