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Abstract—In wireless local area networks (WLANs), associ-
ation of the access points (APs) is often not uniform due to
joining and leaving of wireless users. Such imbalance leads to
unsatisfactory user throughput due to congestion at some APs
and channel under-utilization at others. As users may be covered
by multiple APs in WLAN deployment, their throughput can be
improved by AP re-association, i.e., migrating some users from
the congested APs to the less loaded neighboring APs. Such re-
association is expected to come with some cost (due to overhead
in handshaking, authentication and data flow management).

In this paper, we study the novel problem of optimizing
AP re-association by maximizing the minimum user throughput
(i.e., max-min fairness), subject to a certain total user migration
cost constraint. We show that the problem is NP-hard. We then
propose an efficient approximation algorithm called CACA (Cost-
constrained Association Control Algorithm). CACA has provable
performance, achieving an approximation factor of (4+ǫ), for any
ǫ > 0. It is simple and implementable. Our extensive simulation
results based on NS3 show that it substantially outperforms other
comparison schemes with close-to-optimal performance (the case
without cost constraint). Our testbed experiments further confirm
the effectiveness of CACA.

Keywords—WLANs, Association control, Optimization, Approx-
imation algorithm, Migration cost, Load balancing.

I. INTRODUCTION

IEEE 802.11-based wireless local area network (WLAN)
offers mobile users (MUs) access to the Internet via access
points (APs). These AP coverages often overlap, due to
inflexible locations to install APs, the need to reduce blind
spots, the requirement on signal strengths, etc. Consequently,
an MU is often simultaneously covered by multiple APs. Such
overlap offers an opportunity to optimize the AP association
of clients so as to improve network performance.

In a network consisting of multiple APs, it is desirable to
optimize AP association over time. This is because user traffic
is dynamic, unpredictable and spatially non-uniform. As the
system evolves with MU joining and leaving, user throughput
would no longer be balanced for all the APs, with clusters
of MUs associated with some “hot” APs while some “colder”
ones with few MUs. This leads to unsatisfactory throughput
performance at congested APs and channel under-utilization at
others. To address it, we can use an AP association controller
to migrate (i.e., re-associate) some connected users from the
congested APs to those lightly loaded neighboring APs.
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Fig. 1. A wireless netwrok with non-uniform user association. Using strongest
signal association, users 1, 2, 3 and 4 associate with AP A, creating congestion
at the AP.

We show in Figure 1 a wireless network formed by multiple
APs with associated clients as indicated. The MUs may not be
uniformly distributed. Without loss of generality, we consider
that each AP is equipped with one interface (for an AP with
multiple interfaces, we may consider it as multiple co-located
APs with single interface). Typically, the power range of the
APs is fixed, and their channels are properly set such that co-
channel interference in their overlapping regions is minimal.

In a WLAN, a joining MU usually scans all the APs which
it can associate with. Then, it associates with the one according
to some association rule such as strongest beacon power
or maximum expected throughput [1]. Such AP association,
usually performed in a distributed and local manner, is not
globally optimal in terms of throughput. Furthermore, users
may leave the network any time. Previous work often considers
that AP association is irrevocable, i.e., once associated with an
AP at join time, an MU cannot change the association during
its lifetime. As a result, the performance tends to degrade over
time due to sub-optimal AP association. We hence need to re-
optimize association over time by migrating some MUs, either
periodically or upon detecting a drop in network performance.
A desirable objective for AP re-association is network-wide
fair bandwidth allocation. In this paper, we consider max-min
fairness as it maximizes the fair share of each user.

To effect AP re-association, the MU needs to handshake
with the target AP for authentication and association. Further-
more, the target AP and the underlying network need to re-
establish new route for the packet flow to the user. Therefore,
there is a migration cost in AP re-association, because of
the traffic and management overhead which may even lead
to (momentary) connection interruption. Such cost may be
heterogeneous for different users, due to user priority or the
elasticity of its current connection.
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Association re-optimization may be conducted by a central
association controller. The controller computes which MU
should be associated with which AP according to some rules or
objectives (such as load balancing). Prior art has not considered
the impact of extensive user migration [2], [3]. As a result, re-
optimizing AP association may lead to global large-scale MU
migration or oscillation. This is undesirable, disruptive and
costly.

We consider the general case of heterogeneous user mi-
gration cost. The critical problem is then how to maximize
the minimum user throughput (max-min fairness) subject to a
certain total cost constraint. Note that for the special case of
homogeneous (uniform) migration cost, our problem is reduced
to achieving max-min fairness subject to a given maximum
number of total migrations.

Our problem is novel and practical because previous work
on AP association has not considered migration cost constraint.
The introduction of such constraint fundamentally changes the
nature of the problem and merits a new study. We approach
the problem via the following:

• Problem formulation and complexity analysis: We for-
mulate the optimization problem for AP re-association
subject to a cost constraint. The problem is an integer
linear programming, and we show that it is NP-hard.

