Fibonacci Heaps

CLRS: Chapter 20

Last Revision: 21/09/04
<table>
<thead>
<tr>
<th>Procedure</th>
<th>Binary heap (worst-case)</th>
<th>Binomial heap (worst-case)</th>
<th>Fibonacci heap (amortized)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make-Heap</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>Insert</td>
<td>$\Theta(lg\ n)$</td>
<td>$O(lg\ n)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>Minimum</td>
<td>$\Theta(1)$</td>
<td>$O(lg\ n)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>Extract-Min</td>
<td>$\Theta(lg\ n)$</td>
<td>$\Theta(lg\ n)$</td>
<td>$O(lg\ n)$</td>
</tr>
<tr>
<td>Union</td>
<td>$\Theta(n)$</td>
<td>$O(lg\ n)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>Decrease-Key</td>
<td>$\Theta(lg\ n)$</td>
<td>$\Theta(lg\ n)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>Delete</td>
<td>$\Theta(lg\ n)$</td>
<td>$\Theta(lg\ n)$</td>
<td>$O(lg\ n)$</td>
</tr>
</tbody>
</table>

So far we have seen *Binomial heaps* and learnt some techniques for performing *amortized analysis*.

In this section we will design *Fibonacci heaps*, whose running times will be *amortized* and not worst case. Even with only amortized running times, Fibonacci heaps provide enough of an improvement to reduce the runtime of Dijkstra’s and Prim’s algorithms from $(|V| + |E|) \log |V|$ down to $|V| \log |V| + |E|$.

Our amortized analysis will use the *Potential method*. 2
Fibonacci heaps, like **Binomial heaps**, are a **collection** of heap-ordered trees.

Some properties

- nodes in a F.H are **not** ordered (by degree) in the root list or as siblings.
- (root and sibling) lists kept as **circularly-linked** lists. Allows constant time deletion/insertion/concatenation.
- Each node stores its **degree** (number of children).
- \(\text{min}[H] \) is a pointer to minimum root in root list.
- \(N(H) \) keeps **number** of nodes currently in \(H \).
Marked Nodes:
Some nodes will be marked (indicated by the marked bit set to 1).
(i) A node x will be marked if x has lost a child since the last time that x was made a child of another node.
(ii) Newly created nodes are unmarked
(iii) When node x becomes child of another node it becomes unmarked.

Potential Function:
The potential of H will be $t(H)$, the number of nodes in root list of H plus two times $m(H)$, the number of marked nodes.

$$\Phi(H) = t(H) + 2m(H).$$

In example above $\Phi(H) = 5 + 2 \cdot 3 = 11.$
Assumption: There is a maximum degree $D(n)$ on the degree of any node in an n-node Fibonacci heap.

We will prove later that $D(n) = O(\log n)$.
Make-Heap():
This is a very easy $O(1)$ (both amortized and actual) operation.

Minimum(H): Return the node pointed to by $min[H]$. This takes $O(1)$ actual time.
The heap does not change before and after this operation so difference in potential is 0.
Amortized cost is then also $O(1)$.
\(H' = \text{Insert}(H, x) \):

Create new tree containing \(x \) & add it to root list.
\[\textit{Min}[H] = \min(\textit{Min}[H], x). \]
Update pointers appropriately

\textbf{Do not} combine items in the root list.

\textit{Clean up will be done during Extract-Min(} \(H \)).

If \(k \) nodes inserted into \(H \), then \(H \) becomes a linked list with \(k \) single nodes.

Actual cost \(c \) of operation is \(O(1) \).

\[t(H') = t(H) + 1; \text{ } m(H') = m(H) \text{ } \text{so} \]

\[\Phi(H') - \Phi(H) = ((t(H') + 2m(H')) - (t(H) + 2m(H))) = 1 \]

and amortized cost satisfies
\[\hat{c} = c + 1 = O(1). \]
\textbf{H}=\textbf{Union}(H_1, \ H_2):
Just concatenate the two root lists of \(H_1 \) and \(H_2 \).
\textbf{Do not} combine items in the root list.
Set \(\min[H] = \min(\min[H_1], \min[H_2]) \).

Actual cost of this operation is \(c = O(1) \).

Concatenating the root lists does not change the total number of items in the root lists or the total number of marked nodes so change in potential is

\[
\Phi(H) - (\Phi(H_1) + \Phi(H_2)) = (t(H) + 2m(H)) - ((t(H_1) + 2m(H_1)) + (t(H_2) + 2m(H_2))) = 0
\]

and amortized cost is

\[
\hat{c} = c + 0 = O(1).
\]
Extract-Min(H):
This is the most complicated operation. It is here where we *clean-up* large root lists.
At the end of this operation, root list will contain at most one root of each possible degree.
This implies that root list contains
\[\leq D(n - 1) + 1 \] nodes.

