
Fibonacci Heaps

CLRS: Chapter 20
Last Revision: 21/09/04

1

Binary heap Binomial heap Fibonacci heap
Procedure (worst-case) (worst-case) (amortized)
Make-Heap Θ(1) Θ(1) Θ(1)
Insert Θ(lgn) O(lgn) Θ(1)
Minimum Θ(1) O(lgn) Θ(1)
Extract-Min Θ(lgn) Θ(lgn) O(lgn)
Union Θ(n) O(lgn) Θ(1)
Decrease-Key Θ(lgn) Θ(lgn) Θ(1)
Delete Θ(lgn) Θ(lgn) O(lgn)

So far we have seenBinomial heaps and learnt some
techniques for performing amortized analysis.

In this section we will design Fibonacci heaps, whose
running times will be amortized and not worst case.
Even with only amortized running times, Fibonacci heaps
provide enough of an improvement to reduce the run-
time of Dijkstra’s and Prim’s algorithms from
(|V | + |E|) log |V | down to |V | log |V | + |E|.

Our amortized analysis will use the Potential method.

2

Fibonacci heaps, like Binomial heaps, are a collection
of heap-ordered trees.

Some properties

• nodes in a F.H are not ordered (by degree) in the
root list or as siblings.

• (root and sibling) lists kept as circularly-linked lists.
Allows constant time deletion/insertion/concatenation.

• Each node stores its degree (number of children).

• min[H] is a pointer to minimum root in root list.

• N(H) keeps number of nodes currently in H.

3

23 7

18

3

39

52 38

41

17

30 26

24

35

46

min[H]

Marked Nodes:
Some nodes will be marked
(indicated by the marked bit set to 1).
(i) A node x will be marked if x has lost a child since
the last time that x was made a child of another node.
(ii) Newly created nodes are unmarked
(iii) When node x becomes child of another node it
becomes unmarked.

Potential Function:
The potential of H will be t(H), the number of nodes
in root list of H plus two times m(H), the number of
marked nodes.

Φ(H) = t(H) + 2m(H).

In example above Φ(H) = 5 + 2 · 3 = 11.

4

23 7

18

3

39

52 38

41

17

30 26

24

35

46

min[H]

Assumption: There is a maximum degree D(n) on
the degree of any node in an n-node Fibonacci heap.

We will prove later that D(n) = O(logn).

5

23 7

18

3

39

52 38

41

17

30 26

24

35

46

min[H]

Make-Heap():
This is a very easy O(1) (both amortized and actual)
operation.

Minimum(H): Return the node pointed to by min[H].
This takes O(1) actual time.
The heap does not change before and after this oper-
ation so difference in potential is 0.
Amortized cost is then also O(1).

6

23 7

18

3

39

52 38

41

17

30 26

24

35

46

min[H]

18

3

39

52 38

41

17

30 26

24

35

46

23 7 21

min[H]

H’=Insert(H, x):

Create new tree containing x & add it to root list.
Min[H] = min(Min[H], x).
Update pointers appropriately

Do not combine items in the root list.
Clean up will be done during Extract-Min(H).

If k nodes inserted into H, then H becomes a linked
list with k single nodes.

Actual cost c of operation is O(1).
t(H ′) = t(H) + 1; m(H ′) = m(H) so
Φ(H ′)−Φ(H) = ((t(H ′)+2m(H ′))−(t(H)+2m(H))) = 1

and amortized cost satisfies
ĉ = c + 1 = O(1).

7

H=Union(H1, H2):
Just concatenate the two root lists of H1 and H2.
Do not combine items in the root list.
Set min[H] = min(min[H1], min[H2]).

Actual cost of this operation is c = O(1).

Concatenating the root lists does not change the total
number of items in the root lists or the total number of
marked nodes so change in potential is

Φ(H) − (Φ(H1) + Φ(H2))

= (t(H) + 2m(H)) −
((t(H1) + 2m(H1)) + (t(H2) + 2m(H2))

= 0

and amortized cost is

ĉ = c + 0 = O(1).

8

Extract-Min(H):
This is the most complicated operation.
It is here where we clean-up large root lists.
At the end of this operation, root list will contain

at most one root of each possible degree.
This implies that root list contains

≤ D(n − 1) + 1 nodes.

Extract-Min(H) is quite similar to same operation in
binomial heaps.
Let A be tree with root min[H].
Extract A from H.
Remove the root of A;

reinsert remaining trees back into root list of heap.
update min[H] during this procedure.