• An approximation algorithm for AP re-association
under migration cost constraint: We propose CACA
(Cost-constrained Association Control Algorithm), to
address the optimization problem. CACA is sim-
ple and implementable. It has provable performance,
achieving an approximation factor of 4 + ǫ.

• Extensive NS3 simulations and experimental studies:
We demonstrate the effectiveness of CACA by vali-
dating its performance through extensive packet-level
NS3 simulations and real proof-of-concept experi-
ments. We demonstrate that CACA achieves highly
optimal user throughput, with performance close to
the optimum (as given by the scheme without cost
consideration). Our experiments further confirm its
implementability and high performance.

The rest of the paper is organized as follows. We first
discuss related work in Section II, followed by discussing
the system models and problem formulation in Section III.
In Section IV we present CACA, an efficient approximation
algorithm for migrating MUs to achieve near-optimal through-
put. We present in Section V illustrative simulation results with
NS3 and proof-of-concept experimental studies. We conclude
in Section VI. Important proofs are provided in the Appendix.

II. RELATED WORKS

AP association has been an active research topic. There
has been much research to alleviate the disruptive effect of
re-association. Ramya et al. [4] analyze how a large number
of re-association affect performance. Approaches in [5]–[7]
attempt to reduce the re-authentication management frames
by caching and propagating authentication information among
APs. The work in [8] minimizes the number of re-associations
in a mobile network. All these work shows that re-association
is costly and should be contained.

Much work has studied on-line AP association
schemes [9]–[12]. In these schemes, the APs broadcast
their information, such as load conditions or queue length.
Each arriving user makes decision on which AP to associate
to. While these works are impressive, the schemes are not
adaptive to achieve high performance by accommodating
dynamic traffic when users may join and leave any time.

There has been work which makes periodic association
decision over time by a central controller [2], [3], [13]–
[16]. It recalculates the optimal user association by an offline
algorithm, and migrates users accordingly. However, migration
cost has not been considered and hence the migration can be
substantially costly or disruptive to the network. We present
here a formulation with migration cost constraint, and a novel
algorithm which achieves low migration cost with guaranteed
performance (in terms of user throughput).

Another body of work studies distributed association con-
trol algorithm [17]–[20]. MUs in these schemes distributively
switch to the suitable AP whenever their throughput can be
improved. These works have not considered migration cost,
and it is unclear how they perform (i.e., performance bound)
with respect to the optimum. CACA, on the other hand, is an
approximation algorithm with provable performance.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

We consider a general 802.11 WLAN consisting of a
number of APs, with properly set channels such that co-
channel interference is negligible. Each AP is wired to the
Internet. Let A be the set of APs and m be its cardinality, i.e.
m = |A|. The transmission range of an AP (i ∈ A) is given
by R(i). For AP i, it can only be associated with users in its
coverage.

We denote the set of MUs as U , where |U | = n. Users
in the network are dynamic (in the sense that they may join
or leave at any time). Let rij be the time-averaged data rate
between user j and AP i. An MU accesses to the Internet by
associating to any AP. We denote the set of APs that MU i is
potential to associate with as A(i). Analogously, U(i) is the
set of MUs associated with AP i.

Data rate rij can be calculated from channel scanning at
the user. User j scans the channel by sending probe request
frames. The APs in the range reply with probe response frames.
According to the RSSI (Received Signal Strength Indicator) of
the response frames from AP i, the client can calculate which
modulation scheme is going to be used if it associates with
i. Each modulation scheme corresponds to a certain data rate,
thus we can get the rate rij .

There is a central controller in the network. The central
controller carries out re-optimization periodically or when AP
congestion is detected. Our association control consists of two
phases, joining phase and re-optimization phase, discussed
below:

Joining phase: On the joining of an MU, it associates with an
AP according to any association rule such as strongest beacon
power based association or maximum expected throughput
association [1].



Re-optimization phase: In this phase, APs report the current
association to the central controller. We first decide which
subset of MUs should be migrated according to current AP
load information. Our decision should not violate the migra-
tion cost constraint. Then, the central controller requests the
selected MUs to scan for feasible APs for migration. These
MUs report the scan results (i.e. the expected data rate rij
from user j to potential AP i) to the central controller. With
the scan information, central controller chooses an optimal
AP from the candidate APs for each MU being migrated
and sends the migration decision to the corresponding MU.
Finally, A migrating MU dissociates from the current AP and
re-associates to the AP chosen by central controller via control
frames exchanging with APs.

Since only the migrating MUs perform channel scanning,
the introduction of migration cost constraint also limits scan-
ning cost. To prevent an MU from being migrated too fre-
quently (i.e., flip-flopping between APs), we can increase the
migration cost of an MU according to its migration/handover
history. This is important to maintain association stability,
thereby enhancing user experience.