Extract-Min(H) is quite similar to same operation in binomial heaps.
Let A be tree with root $\text{min}[H]$.
Extract A from H.
Remove the root of A;
reinsert remaining trees back into root list of heap.
update $\text{min}[H]$ during this procedure.
Link roots of equal degree until at most one root remains of each degree.

Let x be root of tree X, y root of Y.
Assume w.l.o.g. that $\text{key}[x] \leq \text{key}[y]$.
When linking X and Y point y to x and increment $\text{degree}(x)$ and set $\text{mark}(y)=0$.
Actual Cost:

A has at most $D(n)$ children.

After concatenation there will be at most $t(H) + D(n) − 1$ nodes on root list.

Linking any two trees requires $O(1)$.

Total cost of concatenating, linking and updating $\text{min}[H]$ is $O(t(H) + D(n))$.

Actual cost is then $c = O(t(H) + D(n))$.

Potential:

Original potential is $\Phi(H) = t(H) + 2m(H)$.

Marked nodes can not be created by operation; only cleared.

After all of the linking there will be at most $D(n − 1) + 1$ nodes on root list (Why?).

Final potential is then

$\Phi(H') = t(H') + 2m(H') \leq D(n) + 2m(H)$.

and

$\Phi(H') − \Phi(H) \leq D(n) + 2m(H) − (t(H) + 2m(H)) = D(n) − t(H)$.

12
Actual Cost:
\[c = O(t(H) + D(n)). \]

Potential:
\[\Phi(H') - \Phi(H) \leq D(n) - t(H). \]

Amortized Cost:
If we scale the units of potential large enough then amortized cost is

\[
\hat{c} = c + \Phi(H') - \Phi(H) \\
\leq O(t(H) + D(n)) + D(n) - t(H) \\
= O(D(n))
\]

so

\[\hat{c} = O(\log n). \]
Decrease-Key(H, x, k):

This operation is *very* different from any we’ve seen before.

We actually **Cut** subtree rooted at x out of the tree, move it to the root list and unmark x.

We then look at $p[x]$; if it wasn’t marked, we mark it and stop.

If it was marked, we cut $p[x]$, unmark it, move it to the root list, and then check $p[p[x]]$, cascading this process up until either an unmarked ancestor or the root is found.
Decrease-Key(H, x, k)
(i) First check if $k < key[p[x]]$. If not, do nothing.
(ii) Otherwise
 Cut($H, x, p[x]$)
 CascadingCut($H, p[x]$)
(iii) If $k < key[min[H]]$ then
 $min[H] = x$

Cut(H, x, y):
(i) Move tree rooted at x to root list;
 decrement $degree[y]$.
(ii) set $mark[x] = false$

CascadingCut(H, y)
If y not in root list
 then if $mark[y] == false$
 then $mark[y] = true$
 else Cut($H, y, p[y]$)
 CascadingCut($H, p[y]$)
Node containing 46, has key decreased to 15.

It is cut and moved to root list.

Its parent, 24, is then marked.
35 changed to 5, cut & moved to root
Its parent 26 was marked; so it’s cut as well, moved to root and mark cleared.
26’s parent 24 was marked; so it’s cut as well, moved to root and mark cleared.
24’s parent 7 is in root list so cascade terminates.
Decrease-Key(H, x, k): Run Time

Actual Cost:
If **CascadingCut** is recursively called d times,
$c = O(d + 1)$.

Potential:
Original potential is $\Phi = t(H) + 2m(H)$.

After operation there are $t(H) + d$ trees in root list and at most $m(H) - (d - 1) + 1 = m(H) - d + 2$ marked nodes. Then

$$\Phi(H') - \Phi(H) \leq 4 - d.$$

Amortized Cost:
If we scale the units of potential to be large enough then

$$\hat{c} = c + \Phi(H') - \Phi(H) \leq O(d + 1) + 4 - d = O(1).$$
We can now begin to understand why the marked nodes contribute $2m(H)$ to potential.

The first unit of potential for each marked node was to pay for a step in the cascaded cut.

The second unit was to pay for the increase in potential caused by a cut node becoming a root, which in turn pays for a later linking of that root to another root during a Decrease-Key.
Delete(H, x):