Link roots of equal degree until at most one root re-
mains of each degree.

Let x be root of tree X, y root of Y .
Assume w.l.o.g. that key[x] ≤ key[y].
When linking X and Y point y to x and

increment degree(x) and set mark(y)=0.

9

18

3

39

52 38

41

21723 17

30 26

24

46

35

min[H]

21723 17

30 26

24

46

35

38

41

5218

39

min[H]

217 17

30 26

24

46

35

38

41

5218

3923

10

217 17

30 26

24

46

35

38

41

5218

3923

21 5218

39

38

41 26

24

46

35

7

2317

30

21 5218

39

38

412317

30

7

26 46

35

24

2317

30

7

26 46

35

24

18

21 39

52

38

41

11

Actual Cost:
A has at most D(n) children.
After concatenation there will be at most

t(H) + D(n) − 1 nodes on root list.
Linking any two trees requires O(1).
Total cost of concatinating, linking and updating min[H]

is O(t(H) + D(n)).
Actual cost is then c = O(t(H) + D(n)).

Potential:
Original potential is Φ(H) = t(H) + 2m(H).

Marked nodes can not be created by operation;
only cleared.

After all of the linking there will be at most D(n−1)+

1 nodes on root list (Why?).

Final potential is then
Φ(H ′) = t(H ′) + 2m(H ′) ≤ D(n) + 2m(H).
and
Φ(H ′) − Φ(H) ≤ D(n) + 2m(H) − (t(H) + 2m(H)) =

D(n) − t(H).

12

Actual Cost:
c = O(t(H) + D(n)).

Potential:
Φ(H ′) − Φ(H) ≤ D(n) − t(H).

Amortized Cost:
If we scale the units of potential large enough then
amortized cost is

ĉ = c + Φ(H ′) − Φ(H)

≤ O(t(H) + D(n)) + D(n) − t(H)

= O(D(n))

so

ĉ = O(logn).

13

Decrease-Key(H, x, k):
Let p[x] = parent[x].

This operation is very different from any we’ve seen
before.

We actually Cut subtree rooted at x out of the tree,
move it to the root list and unmark x.

We then look at p[x];
if it wasn’t marked, we mark it and stop.

If it was marked, we cut p[x], unmark it, move it to
the root list, and then check p[p[x]], cascading this
process up until either an unmarked ancestor or the
root is found.

14

Decrease-Key(H, x, k)
(i) First check if k < key[p[x]]. If not, do nothing.
(ii) Otherwise

Cut(H, x, p[x])
CascadingCut(H, p[x])

(iii) If k < key[min[H]] then
min[H] = x

Cut(H, x, y):
(i)Move tree rooted at x to root list;

decrement degree[y].
(ii) set mark[x] = false

CascadingCut(H, y)
If y not in root list

then if mark[y] == false
then mark[y] = true
else Cut(H, y, p[y])

CascadingCut(H, p[y])

15

2317

30

7

26 46

35

24

18

21 39

52

38

41

min[H]

2317

30

7

26

18

21 39

52

38

41

35

24

min[H]

15

Node containing 46, has key decreased to 15.

It is cut and moved to root list.

Its parent, 24, is then marked.

16

2317

30

7

26

18

21 39

52

38

41

35

24

min[H]

15

2317

30

7 18

21 39

52

38

4124

26

5

min[H]

15

5

2317

30

7 18

21 39

52

38

4124

15

min[H]

26

5

2317

30

18

21 39

52

38

41

min[H]

24 715 26

35 changed to 5, cut & moved to root
Its parent 26 was marked; so it’s cut as well,

moved to root and mark cleared.
26’s parent 24 was marked; so it’s cut as well,

moved to root and mark cleared.
24’s parent 7 is in root list so cascade terminates.

17

Decrease-Key(H, x, k): Run Time

Actual Cost:
If CascadingCut is recursively called d times,
c = O(d + 1).

Potential:
Original potential is Φ = t(H) + 2m(H).

After operation there are
t(H) + d trees in root list and at most
m(H) − (d − 1) + 1 = m(H) − d + 2

marked nodes. Then

Φ(H ′) − Φ(H) ≤ 4 − d.

Amortized Cost:
If we scale the units of potential to be large enough
then

ĉ = c + Φ(H ′) − Φ(H)

≤ O(d + 1) + 4 − d

= O(1)

18

We can now begin to understand why the marked nodes
contribute 2m(H) to potential.