B. Multiple Access Model

Because our objective is to maximize the minimum
throughput for active users, we consider heavy traffic case, i.e.,
each active user always has packets to send or receive. Due
to Carrier-Sense Multiple Access with Collision Avoidance
(CSMA/CA) mechanism in 802.11 protocols, all MUs associ-
ated with the same AP will seize the AP’s channel for packet
transmission with the same probability. We may view that
APs serve their associated clients in the round-robin manner.
Therefore, for any given packet size δ (bits), the service time
tij (seconds) allocated to user j by its associated AP i is
proportional to the time needed for one packet transmission
between i and j, given by tij = (δ/rij)/(

∑

k∈U(i) δ/rik).
This model is also confirmed by [21].

Let Tj be the throughput of j and dij = 1/rij . MUs
associated with the same AP i get the same throughput in
spite of the difference in their data rates. The throughput they
get is given by Tj = rijtij = 1/(

∑

k∈U(i) dik).

C. Problem Formulation

We begin with some definitions. The notations we use have
been summarized in Table I. Let x be the state of the current
association, and a(j) the AP that j is currently associated with.
If j is associated with i, then xij = 1; otherwise xij = 0.

Definition 1. AP Load: The load of AP i is defined as Li =
∑

j xijdij .

Definition 2. Max-min User Throughput: An AP associa-
tion x∗ achieves max-min user throughput if the network-
wide minimum user throughput is maximized. i.e. x∗ =
argmaxx minj Tj , subject to xij ∈ {0, 1} and

∑

i∈A(j) xij =
1, ∀j.

Due to the DCF MAC in 802.11, all MUs associated with
the same AP have similar throughput. It is hence natural to
consider maximizing the minimum user throughput as the
objective.

TABLE I. MAJOR SYMBOLS USED IN THIS PAPER.

Notation Definition

rij the data rate between user j and AP i (Mbits/s)

dij
1

rij
(seconds)

Tj throughput of user j (Mbits/s)
Li current load of AP i
L∗ optimal value of Min-max AP Load Problem (Min-

maxLP)
xij binary variable indicates whether user j associates

with i in the current association
a(j) the AP user j is currently associated with
A(j) the set of APs that MU j is possible to associate

with
U(i) the set of Users currently associated with i
cj the migration cost of user j
yij binary variable indicates whether user j should dis-

sociate with the current AP a(j) and be reassigned
to AP i

Gi the load of AP i after MU removing
G maxiGi, maximum AP load after MU removing
D the subset of MUs removed by MRemove
Hi the load of AP i after MU migration
H maxiHi, maximum AP load after MU migration
K maximum migration cost constraint

Definition 3. Min-max AP Load Problem (MinmaxLP):
argminx maxi Li, s.t. xij ∈ {0, 1} and

∑

i∈A(j) xij = 1, ∀j,

where i ∈ A, j ∈ U .

The achievable throughput of MUs is the inverse of the load
of the AP that they are associated with. For each MU j, Tj =
1/Li, where i = a(j). It is not hard to see that maximizing
minj Tj is equivalent to minimizing maxi Li. Therefore, x∗ is
the optimal solution to MinmaxLP. Let Hi be the load of AP i
after MU migration. For the sake of conciseness in notation, we
will consider minmaxi Hi as the objective of our association
control in the rest of this paper. Formally, our optimization
problem can be stated by Definition 4.

Definition 4. CACP (Cost-constrained Association Control
Problem): Given A, U , rij and current user-AP association x,
re-associate users by migration to minimize maxiHi, under
the constraint that no more than a given K migration cost is
incurred.

We next formulate the CACP. Let yij be the binary
variable indicating whether user j is dissociated with the
current AP and re-associated to AP i. We denote the load of
AP i given by the current association as Li. We can view
association optimization as removing some MUs from the
current association and re-associate them to some APs. Clearly,
∑

j:a(j)=i

∑

i′ :i′ 6=i,i′∈A(j) dijyi′ j is the amount of load re-

associated to other APs from i. Let Gi be the load of AP
i after MU removing. We have

Gi = Li −
∑

j:a(j)=i

∑

i′ :i′ 6=i,i′∈A(j)

dijyi′j . (1)

Clearly,
∑

j:i∈A(j),a(j) 6=i dijyij is the total amount of load

migrated to AP i from other APs. Therefore,

Hi = Gi +
∑

j:i∈A(j),a(j) 6=i

dijyij . (2)

Let H = maxiHi. The objective of CACP can be ex-



pressed as:
minH. (3)

We denote the migration cost of MU j as cj . As the
migration cost can be at most K , the following constraint must
be in place:

∑

i

∑

j

yijcj ≤ K. (4)

We also require yij ∈ {0, 1}. Clearly, constraints
∑

i yij ≤
1, ∀j are implied by the objective. If we drop the migration
cost constraint given by Inequality (4), CACP reduces to
MinmaxLP. It is not hard to see the following is true as the
MinmaxLP is more relaxed than the CACP.

Lemma 1. Let L∗ be the optimal value of the Min-max AP
Load Problem (MinmaxLP) and OPT be the optimal value of
CACP. L∗ ≤ OPT .

We now analyze the hardness of CACP. We define the re-
stricted version of Cost-constrained Association Control Prob-
lem by restricting K =

∑

j cj as RCACP. The CACP is NP-
hard as the PUMSP (Parallel Unrelated Machine Scheduling
Problem) can be reduced to RCACP. The formal definition of
PUMSP is stated in [22].