This is equivalent to

an amortized $O(1)$ time $\text{Decrease-Key}(H, x, -\infty)$

and

an amortized $O(\log n)$ time $\text{Extract-Min}(H)$
<table>
<thead>
<tr>
<th>Procedure</th>
<th>Binary heap (worst-case)</th>
<th>Binomial heap (worst-case)</th>
<th>Fibonacci heap (amortized)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make-Heap</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>Insert</td>
<td>$\Theta(lg \ n)$</td>
<td>$O(lg \ n)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>Minimum</td>
<td>$\Theta(1)$</td>
<td>$O(lg \ n)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>Extract-Min</td>
<td>$\Theta(lg \ n)$</td>
<td>$\Theta(lg \ n)$</td>
<td>$O(lg \ n)$</td>
</tr>
<tr>
<td>Union</td>
<td>$\Theta(n)$</td>
<td>$O(lg \ n)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>Decrease-Key</td>
<td>$\Theta(lg \ n)$</td>
<td>$\Theta(lg \ n)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>Delete</td>
<td>$\Theta(lg \ n)$</td>
<td>$\Theta(lg \ n)$</td>
<td>$O(lg \ n)$</td>
</tr>
</tbody>
</table>

We have demonstrated that Fibonacci Heaps satisfy the stated amortized running times under the assumption that $D(n) = O(\log n)$ where $D(n)$ is the maximum degree of a tree in a Fibonacci Heap containing n nodes.

We still have to

- Prove that $D(n) = O(\log n)$

- Explain why the data structure is called a *Fibonacci* heap.
Define trees T_i as follows: T_0 is a single node, T_1 is a node with one child and, for $i > 1$, T_i is constructed by pointing the root of a T_{i-2} to the root of a T_{i-1}.

It is easy to see that $|T_i| = F_{i+2} > \phi^i$ where F_i is the i^{th} Fibonacci number and $\phi = (1 + \sqrt{5})/2$.

Our analysis will essentially will show that if a node in a Fibonacci heap has degree k, then the tree rooted at that node must include T_k. This means that no node can have degree greater than $\log_\phi n$ so $D(n) = O(\log n)$.

22
Recall that

\[F_k = \begin{cases}
0 & \text{if } k = 0, \\
1 & \text{if } k = 1, \\
F_{k-1} + F_{k-2} & \text{if } k \geq 2.
\end{cases} \]

We will need the following fact

Lemma: \(\forall k \geq 0, \quad F_{k+2} = 1 + \sum_{i=0}^{k-1} F_i. \)

Proof: By induction. Proof is obviously true for \(k = 0. \) For \(k > 0, \)

\[
F_{k+2} = F_k + F_{k+1} \\
= F_k + \left(1 + \sum_{i=0}^{k-1} F_i \right) \\
= 1 + \sum_{i=0}^{k} F_i.
\]
Lemma:
Let x be any node in a F. heap.
Let y_1, y_2, \ldots, y_k be current children of x in order in which they were linked to x.
Then $\text{degree}[y_1] \geq 0$ and
\[\forall i > 1, \; \text{degree}[y_i] \geq i - 2. \]

Proof: $\text{degree}[y_1] \geq 0$ trivially.
In other cases, when y_i linked to x, all of $y_1, y_2, \ldots, y_{i-1}$ were already children so $\text{degree}[x] \geq i - 1$.

Node y_i is only linked to x when $\text{degree}[y_i] = \text{degree}[x]$ so at that time $\text{degree}[y_i] \geq i - 1$.

Since then y_i could have lost at most one more child (otherwise it would have been cut and put in root list). So, as long as y_i is linked to x, $\text{degree}[y_i] \geq i - 2$.
Lemma:
Let x be any node in a F. heap and $k = \text{degree}[x]$. Then $\text{size}(x) =$ number of nodes in tree rooted at x is $\geq F_{k+2} \geq \phi^k$.

Proof: Let s_k be the minimum value of $\text{size}(x)$ for a node x with degree k. It is easy to see that $s_0 = 1$, $s_1 = 2$ and $s_2 = 3$. Also easy to see that $s_i \geq s_{i-1}$.

As before, let y_1, y_2, \ldots, y_k be current children of x in order in which they were linked to x.

Then, counting 1 for x and another 1 for $\text{size}(y_1)$,

$$\text{size}(x) \geq s_k = 2 + \sum_{i=2}^{k} s_{\text{degree}[y_i]}$$

$$\geq 2 + \sum_{i=2}^{k} s_{i-2}$$

We now prove lemma by induction on $s_k \geq F_{k-2}$.

$$s_k \geq 2 + \sum_{i=2}^{k} s_{i-2} \geq 2 + \sum_{i=2}^{k} F_i$$

$$= 1 + \sum_{i=0}^{k} F_i = F_{k+2}$$
We have just proven that if x is any node in a Fibonacci heap and $k = \text{degree}[x]$, then $size(x) \geq F_k + 2 \geq \phi^k$.

The intuition behind the proof is that the tree rooted at x must contain the Fibonacci tree T_i defined a few slides back.

An immediate corollary is that

$$size(x) \geq F_{\text{degree}(x)} + 2 \geq \phi^{\text{degree}(x)}$$

so no node in an n-node Fibonacci heap can have

$$\text{degree} \geq \log_\phi n$$

so

$$D(n) = O(\log n).$$