The first unit of potential for each marked node was to
pay for a step in the cascaded cut.

The second unit was to pay for the increase in poten-
tial caused by a cut node becoming a root, which in
turn pays for a later linking of that root to another root
during a Decrease-Key.

19

Delete(H, x):

This is equivalent to

an amortized O(1) time Decrease-Key(H, x,−∞)

and

an amortized O(logn) time Extract-Min(H)

20

Binary heap Binomial heap Fibonacci heap
Procedure (worst-case) (worst-case) (amortized)
Make-Heap Θ(1) Θ(1) Θ(1)
Insert Θ(lgn) O(lgn) Θ(1)
Minimum Θ(1) O(lgn) Θ(1)
Extract-Min Θ(lgn) Θ(lgn) O(lgn)
Union Θ(n) O(lgn) Θ(1)
Decrease-Key Θ(lgn) Θ(lgn) Θ(1)
Delete Θ(lgn) Θ(lgn) O(lgn)

We have demonstrated that Fibonacci Heaps satisfy
the stated amortized running times under the assump-
tion that D(n) = O(logn) where D(n) is the maxi-
mum degree of a tree in a Fibonacci Heap containing
n nodes.

We still have to

• Prove that D(n) = O(logn)

• Explain why the data structure is called a
Fibonacci heap.

21

Define trees Ti as follows: T0 is a single node, T1 is
a node with one child and, for i > 1, Ti is constructed
by pointing the root of a Ti−2 to the root of a Ti−1.

T

T

T

i+1

i
i−1

T T1 T T0 2 3

T T4 5

It is easy to see that |Ti| = Fi+2 > φi where Fi is

the ith Fibonacci number and φ = (1 +
√

5)/2.

Our analysis will essentially will show that if a node in
a Fibonacci heap has degree k, then the tree rooted at
that node must include Tk. This means that no node
can have degree greater than logφ n so D(n) = O(logn).

22

Recall that

Fk =

0 if k = 0,
1 if k = 1,
Fk−1 + Fk−2 if k ≥ 2.

We will need the following fact

Lemma: ∀k ≥ 0, Fk+2 = 1 +
∑k

i=0 Fi.

Proof: By induction. Proof is obviously true for k = 0.

For k > 0,

Fk+2 = Fk + Fk+1

= Fk +

1 +
k−1
∑

i=0

Fi

= 1 +
k

∑

i=0

Fi

23

Lemma:
Let x be any node in a F. heap.
Let y1, y2, . . . , yk be current children of x in order

in which they were linked to x.
Then degree[y1] ≥ 0 and

∀i > 1, degree[yi] ≥ i − 2.

Proof: degree[y1] ≥ 0 trivially.
In other cases, when yi linked to x, all of y1, y2, . . . , yi−1

were already children so degree[x] ≥ i − 1.

Node yi is only linked to x when degree[yi] = degree[x]

so at that time degree[yi] ≥ i − 1.

Since then yi could have lost at most one more child
(otherwise it would have been cut and put in root list).
So, as long as yi is linked to x, degree[yi] ≥ i − 2.

24

Lemma:
Let x be any node in a F. heap and k = degree[x].
Then size(x) = number of nodes in tree rooted at x
is ≥ Fk+2 ≥ φk.

Proof: Let sk be the minimum value of size(x) for a
node x with degree k. It is easy to see that s0 = 1,
s1 = 2 and s2 = 3. Also easy to see that si ≥ si−1.

As before, let y1, y2, . . . , yk be current children of x in
order in which they were linked to x

Then, counting 1 for x and another 1 for size(y1),

size(x) ≥ sk = 2 +
k

∑

i=2

sdegree[yi]

≥ 2 +
k

∑

i=2

si−2

We now prove lemma by induction on sk ≥ Fk−2.

sk ≥ 2 +
k

∑

i=2

si−2 ≥ 2 +
k

∑

i=2

Fi

= 1 +
k

∑

i=0

Fi = Fk+2

25

We have just proven that if x is any node in a
Fibonacci heap and k = degree[x],
then size(x) ≥ Fk+2 ≥ φk.

The intuition behind the proof is that the tree rooted
at x must contain the Fibonacci tree Ti defined a few
slides back.

An immediate corollary is that

size(x) ≥ Fdegree(x)+2 ≥ φdegree(x)

so no node in an n-node Fibonacci heap can have

degree ≥ logφ n

so

D(n) = O(logn).

26