IV. CACA: AN APPROXIMATION ALGORITHM FOR

COST-CONSTRAINED AP RE-ASSOCIATION

In this section, we first provide some background knowl-
edge for our study (Section IV-A). Then we overview the
important elements of CACA (Section IV-B), followed by
its details on MU removal (Section IV-C) and re-association
(Section IV-D).

A. Preliminary

Since Shmoys and Tardos’ rounding algorithm is used in
our algorithm design, we here briefly discuss their major result
in Theorem 1 [22]. Given λ ∈ R

m
+ , D ∈ R

m×n
+ , λ = (λi),

D = (dij) and maxj dij ≤ λi, ∀i, we have the feasibility
problem given by the following Integer Linear programming
ILP(λ):

∑

i

xij = 1, ∀j

∑

j

dijxij ≤ λi, ∀i (5)

xij ∈ {0, 1}. (6)

We refer problems without objective as feasibility problem-
s. By relaxing the integer constraint (6) to 0 ≤ xij ≤ 1, we
get the corresponding Linear Programming denoted by LP(λ).

Theorem 1. (Rounding Theorem). If the feasibility problem
given by LP(λ) has a feasible fractional solution x, then the
fractional solution x can be rounded (via Shmoys and Tardos’
rounding algorithm) to a feasible integer solution x̄ such that
∑

j dij x̄ij ≤ 2λi, ∀i.

Theorem 1 states that if maxjdij ≤ λi, ∀i, we can use
Shmoys and Tardos’ rounding algorithm to round a feasible
fractional solution x of LP(λ) to an integer solution x̄ such
that x̄ violates the constraint (5) by at most λi. This implies
Shmoys and Tardos’ rounding algorithm is a factor 2 approx-
imation algorithm.

We now introduce the Minimum knapsack problem. Given
a set of items, aj and bj are the value and cost of item j
respectively. The problem is to select a subset of items to
minimize the sum cost under the constraint that the sum value
is at least V . An Integer Minimum knapsack Problem instance
IMKP(a, b, V ) can be formulated as

min
∑

j

bjzj ,

∑

j

ajzj ≥ V, zj ∈ {0, 1},

where z is the binary decision variable. An IMKP can
be solved optimally in pseudo-polynomial time by dynamic
programming. We denote the algorithm solving IMKP as
IMKA (Integer Min-knapsack Algorithm). (I∗, B∗) = IMKA
(a, b, V ), where I∗ is the optimal subset and B∗ is the optimal
cost.

B. Algorithmic Overview

We propose a 2-step approximation algorithm termed
CACA (Cost-constrained Association Control Algorithm) to
tackle CACP (Definition 4). Our task is to migrate MUs from
heavily loaded APs to neighboring lightly loaded APs. We
finish this task in two steps. In Step 1, we will remove a
subset of MUs from the current association. In Step 2, we
re-associate the removed MUs. Therefore, we decompose the
CACP into two sub-problems: MU Removal Problem (MRP)
and MU Re-association Problem (MRAP).

C. MU Removal

We need to determine which MUs to be removed from the
current association. Let zj be the binary variable indicating
whether j is removed from a(j). Recall that Gi is the load of
AP i after MU removal. Clearly,

Gi = Li −
∑

j:a(j)=i

dijzj .

We want to reduce the maximum AP load as much as pos-
sible. Therefore, the MU Removing Problem is to minimize
maxi Gi, given by the following ILP.

Sub-problem 1 (MRP):

minmax
i

Gi,
∑

j

zjcj ≤ K, (7)

zj ∈ {0, 1}. (8)

We present MRemove (MU Removal Algorithm) in Algo-
rithm (1) to tackle MRP. We denote the maximum AP load



Algorithm 1: MRemove

Input: A, U , dij , x
Output: D, Gi

1 lb← 0, ub← maxiLi. D ← null.
2 while ub > (1 + ǫ)lb do
3 I ← null. B ← 0.
4 g = (lb+ ub)/2.
5 foreach i ∈ A do
6 Construct IMKP(a, b, V ) on set U(i) via the

following. Each MU j in U(i) corresponds to
an item. Set aj = dij , bj = cj for each j. Set
V = max {Li − g, 0}.

7 //a and b are vectors with aj and bj as
8 //their jth element respectively
9 (Ii, Bi) = IMKA (a, b, V ).

10 I ← I
⋃

Ii.
11 B ← B +Bi.
12 end
13 if B ≤ K then
14 D ← I .
15 ub← g.
16 else
17 lb← g.
18 end
19 end

after MUs removed by MRemove as G, i.e. G = maxiGi.
Let set D∗ ∈ U be the optimal set of users to remove and G∗

be the optimal value of MRP. Please note that D∗ may not be
the optimal set of MUs to migrate for the CACP.

In MRemove, we first establish the upper bound ub and
lower bound lb of G∗. Then, we make an initial guess of
optimal value G∗ (say g = (lb + ub)/2 is our guess of G∗).
For each guess g, we try to achieve it by removing enough
MUs in the cheapest way (in terms of migration cost). If we
can achieve g, we decrease our guess; otherwise, we increase
our guess.

IMKA represents the well-known dynamic programming
algorithm for solving IMKP (see Preliminary). Parameter ǫ > 0
can be any small number. It determines the time complexity of
Algorithm (1). In each iteration, we guess the optimal value to
be g. To achieve the objective value g, we have to reduce the
load of each AP i. Therefore, we have an MU removing sub-
problem for each AP i. The problem is to remove a subset of
U(i) to reduce Li by at least max {Li − g, 0} while inducing
the least cost. We solve the MU removing problem for each
AP i by reducing it to IMKP via the construction in Line 6.
Then, we use IMKA (Line 9) to calculate the optimal subset
Ii ∈ U(i) to remove from i. I =

⋃

i Ii is the optimal subset
to achieve objective g. B defined in Line 3 calculates the total
cost for removing I . If B ≤ K , objective g can be achieved. If
B exceeds K , there is no feasible MU removal that can achieve
g. If g can be achieved with no more than K cost, it implies
that a lower objective may be possible. Therefore, we set ub =
g and reduce g (by Line 4), when g is achievable; set lb = g
and increase g, otherwise. We always use D to record the
set whose removal results in achievable maximum AP Load g
(Line 14). As achievable g keeps decreasing through algorithm
iterations, the removal of D will achieve the lowest objective.

Lemma 2. MRemove is a (1+ ǫ) approximation algorithm to
MRP (i.e. G ≤ (1 + ǫ)G∗). (See Appendix for proof.)

Lemma 3. G∗ ≤ OPT . (See Appendix for proof.)

For the case that all MUs have the same migration cost,
the constraint given by Inequality (7) becomes

∑

j zj ≤ ⌊K/c⌋
(where c is the migration cost of each MU). We denote ⌊K/c⌋
as K

′

. The constraint reduces to that no more than K
′

MUs
can be removed. For this case, we use a greedy algorithm to
remove the optimal subset of MUs. We call AP i the maximum
loaded AP if i = argmaxk Lk. Similarly, user j is called the
heaviest MU if j = argmaxk dik. The algorithm is to remove

the heaviest MU from the maximum-loaded AP for K
′

times.
Clearly, this algorithm is optimal for homogeneous case.

D. MU Re-association

As MUs in set D are removed from the current association,
we need to re-associate them. Let binary variable γij indicate
whether MU j ∈ D is re-associated with i. The load of AP i
after MU re-association is given by

Hi = Gi +
∑

j∈D

γijdij .

Hi is also the load of AP i after the optimization of
CACA. Subsequently, H = maxiHi is the maximum AP
load. Therefore, the MU Re-association Problem (MRAP) is
to minimize H , given by the following ILP:

Sub-problem 2 (MRAP):

minH
∑

j∈D

γijdij ≤ H −Gi, ∀i, (9)

∑

i:i∈A(j)

γij = 1, ∀j ∈ D, (10)

γij ∈ {0, 1}. (11)

Let H∗ be the optimal value of MRAP. MRAP is NP-hard.
However, we can easily find the lower bound (lb) and upper
bound (ub) of H∗. We solve the Linear Programming version
of MRAP (by relaxing constraint (11)) to get the fractional
optimal value Hf and set lb = Hf . The objective value of
any feasible solution to MRAP is an upper bound of H∗. A
feasible solution γ can be found easily (such as associating
each MU in D to a randomly selected AP). For any given
value g, the corresponding feasibility problem FMRAP(g) is
given by

FMRAP(g):
∑

j∈D

γijdij ≤ g −Gi, ∀i,

∑

i:i∈A(j)

γij = 1, ∀j ∈ D.

It is not hard to observe that FMRAP(g) is the same as the
LP(λ) in Theorem 1 (by setting λi = g −Gi). With the help
of Theorem 1, we propose MAssoc shown in Algorithm (2)



Algorithm 2: MAssoc

Input: D, Gi.
Output: γI .

1 solve the LP-relaxation of MRAP to get Hf , lb← Hf .
2 Set ub equal to the value of any feasible solution.
3 while ub > (1 + ǫ)lb do
4 g ← (lb+ ub)/2.
5 For all i and all j, delete i from A(j), if

dij ≥ g −Gi.
6 if FMRAP(g) has feasible fractional solution then
7 ub← g.
8 else
9 lb← g.

10 end
11 end
12 Assign the fractional solution of FMRAP(ub) to γ.
13 Use Shmoys and Tardos’ rounding algorithm to round γ

to an integer solution γI .

to address MRAP. We search the optimal fractional solution
via binary search. Then we round the best solution we found
to get a factor 2 integer solution. Line 5 ensures the condition
(i.e. maxj dij ≤ λi, ∀i) required by Theorem (1) and does not
affect the optimality of the fractional solution. Parameter ǫ > 0
controls the time complexity, and can be arbitrary small.

Lemma 4. For any i,
∑

j∈D γI
ijdij ≤ 2(1+ ǫ)H∗−2Gi. (See

Appendix for proof.)

In Step 1, CACA uses MRemove to reduce G as much as
possible by MU removing. In Step 2, CACA uses MAssoc for
MU re-association to minimize H . After the optimization by
CACA, Hi = Gi +

∑

j∈D γI
ijdij .

Theorem 2. CACA is a (4+ ǫ) approximation algorithm. (See
Appendix for proof.)

We next briefly analyze the time complexity of CACA.
In CACA, the MU removing sub-problem for each AP i
is reduced to IMKP(a,b,V ). The time complexity of solving
IMKP is O(nV ), where n is the number of items and V is the
target sum value. In the IMKP we constructed, n equals to the
number of MUs and V is bounded by the maximum AP load.

MRemove iterates log
(ub−lb)/(lbǫ)
2 times. In each iteration,

it solves m knapsack problems. Therefore, the complexity

of MRemove is O(log
(ub−lb)/(lbǫ)
2 mnV ). As the complexity

of MRemove dominates that of MAssoc, the Complexity of

CACA is still O(log
(ub−lb)/(lbǫ)
2 mnV ).

V. ILLUSTRATIVE SIMULATION AND EXPERIMENTAL

RESULTS

In this section, we present our simulation and experimental
results on CACA performance. We discuss our simulation
environment and performance metrics in Section V-A, and
illustrative simulation results in Section V-B. Experimental
validation is covered in Section V-C.

A. Simulation Environment

We conduct simulation on packet-level simulator NS3 to
evaluate CACA. In our simulation, APs are randomly deployed

in an area (of size 400m× 400m). To bring heterogeneity to
the network, some nodes are equipped with multiple antennas.
Some randomly selected nodes are equipped with only one
single antenna. We create Communication links connecting
two randomly chosen nodes. The Sender and the receiver are
assigned randomly.

We expect that even if users are uniformly distributed,
user associations under strongest signal association rule are
non-uniformly distributed around APs due to random AP
placement. For example, APs deployed on the border of the
area cover less users, thus have less associated users. In the
simulation, an AP sends flows with varying traffic demand to
its associated users. We randomly generate current association.
CACA migrates users based on current association.

Unless otherwise stated, we use the following as our
baseline parameters. We use log-distance path loss model
with reference distance 1 meter, reference loss 46.678 dbm
and loss exponent 3. Transmit power is set to be 20 dbm.
Traffic demand per user is 3.3 Mbps. The number of APs and
MUs are 20 and 100 respectively. We consider each user has
homogeneous migration cost. CACA migrates no more than
25% of the total number of users to optimize the association.

We are interested in the following performance metrics: 1)
Throughput: It is user throughput, calculated as the number
of bits received divided by transmission duration. 2) Loss rate
(UDP): It is the ratio between the number of received packets
and the number of transmitted packets. 3) Delay: It is defined
as the end-to-end delay of successfully received packets. 4)
Migration cost: It is defined as the number of migrated users.
We compare CACA with the following approaches:

• Unconstrained optimization: It maximizes the worst-
case user throughput via global optimization.

• Strongest signal based association (SSA): In the
scheme, mobile users always associate with the AP
from which they receive the best signal.

• Proportional fairness association (PFairness) [3]: In
the scheme, user association is optimized by an offline
algorithm to achieve proportional fairness in user
throughput. It does not consider user migration cost.

• Game-theoretic association (GameBased) [23]: In the
scheme, association is modeled as a selfish game. Each
player in the game aims to maximize its achievable
throughput. As players will not select a heavily loaded
AP, it addresses the load balancing issue. However
users are free to switch between APs, handover cost
is overlooked.

B. Illustrative Simulation Results

We plot the worst-case user throughput versus different
traffic demand in Figure 2. The worst-case user throughput
of both CACA and unconstrained optimization flats off when
traffic demand reaches network capacity. The achievable net-
work capacity of CACA is close to that of unconstrained
optimization. It justifies that CACA achieves close-to-optimum
performance and reduces a substantial amount of migration
cost at the same time.
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Fig. 2. Worst-case loss rate vs. traffic demand.
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Fig. 3. Worst-case loss vs. num. of migrated users.
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Fig. 4. Worst-case throughput vs. traffic demand.

We study the UDP loss rate of the worst-case user with
respect to the number of migrated users in Figure 3. The
loss rate drops as we migrate more mobile users because
CACA reduces the maximum AP load better by migrating
more users. The loss rate converges as the number of migrated
users increases, showing that there is little incremental benefit
to migrate many users beyond certain number. This is because
there are a small number of crucial users whose migration
can substantially improve the network performance. This also
justifies that CACA can achieve similar performance as the
unconstrained scheme by only migrating the most critical
users.

In Figure 4, we compare worst-case user throughput of
CACA under different traffic requirement with other com-
parison schemes. User throughput first increases with traffic
demand, then flats off as the traffic saturates the network.
CACA outperforms both PFairness and GameBased. PFairness
performs much worse than its theoretical performance. This
is because PFairness assumes that PCF (Point Coordinating
Function) of WLANs is enabled. However, in both NS3 and
realistic WLANs, DCF rather than PCF is used for media
access control. GameBased performs worse than PFairness
because it is a distributed scheme that suffers from local
optimum.

We show the cumulative distribution function (CDF) of
UDP loss rate of different schemes in Figure 5. CACA
achieves overall low loss rate, which is substantially lower than
Gamebased. A small portion of users in PFairness enjoy lowest
loss rate. However, the majority of users in PFairness suffer
from higher loss than CACA. This is because Proportional
Fairness is the same as the time based fairness. It can make
good use of AP throughput if PCF is enabled. On the other
hand, CACA achieves throughput fairness by maximizing the
worst-case user throughput. Clearly, CACA is a better option
for WLANs based on DCF.

We show in Figure 6 worst-case TCP delay versus traffic
load. As expected, delay increases with traffic load due to more
congestion. The delay of CACA and that of PFairness increase
linearly, while the delay of SSA increases drastically. Without
AP load balancing, the congestion issue of SSA is much more
severe. CACA manages to achieve low delay performance
while keeping the migration cost low. The delay performance
of GameBased is also poor due to local optimum.

Figure 7 plots the number of migrated users by different
schemes versus total number of users in the network. The
number of migrated users increases with network size. CACA

manages to keep the migration cost low by cost constraint.
However, the number of migrated users in PFairness and
Unconstrained optimization increases sharply with network
size. This shows that without constraining the migration cost,
association re-optimization is likely to cause a large number of
user migrations. GameBased is fully distributed. Even though
it does not require communication with central controller, it
indeed incurs a substantial number of control frames in the
network due to a large number of MU migrations.

We finally show in Figure 8 the number of migrated users
versus total number of APs in the network. The migration cost
increases drastically with the number of APs in the network.
This is because each MU has more candidate APs as we deploy
more APs in the network. The migration cost of CACA keeps
low as we put a constraint on the total number of migrations. It
is true that one can get a better association by migrating more
MUs. However, switching around neighbouring APs brings
little performance gain.

C. Experimental Validation

CACA is simple and implementable. In this section, we
validate its performance by implementing and testing it in a
testbed. As shown in Figure 9, we deploy three 802.11n APs
in a 7 meters times 10 meters room. Each AP is implemented
by running a hostapd daemon on a Qualcomm JA76PF0
development board. To eliminate interference effect, APs are
set to operate on channel 1, 6 and 11 respectively on 2.4GHz
frequency band. APs are labelled by A, B and C. We also
place five mobile phones running Android close to AP B.
According to strongest signal association rule, all mobile
phones initially associate with AP B.

The central controller is run on a PC in the same Ethernet
with APs. We develop an android APP and install it on each
mobile phone. The APP communicates with the central con-
troller. When the central controller detects there is a need for
association re-optimization, it requests the APP on migrating
phones to perform scanning. To enforce a mobile phone to
associate with a specific AP, the APP sets the “BSSID” field
of Android class “WifiConfiguration” to be the MAC address
of the AP. During the experiment, all mobile phones transmit
saturated UDP traffic to a PC in the same Ethernet with APs.

Figure 10 shows the achieved UDP throughput of each
mobile phone versus the number of migrated users. User
throughput keeps improving as we migrate more users. The
marginal throughput gain of the worst-case user decreases with
number of migrations. We can see that the user throughput
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Fig. 9. Locations of APs and mobile phones for
the 802.11n testbed.
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Fig. 10. Throughput vs. number of migrated users.

becomes quite stable after migrating less than half of the total
number of users (in our study, 2 users). Therefore, a large
number of user migrations is not necessary in reality.

VI. CONCLUSION

As users join or leave in a WLAN network, AP load may
become unbalanced, affecting user throughput. The network
throughput can be improved by re-associating users to other
APs. As such migration incurs cost, we study the optimization
of AP re-association subject to a certain total migration cost
constraint in this paper. Given that most WLANs are based on
DCF MAC, we study max-min user throughput model as our
objective. There has not been sufficient consideration on mi-
gration cost, and its introduction as a constraint fundamentally
changes the nature of the problem.

We first formulate the problem, and show that it is NP-
hard. We present CACA, a simple and efficient approximation
algorithm for AP re-association. We prove that CACA achieves
(4 + ǫ) approximation. Our extensive simulation results show
that CACA efficiently migrates mobile users to substantially
improve user throughput. It is closely optimal, i.e., its through-
put is close to the case without migration cost constraint. We
have implemented CACA. Our experimental results further
validate its effectiveness.
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APPENDIX

Proof of Lemma 2 (See Page 5.): Given any achievable g,
we first prove that I outputted by MRemove is the optimal
subset achieving g with the least cost. We show this by
contradiction. To achieve the objective value g, we have to
reduce the load of each AP i. Therefore, we have an MU
removing subproblem for each AP i. The problem is to remove
a subset of U(i) to reduce Li by at least max {Li − g, 0}
while inducing the least cost. This problem reduces to IMKP
via the construction shown in Line 6 of Algorithm (1). The
corresponding IMKP of each AP i is solved optimally by
IMKA and Ii is the optimal set to remove. I =

⋃

i Ii. The
removal of Ii incurs Bi cost. The total cost incurred by
removing I is hence B =

∑

iBi.

Let us assume that I is not optimal. Then, there must be

another subset I
′

whose removal incurs B
′

=
∑

i B
′

i cost.

B
′

≤ B. Similarly, I
′

i with removing cost B
′

i is the set of

MUs removed from i. B
′

≤ B implies that there exists an AP

i such that B
′

i ≤ Bi. However, we have shown that Bi is the
optimal value, a contradiction.

At the termination of MRemove, ub is set to a value that
can be achieved by MRemove within the cost budget K . This
is true because only achievable g will be set as ub according
to Algorithm (1).

The lower bound lb is always not achievable by removing
any feasible subset of MUs. Therefore, G∗ ≥ lb. When
MRemove terminates, ub < (1 + ǫ)lb. We hence have G ≤
ub ≤ (1 + ǫ)lb ≤ (1 + ǫ)G∗. This completes the proof.

Proof of Lemma 3 (See Page 5.): We know that D∗ is
the optimal solution of MRP (MU Removing Problem). The
removal of D∗ results in optimal value G∗. We denote the set

of MUs migrated by the optimal solution of CACA as D
′

.

Let G
′

be the load of the heaviest AP after D
′

is removed.
Since G∗ is the optimal value, G∗ ≤ G

′

. Furthermore, OPT

is the heaviest AP load after re-associating MUs in set D
′

.

Therefore, we have OPT ≥ G
′

≥ G∗. This completes the
proof.

Proof of Lemma 4 (See Page 6.): In MAssoc, we use binary
search to find the smallest value g∗ such that FMRAP(g∗)
has a feasible solution. Clearly, g∗ ≤ H∗ (because FMRAP
is the LP Relaxation of MRAP). Every lb that we set in
MAssoc is infeasible. Therefore, lb < g∗. When the MAssoc
terminates, ub < (1 + ǫ)lb. γI , the output of MAssoc is
obtained from rounding the fractional solution of FMRAP(ub).
According to Theorem 1,

∑

j∈D γI
ijdij ≤ 2(ub − Gi), ∀i.

Therefore,
∑

j∈D γI
ijdij ≤ 2(ub−Gi) ≤ 2((1 + ǫ)lb−Gi) ≤

2((1 + ǫ)g∗ −Gi) ≤ 2(1 + ǫ)H∗ − 2Gi.

Proof of Theorem 2 (See Page 6.): Please recall that L∗

and x∗ denote the optimal value and optimal solution to the
MinmaxLP (Definition 3) respectively. We define the following
auxiliary problem.

minF
∑

j∈U

γijdij ≤ F −Gi, ∀i, (12)

∑

i:i∈A(j)

γij = 1, ∀j ∈ U (13)

γij ∈ {0, 1}

Let F ∗ be the optimal value of the auxiliary problem.
The auxiliary problem is similar to the MRAP except that
the constraint (13) in auxiliary problem is for all j ∈ U . The
auxiliary problem is to re-associate all users in U and MRAP is
to re-associate users in D. Since D ⊆ U , we have H∗ ≤ F ∗.

H = max
i





∑

j∈D

γI
ijdij +Gi



 (14)

≤ max
i

(2(1 + ǫ)H∗ −Gi) (15)

≤ 2(1 + ǫ)H∗ (16)

≤ 2(1 + ǫ)F ∗ (17)

≤ 2(1 + ǫ)max
i





∑

j∈U

x∗
ijdij +Gi



 (18)

≤ 2(1 + ǫ)



max
i

(
∑

j∈U

x∗
ijdij) + max

i
(Gi)



 (19)

≤ 2(1 + ǫ)L∗ + 2(1 + ǫ)(1 + ǫ)G∗ (20)

≤ 2(1 + ǫ)L∗ + 2(1 + ǫ)(1 + ǫ)OPT (21)

≤ 2(1 + ǫ)OPT + 2(1 + ǫ)(1 + ǫ)OPT (22)

≤ (4 + 6ǫ+ 2ǫ2)OPT, (23)

≤ (4 + ǫ)OPT, (24)

(replacing 6ǫ+ 2ǫ2 by ǫ as they both are small numbers )

where (15) is due to Lemma 4. Clearly, x∗ is a feasible
solution to the auxiliary problem and the objective val-
ue we get by plugging x∗ into the Auxiliary problem is

maxi

(

∑

j∈U x∗
ijdij +Gi

)

. F ∗ is the optimal value. There-

fore, we get (18) from (17). We have (20) due to Lemma 2
and (21) due to Lemma 3. We have (22) due to Lemma 1.


